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Machine learning for non-additive intermolecular
potentials: quantum chemistry to first-principles
predictions†

Richard S. Graham *a and Richard J. Wheatley *b

Prediction of thermophysical properties from molecular principles

requires accurate potential energy surfaces (PES). We present a

widely-applicable method to produce first-principles PES from quan-

tum chemistry calculations. Our approach accurately interpolates

three-body non-additive interaction data, using the machine learning

technique, Gaussian Processes (GP). The GP approach needs no

bespoke modification when the number or type of molecules is

changed. Our method produces highly accurate interpolation from

significantly fewer training points than typical approaches, meaning ab

initio calculations can be performed at higher accuracy. As an exemplar

we compute the PES for all three-body cross interactions for CO2–Ar

mixtures. From these we calculate the CO2–Ar virial coefficients up to

5th order. The resulting virial equation of state (EoS) is convergent for

densities up to the critical density. Where convergent, the EoS makes

accurate first-principles predictions for a range of thermophysical

properties for CO2–Ar mixtures, including the compressibility factor,

speed of sound and Joule–Thomson coefficient. Our method has

great potential to make wide-ranging first-principles predictions for

mixtures of comparably sized molecules. Such predictions can replace

the need for expensive, laborious and repetitive experiments and

inform the continuum models required for applications.

Improvements in computational chemistry mean calculations of
intermolecular potentials can be performed accurately for small
molecules.1 Such ab initio calculations can lead to first-principles
potential energy surfaces (PES), from which molecular simulation2,3

can quantitatively predict useful physical properties. This molecular
understanding and predictive ability has potentially transformative
applications in many fields. Examples include improved models of
CO2 for understanding and mitigating climate change,4–7 molecular
models of water to improve treatment and desalination8,9 and the
effect of ice structure and behaviour on pollution control and other

planetary processes.10 There are also innumerable industrial appli-
cations including the molecular design of materials, manufacture
and industrial processing.11 The main barrier is the computational
cost of evaluating the energy. This cost is significant (often minutes
or hours for a single point1), so fitting or interpolating calculated
energy data is necessary. This task of bridging between quantum
chemistry and statistical mechanics is, in general, difficult for
established parametric approaches. A robust and accurate alterna-
tive has recently been provided by a machine learning technique,
Gaussian Processes (GP).12–19 For example, work on two-body
interactions13,14 produced highly accurate GP interpolation for
many different chemical systems, without bespoke modification.
This led to first-principles predictions for dilute gas mixtures that
surpassed those of a leading empirical equation of state.

Despite the above progress, modelling denser fluids requires
non-additive interactions. Including three-body non-additive inter-
actions in first-principles approaches, dramatically decreases the
deviation from experiments,20 at times by an order of magnitude.21

Non-additive interactions are high-dimensional and vary strongly
and unpredictably with molecular position. Consequently, tradi-
tional parametric fitting typically requires a bespoke fitting form for
each PES, must be fit to an extensive data set22–24 and the resulting
fit, even to the training data, is not particularly accurate. Further-
more many applications involve molecular mixtures. Mixtures are
especially challenging because each combination of two-body and
three-body interactions requires a PES. Therefore, parametric
approaches are laborious, insufficiently accurate and may require
an unattainable number of high-level quantum chemistry calcula-
tions. In this communication we present a comprehensive solution
to this long-standing problem. We successfully capture non-additive
three-body calculations via an existing GP approach.13,14 The train-
ing sets are small enough to allow expensive, high-quality ab initio
calculations. Taking CO2–Ar as an exemplar, we produce accurate
first-principles predictions for a range of thermophysical properties.
Previously, our two-body approach successfully interpolated a wide
range of small molecules, comprising 1–4 atoms. This included
single atoms, linear and non-linear molecules,13,14 along with
dipole–dipole and charge–dipole interactions.25 In each case the
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same algorithm was successful, despite significant variation in the
chemistry. Herein, we successfully capture three different non-
additive interactions with the same algorithm. These successes
suggest that our approach will be effective for the myriad of
mixtures involving such molecules.

