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The isothiourea-catalyzed formal enantioselective conjugate addition
of 2-hydroxybenzophenone imine derivatives to a,f-unsaturated para-
nitrophenyl esters has been developed. Investigations of the scope and
limitations of this procedure showed that f-electron withdrawing
substituents within the a,f-unsaturated ester component are required
for good product yield, giving rise to a range of p-imino ester and
amide derivatives in moderate to good isolated yields with excellent
enantioselectivity (20 examples, up to 81% yield and 97:3 er).

The development of methods for the enantioselective synthesis
of B-amino acid derivatives'® is of widespread importance due
to the prevalence of this structural motif in natural products
and medicinally relevant compounds." Among the synthetic
methods that have been developed for the preparation of
B-amino acid derivatives, arguably the most simple and elegant
involves the asymmetric conjugate addition of an ammonia
equivalent to an o,B-unsaturated carbonyl motif. As an example
of this approach, the conjugate addition of enantiomerically
pure lithium amide derivatives to a,B-unsaturated esters has
been developed and exploited extensively by Davies and co-
workers. Conjugate addition of lithium N-benzyl-N-o-
methylbenzylamide to an o,B-unsaturated ester gives the corres-
ponding B-amino ester with high diastereoselectivity (>95:5
dr), with N-deprotection through hydrogenolysis giving the
corresponding B-amino ester derivatives (Scheme 1a).”

Over the last two decades, several enantioselective organo-
catalytic approaches to amine conjugate addition have been
introduced. To date, these successful approaches rely upon
enals,® enones,” N-acyl pyrazoles,® and nitro-olefins® as Michael
acceptors, with the use of bifunctional thiourea?®7:8¢7%¢ or
squaramide®*“**?¢ organocatalysts, or Lewis basic pyrrolidines®®
commonplace. Catalytic enantioselective amine conjugate addi-
tions to o,p-unsaturated esters are rare, reflecting the recognized
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Scheme 1 Synthesis of B-amino ester derivatives.

recalcitrance of o,f-unsaturated esters as Michael acceptors
(Scheme 1b). To date, the current state-of-the-art organocatalytic
approach is represented by Seidel and co-workers’® demonstra-
tion of the conjugate addition of cyclic secondary amines to f3-
alkyl-a,B-unsaturated benzyl esters using a selenourea-thiourea
catalyst 1 (Scheme 1c). Although limited to B-alkyl substituted
Michael acceptors, this impressive methodology was applicable
to a range of cyclic amines and the kinetic resolution of
(£)-cyclic 2-arylamines.

Our approach to enantioselective amine conjugate addition
focused upon the use of imines as nucleophiles. The conjugate
addition of (diphenylmethylene)amine to o,B-unsaturated
esters, nitriles and ketones in racemic form has been demon-
strated by de Meijere et al. MeOH was optimal as a solvent and

This journal is © The Royal Society of Chemistry 2022


https://orcid.org/0000-0002-2923-4228
https://orcid.org/0000-0002-2104-7313
http://crossmark.crossref.org/dialog/?doi=10.1039/d2cc01936a&domain=pdf&date_stamp=2022-05-27
https://doi.org/10.1039/d2cc01936a
https://doi.org/10.1039/d2cc01936a
https://rsc.li/chemcomm
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cc01936a
https://pubs.rsc.org/en/journals/journal/CC
https://pubs.rsc.org/en/journals/journal/CC?issueid=CC058049

Open Access Article. Published on 20 May 2022. Downloaded on 1/23/2026 4:57:08 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Communication

— (a) Addition of (diphenylmethylene)amine to o, f-unsaturated esters
Ph

Y Ph o high yield R = H
MeOH, 2
ai NH 1t or reflux ph*N o) o |ow yield an.d
+ extended reaction
2 OMe times R' = Me

NEt;
/\)J\OMe

(b) Aleman’s enantioselective approach using enals
Ar e elegant catalytic
N Ar approach

o H  OTBDMS e 2-hydroxy motif as
H 2 (10 mol%) OH activating group
toluene, rt, e enal starting

N materials
3-24 h, then L

x_CO,Me
Ph3P=CHC02Me
H (Ar= 3,5-(CF3)203H3)

e simple protocol

+)-B-imino ester
e e racemic products

&-imino ester

(c) This work: isothiourea catalyzed imine conjugate addition to esters

a,B-unsaturated
acyl ammonium
intermediate

e up to 98:2 er
o NRj = isothiourea
e PNP = 4-N0206H4

Scheme 2 Previous imine conjugate additions and this work.

a basic additive (such as NEt3) led to effective product for-
mation (Scheme 2a).'® In 2018, Aleman and co-workers success-
fully demonstrated an enantioselective aza-Michael addition of
nucleophilic imines to enals using secondary amine catalyst 2
(Scheme 2b)."" Trapping of the resultant B-imino aldehydes with
a phosphorane gave the corresponding §-imino esters in good
yield and enantioselectivity. Notably, 2-hydroxybenzophenone
imines showed increased reactivity and enantioselectivity com-
pared with the parent benzophenone imine, attributed to an
increase in acidity of the imine proton caused by intramolecular
hydrogen bonding.’*"* In previous work, we and others have
demonstrated a range of enantioselective Michael-addition pro-
cesses of in situ generated o,B-unsaturated acyl ammonium
species."*" Building on these precedents, we report herein the
formal isothiourea-catalyzed enantioselective addition of 2-hydroxy-
benzophenone imines to B-fluorinated o,-unsaturated para-
nitrophenyl esters via an o,f-unsaturated acyl ammonium
intermediate, giving products in up to 98:2 er (Scheme 2c).
Preliminary investigations used f-CF;-substituted o,p-
unsaturated para-nitrophenyl ester 4 (1.0 equiv.) in toluene as
standard. Given the moderate reactivity of o,-unsaturated acyl
ammonium ions, imine 3 (2.0 equiv.) bearing an electron donor
4-OMe-substituent was postulated to enhance nucleophilicity
(Table 1). Attempted isolation of the para-nitrophenyl ester
product led to low and irreproducible product yields, so addition
of pyrrolidine to give the isolable amide 5 was adopted. Screening
of isothiourea catalysts 6-8 (10 mol%) at 1:2 substrate ratio of
ester 4: imine 3 (entries 1-3) showed that tetramisole 6 and BTM
7 gave promising product yield (~50%) whereas HyperBTM 8
showed poor catalytic activity (<10% yield). Excellent enantios-
electivity (96:4 er) was observed using BTM 7. Altering the
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Table 1 Reaction optimisation
‘ OMe
(i). 6-8 (2.5 - 20 mol%)
Solvent (0.1 M) OH
6 —48 h, rt to 60 °C
_— h” >N o
(ii). Pyrrolidine H
(1.5 equiv.), 16 h, rt NQ
Ar = 4-NO,CgH,4 5
iPr.,
N N N
Ph—(\/ 3 Ph- /@ (\ /@
el ¢ LAl
(S)-Tetramisole 6 (R-BTM7 (2S,3R)-HyperBTM 8

Entry Catalyst (mol%) Temp. (°C) Solvent 3:4 Yield® (%) er”

1° 6 (10) rt Toluene 1:2 50 12:88
2¢ 7 (10) rt Toluene 1:2 54 96:4
3¢ 8 (10) rt Toluene 1:2 <10 68:32
4° 7(10) It Toluene 1:1.5 42 95:5
5¢ 7 (10) rt Toluene 1.5:1 38 97:3
6° 7 (10) 40 Toluene 1:2 52 94:6
7 7(10) 60 Toluene 1:2 47 91:9
8° 7 (2.5) rt Toluene 1:2 <10 91:9
9° 7 (5.0) rt Toluene 1:2 18 96:4
10° 7 (20) It Toluene 1:2 714 96:4
11 7 (20) rt THF 1:2 31 96:4
12° 7 (20) rt E,0  1:2 30 96:4
13¢ 7 (20) rt CH,Cl, 1:2 37 96:4
14°  7(20) rt Toluene 1:2 31 98:2
15 7(20) rt Toluene 1:2 42 96:4
16° 7 (20) rt Toluene 1:2 36 96:4

“ Using "H NMR spectroscopic analysis and 1,3,5-trimethoxybenzene as
internal standard. ? Ratio of (R): (S) enantiomers determined by HPLC
analysis on a chiral stationary phase. © Ar = 4-NO,CgH,. ¢ Isolated yield.
® Ar = 2,4,6-Cl;CgH,./ Ar = C4Fs. & Ar = 3,5-(CF;),CeH,.

reaction stoichiometry (entries 4 and 5) led to reduced product
yield. A detrimental effect on product enantioselectivity (91:9 er)
was observed when the reaction temperature was increased to
40 °C or 60 °C (entries 6 and 7). Lowering the catalyst loading
showed a significant decrease in product yield and enantioselec-
tivity (entries 8 and 9), while using 20 mol% BTM 7 gave
increased yield (71% yield, 96:4 er, entry 10). Screening of a
alternative solvents gave high product enantioselectivity but
reduced yields (entries 11-13). Further optimisation probed the
effectiveness of alternative electron-deficient aryl esters. Compar-
ison of para-nitrophenyl with 2,4,6-trichlorophenyl, pentafluoro-
phenyl, and 3,5-bis(trifluoromethyl)phenyl esters (entries 14-16)
showed that excellent enantioselectivities were observed in each
case (up to 98: 2 er), with the para-nitrophenyl ester leading to the
best product yield (71%).