CO2–Ar is important to carbon capture, storage and utilization
(CCUS). Safe and economical handling of captured CO2 requires
accurate knowledge of numerous thermophysical properties, for
mixtures of many impurities.6 A recent US Department of Energy
report7 highlighted the key role for molecular modelling in CCUS.
PES exist for (Ar)2

26 and (CO2)2,27 along with non-additive PES for
(Ar)3

23 and (CO2)3.24 Thus we produced GP PES for the remaining
interactions: CO2–Ar, CO2–(Ar)2 and (CO2)2–Ar. We also modelled
(CO2)2 and (Ar)3 to confirm consistency with existing literature.

The CO2–(Ar)2 and (CO2)2–Ar PES were sub-divided into three
regions based on the order of the molecular centre-to-centre
distances (see Table S2, ESI†). Reference datasets were designed
for each region, each containing a list of molecular geometries,
specified via x: each element of x is the inverse separation of
two atoms on different molecules. The geometries were
limited so that no pairwise interaction exceeds 0.005 Eh, where
Eh is hartrees, and no molecule pair is separated by more than
B10 Å (see Section S3.3, ESI†). Within these constraints a space-
filling Latin Hyper Cube (LHC) design (see Section S3.6, ESI†)
produced reference sets for each region, each of B10k geome-
tries. Interaction energy calculations were performed in
Molpro,28 using coupled-cluster theory with single, double and
non-iterative triple excitations and the counterpoise correction.
Moderate accuracy calculations used the augmented correlation-
consistent triple-zeta basis set, while high accuracy calculations
involved complete basis set extrapolation of the interaction
energies from the augmented correlation-consistent triple-zeta
and quadruple-zeta basis sets. The interaction potentials were
calculated for each reference set geometry at moderate accuracy.
These calculations enable selection of the GP training set before
this much smaller set is upgraded to high accuracy.

We interpolate via the machine learning technique, Gaussian
Processes (GP).29 GPs are non-parametric models, which are effective
at creating theory-free models of complex data. GPs require a mean
function and a covariance function k(x, x0), expressing the covariance
between f (x) and f (x0), where f is the function being interpolated.
Training data, namely values of f at various x, update the mean and
covariance functions to give a posterior model which predicts f at any
x. As previously,13 our GPs are mean-zero with a squared-exponential
covariance function, made symmetric under the permutations of x
that do not change the interaction. Using inverse interatomic
distances as covariates achieves approximate stationarity. GP train-
ing involves regression against the training data and estimation of
the hyperparameters through the log-likelihood. We capture non-
additive data, without varying the covariance function, geometric
constraint, covariate choice, covariate transformation, LHC algo-
rithm or sequential learning. Instead our unmodified GP algorithm
accurately interpolates the non-additive data, even when the mole-
cule types are varied.

We selected a GP training set from our non-additive data
through sequential learning,14 which progressively moves points

from the reference set to the training set (see Section S4, ESI†). At
each iteration, the current GP predictions were computed for the
reference set and the geometry with the largest error was moved
to the training set. The root mean square error (RMSE) against
the reference set was monitored (see Fig. 1) and these steps were
repeated until a sufficiently small RMSE was achieved. In all
cases the training set remained significantly smaller than the
reference set. We also monitored the root mean square value
(RMS) of the reference set to verify that depletion of this set was
minimal. The hyperparameter values depend on the triplet being
modelled, but were stable during sequential learning once the
RMSE was t10% of the reference set RMS. Each CO2–(Ar)2

region required 780–1000 training points to achieve an RMSE
of 1.1–6.5 � 10�7 Eh, which is B0.5% of the reference set RMS.
(CO2)2–Ar was more challenging, requiring 1000–1400 training
points for errors of 1–2%. For (Ar)3 and the two body PES, errors
of o0.1% were achieved with 72–337 training points (see Tables
S4 and S5 of the ESI†). For the larger systems sequential learning
was essential to achieve an acceptable RMSE from a reasonable
training set size. For example, for CO2–(Ar)2 in region A our best
RMSE from LHC learning13 was B10 times larger than that from
sequential learning of the same training set size. All PES have
sufficiently low RMSEs for first-principles predictions. All train-
ing sets were small enough to be upgraded to high accuracy
calculations, to which a new GP was trained. This produced, for
each PES, a GP with precise interpolation of high-quality quan-
tum chemical calculations. Our calculation data and PES code are
available in the ESI.†