The scope and limitations of the developed process was
explored through variation of the nucleophilic imine reaction
component (Fig. 1). Variation of the electronic bias of the 4-aryl
substituent within the imine component showed that decreased
product yield was observed upon changing from an electron-
donating 4-MeO- (5, 70% yield) to 4-Me (9, 49% yield), 4-H (11,
36% yield) and electron-withdrawing 4-Br substituent (10, 24%
yield) all with >96:4 er. This is consistent with increasing
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Scheme 3 Gram scale synthesis of product 5.
Ph \N Ph \N Ph \N Ph \N
N N N N
5 9 10 o/11 substituents (CF,Cl, CF,Br, and C,Fs) led to products 14-17 in up
70% yiel 49% yiel 24% yiel 36% Id . . . . .
Sé:Z frd gé:zly ::rd 91:8’ frd o713 ':r to excellent yields with high enantioselectivity (40% to 81%;
™ om >96:4 er), while the incorporation of ester substituents gave
e . C o -
18-19 in poor 20% product yield in up to 96: 4 er. Variation of the
post catalysis nucleophilic component (Nuc-H) to incorporate
alcohols as well as cyclic secondary and acyclic primary amines
Ph \N Ar! \N Ph \N Ph \N gave a range of ester and amide products 20-24 in good yield
N N Q N N (42% to 64%) and excellent enantioselectivity (>96:4 er).
400/: f,,ew 1 ;% y,erc? 973 er 20% ;,ek, 73% ‘:’,,em To further demonstrate the synthetic utility of this transfor-
8317 er Art= 4-MeOCsH4 97:3 er 96:4 er mation, it was applied to the gram-scale synthesis of product 5
with consistent yield and enantioselectivity (67%, 96:4 er,
Scheme 3). Hydrolysis gave the free B-amino amide product
26 in high yield and enantioselectivity (95%, 96 : 4 er).'®
Ph \N Ph \N Ph \N Ph \N A proposed mechanism of this transformation is shown in
N N N Scheme 4. Reversible acylation of the isothiourea with the
16 17 18R= Me a,B-unsaturated ester 1a generates the key o,B-unsaturated acyl
72% yleld 81% yleld 20% yield,? 96:4 er ; : ; ; :
96:4 or B iar 19R=Bn, e isothiouronium ion pair 26.
20% yield,? 87:13 er
Nuc-H variation
OMe OMe _ —
OMe
OMe Stereochemical
OH Rationale: O
)
Ph \N Ph \N Ph \N Ph \N Nuc-H HoN?
OR N N NBn OH K O
20 R3= Me 22 23 K/° M omMe Ph" "N O @ 3
64% yield,? 97:3 er 53% yleld 52% yield 57% yield \)L N%‘D\N = CF3
21 R3= Bn 96:4 er 96:4 er 97:3er Nuc ""‘ s-cis
42% yield,> 96:4 er pPh  conformation
OH — o -
Fig.1 0.10 mmol scale. Isolated product yield; er determined by HPLC Vk
. . ) , PN O N OAr
analysis on a chiral stationary phase; [a] 40 °C for step i; [b] DMAP 20 mol% '\)j\ Ph....(\/]\ 4
in step ii. N S
OMe 7
g:;:lay;f N-Acylation
electron density within the imine component leading to OH g Coar 08
increased product yield. Interestingly, comparing the yield and PN O S@ \)k@ 4(
er of products 11 and 12 indicates that the 2-hydroxy-substituent \)J\('g AN 26 Nl N
within the imine is essential for high product er, but does not 28 om PH OMe
affect product yield. The incorporation of an additional electron- PR\ froton © nchael
donating 4-MeO substituent led to product 13 in reduced yield
but maintained high product er. Variation of the B-substituent o® 3
within the o,B-unsaturated ester indicated that the incorporation S 09 s Ph”  N*
of polyhalogenated or ester electron-withdrawing groups was HOAr \)\(’?‘ %N 3 H
necessary for reactivity as alkyl, aryl, ketone and amide substi- Y/
27

tuted acceptors gave no significant product formation. For exam-
ple, the introduction of halogenated (CF,H) and polyhalogenated
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Scheme 4 Proposed reaction mechanism.
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An intramolecular chalcogen 1,5-S- - -O interaction (np — 6*s.¢)"”
provides a plausible stabilising effect and conformational lock.
Hydrogen bonding between the 2-hydroxy-substituent and the
imine N serves to conformationally restrict this functionality
and facilitate deprotonation.''™® Subsequent conjugate addi-
tion to the s-cis conformation of the o,f-unsaturated acyl
isothiouronium 26 anti- to the stereodirecting phenyl substitu-
ent of the isothiourea catalyst generates the ammonium enolate
intermediate 27. Proton transfer generates the B-imino acyl
isothiouronium intermediate 28, with catalyst turnover facili-
tated by the aryloxide counterion to form the product and
release the isothiourea catalyst BTM 7.

In summary, enantioselective organocatalytic conjugate
addition of 2-hydroxybenzophenone imines to o,B-unsaturated
esters using the isothiourea BTM as an organocatalyst gives
enantioenriched B-imino amides in modest to good yield (20-
81%) and excellent enantioselectivity (typically >95:5 er)."
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