Outside the geometric constraint the GP model does not
predict the interaction, so alternative forms are required. Con-
figurations of very close molecules are negligibly rare in a
thermal ensemble, so we used a strongly repulsive function13

for binary interactions and set the non-additive potential to
zero. In contrast, the long range behaviour makes a measurable
contribution to the virial coefficients for binary interactions.13

This two-body long-range behaviour can be obtained from a
truncated multipole expansion of the interaction energy from
intermolecular perturbation theory.13,25 However, this does not
generalise readily to three-body interactions, particularly when

Fig. 1 The reduction in interpolation error (RMSE) with increasing training
set size from sequential learning for CO2–(Ar)2 (a) and (CO2)2–Ar (b). rij is
the centre-to-centre distance between molecules i and j.
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two molecules are close. Instead, we used carefully chosen
interaction calculations to characterise an empirical power
law form for the long-range behaviour, by generalising our
previous empirical approach25 (see Section S6 of the ESI†).

The total CPU times for ab initio calculations in kiloCPU-
hours are 0.99 [(Ar)3], 83 [CO2–(Ar)2] and 689 [(CO2)2–Ar].
Upgrading all calculations to high accuracy, as would be
required for traditional parametric fitting, increases these by
a factor of 3.5–6. All calculations required o0.5 GB of RAM.

To produce first-principles predictions we use our PES to
compute virial coefficients. This produces an equation of state
(EoS), valid for densities up to approximately the critical density,
p

RT
¼ rm þ B2ðTÞrm2 þ B3ðTÞrm3 þ :::; where p is pressure, T is

temperature, R is the universal gas constant, rm is the molar
density and Bn(T) is the nth virial coefficient. For binary mixtures

the virial coefficients are BnðTÞ ¼
Pn

j¼0

nCjf
j
Xf

n�j
Y Bn

jX=ðn�jÞY , where

nCj is the binomial coefficient, fX/Y is the mol fraction of species
X/Y and Bn

jX/(n�j)Y is the nth virial coefficient involving j and n � j
molecules of type X and Y, respectively. For pure Ar23 and pure
CO2

24 there are literature calculations up to B7 from non-additive
three-body potentials. We computed the remaining cross virial
coefficients for (CO2)X–(Ar)Y, up to and including B5, by Monte-
Carlo integration.30 We also computed the temperature

derivatives of each virial by differentiating the integrand before
integrating. Uncertainties due to the integration are negligible for
the lower virials, but rise to B10% for B5 at 298 K and are larger
still at lower temperatures (see Tables S9–S18 of the ESI†). We
analytically propagated these uncertainties for all predictions.
Finally, for comparison, we computed the cross virials neglecting
the non-additive interactions, while retaining full calculations for
the pure CO2 and Ar virials. We will show below that this two-
body mixture model gives inaccurate predictions.

Fig. 2 compares measured compressibility factors for CO2–Ar
mixtures31 with our first-principles predictions. The virial EoS
predictions converge up to a threshold density, with this threshold
increasing with Ar fraction. For the two highest Ar fractions
predictions converge for the whole density range. Even the most
CO2-rich mixture converges up B10 kmol m�3, which is approxi-
mately the critical density of pure CO2. In the converged region,
the uncertainties are negligible. Where converged, the three body
predictions closely predict the experiments, confirming that our
approach leads to accurate first-principles predictions, entirely free
of any need to fit experiments. The disagreement with measured
pressure for converged calculations is always o0.6% and is often
significantly smaller. Also shown in Fig. 2 are the two-body mixture
calculations (dashed lines). Each mixture composition shows a
clear window where the model is converged, uncertainties are
negligible and the three-body calculations capture the experi-
ments, whereas the two-body mixture model does not. Hence
our new mixture PES are essential for accurate prediction.

The virial EoS can predict many other thermophysical
properties, including the speed of sound and Joule–Thomson
coefficient. We derive expressions for these from the virial
model in Section S8.2 of the ESI.† Modelling these properties
is challenging because they depend on the temperature deriva-
tives of the pressure. Fig. 3 shows accurate prediction for both
measurements, except for the Joule–Thomson coefficient in the
liquid phase, where predictions do not converge. Uncertainties
are negligible in the converged region, except for the Joule–
Thomson predictions around 10 MPa, where the uncertainties
are somewhat larger due to stronger dependence on the 5th
virial coefficient (see Section S8.3 of the ESI†).

To conclude, our GP approach produces highly accurate
interpolation of the non-additive three-body interaction of
small molecules. The method requires relatively few training

Fig. 2 Comparison of the first-principles predictions of the compressi-
bility factor of CO2–Ar mixtures at 323.15 K and measurements.31

Fig. 3 Comparison of the first-principles predictions for CO2–Ar mixtures via our virial calculations. (a) Speed of sound measurements32 at fCO2 = 0.5;
and (b) Joule–Thomson coefficient measurements33 at fCO2 = 0.464. All predictions are converged with respect to number of virial terms.
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points, so highly accurate ab initio calculations can be used. This
precise interpolation of high-level calculations leads to exception-
ally accurate PES. Furthermore, the method requires no adapta-
tion when changing chemical species. This is essential to
mixtures as a separate PES is required for each distinct molecular
triplet. Taking CO2–Ar mixtures as an exemplar, we achieved
interpolation errors of o5.1 � 10�7 Eh with o5000 training
points per PES. The data can be supplemented progressively if
greater accuracy is required. Our method is applicable to many
systems of comparable molecules without modification. This
contrasts to parametric approaches where PES fitting is labor-
ious, often inaccurate and requires many ab initio calculations,
precluding high accuracy calculations. Applying the method to
significantly larger molecules would require an impractical num-
ber of training points. This may be alleviated by future improve-
ments in computing resources or the GP method.

Our GP approach consistently requires fewer training points
than other approaches. A parametric approach to (CO2)3 required
B9k training points for a non-additive PES,24 achieving a mean
error of 1.1 � 10�6 Eh. (CO2)3 has the same range of centre-to-
centre distances as one region of our non-additive PES, for which
our GP used only B1 k training points to obtain an RMSE of
B0.5 � 10�6 Eh. Neural networks (NN) are often used for PES
interpolation. A NN PES trained to B300 (HF)2 calculations34

gave an RMSE in the well region of 6.8� 10�5 Eh. A GP trained to
a similar number of points13 gave an RMSE in the same region of
5� 10�6 Eh, B10 times smaller. A comparison of NN and GP PES
for formaldehyde35 concluded that NN require more bespoke
modification and have inferior physical predictions to GPs.

From our CO2–Ar PES we produced new virial coefficients,
which led to first-principles predictions for thermophysical
properties. We successfully predicted compressibility, speed
of sound and the Joule–Thompson coefficient for dense gases.
Our predictions are reliable over a wide range of temperatures,
densities and mixture compositions. The speed of sound and
the Joule–Thompson coefficient are especially challenging for
empirical EoS because they depend on the temperature deriva-
tives of the pressure. Empirical fitting of pressure–density
measurements for isothermal slices does not guarantee accu-
rate temperature gradients. In contrast our approach enables
direct calculation of these temperature gradients from mole-
cular first-principles. Our virial methods are readily extended to
predict further equilibrium properties such as heat capacity
and critical phenomena. The success of our approach shows
the potential to replace expensive, laborious and repetitive
experiments with first-principles calculations. Such predictions
are particularly useful for mixtures, where many experiments
are required to span the relevant density, composition and
temperature space for each property of interest.

Our approach enables the generation of PES and gas phase
predictions for mixtures of small molecules. Furthermore, imple-
mentation of our PES in Monte Carlo (MC) simulations will
enable prediction of equilibrium liquid properties, including
coexistence. Molecular dynamics (MD) simulations will give
access to non-equilibrium properties, such as thermal conductiv-
ity, nucleation rates and mixing dynamics. MC simulations

require only the GP PES as implemented herein. MD also requires
forces, which can readily be obtained from our GPs by direct
differentiation. The evaluation cost of the GP PES and forces is
proportional to the number of training points and so is con-
siderably more expensive than traditional parametric PES. How-
ever, simulation of small molecules with parametric PES are
extremely cheap on modern computers.6 Furthermore, the GP
PES involves nested sums over training points, suggesting paral-
lelization will be highly effective. The resulting simulation data
could replace experiments, particularly where these are difficult
or hazardous. Liquid simulations will enable EoS to be derived
independently of experiments. This could proceed either via
systematically deriving EoS from simulations16,36 or hybrid meth-
ods where the virial model provides the gas phase and additional
empirical terms are fitted to simulation data in the liquid phase.
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