¥ ® ROYAL SOCIETY
PP OF CHEMISTRY

ChemComm

View Article Online
View Journal | View Issue

FEATURE ARTICLE

High-throughput screening, next generation
sequencing and machine learning: advanced
methods in enzyme engineering

’ '.) Check for updates ‘

Cite this: Chem. Commun., 2022,
58, 2455

+2° Gordana Kovacevic,2° Vanni Doffini,®®
*ab

Rosario Vanella,
Jaime Fernandez de Santaella®® and Michael A. Nash

Enzyme engineering is an important biotechnological process capable of generating tailored biocatalysts
for applications in industrial chemical conversion and biopharma. Typical enhancements sought in
enzyme engineering and in vitro evolution campaigns include improved folding stability, catalytic activity,
and/or substrate specificity. Despite significant progress in recent years in the areas of high-throughput
screening and DNA sequencing, our ability to explore the vast space of functional enzyme sequences
remains severely limited. Here, we review the currently available suite of modern methods for enzyme
engineering, with a focus on novel readout systems based on enzyme cascades, and new approaches to
reaction compartmentalization including single-cell hydrogel encapsulation techniques to achieve a
genotype—phenotype link. We further summarize systematic scanning mutagenesis approaches and their
merger with deep mutational scanning and massively parallel next-generation DNA sequencing
technologies to generate mutability landscapes. Finally, we discuss the implementation of machine
learning models for computational prediction of enzyme phenotypic fitness from sequence. This broad
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overview of current state-of-the-art approaches for enzyme engineering and evolution will aid
newcomers and experienced researchers alike in identifying the important challenges that should be
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1. Introduction

The pharmaceutical industry is rapidly moving from small
molecule therapeutics towards biologics. Among the various
classes of biologics under development, therapeutic enzymes
are gaining attention as molecular entities that can catalyze
specific chemical reactions inside the body to achieve a ther-
apeutic effect. Therapeutic enzymes can be delivered systemi-
cally as full proteins or incorporated into gene therapy vectors
to transduce target cells with specific functionality in vivo.
Antibody-targeted enzyme prodrug therapy' and gene-directed
enzyme prodrug therapy” both represent valuable therapeutic
strategies with significant potential in the clinic. In all of these
envisioned applications, understanding sequence-function
relationships of therapeutic enzymes will play a crucial role.
There is therefore an urgent need for improved methods for
molecular analysis and enhancement of therapeutic enzymes.
Naturally occurring enzyme sequences are typically not suitable
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addressed to move the field forward.

as biopharmaceuticals due to a general lack of stability, devel-
opability, and/or activity. In this context, molecular enhance-
ment by improvement of colloidal stability, catalytic turnover
rate, substrate binding affinity, and/or sensitivity to environ-
mental conditions are essential steps in enabling therapeutic
enzymes to reach their full potential. The establishment of
rapid design, build, test, and learn cycles and the analysis of
large-scale sequence-function relationships will be crucial for
the advancement of therapeutic enzymes towards clinical
translation.

Laboratory directed evolution is by now a well-established
paradigm for improving enzyme properties, having been
recently awarded a Nobel Prize.® This process mimics natural
evolution by applying selection pressure on a library of genetic
variants of a parent enzyme sequence, and propagating pro-
teins with the desired function into subsequent generations,
which are then further subjected to diversification and pheno-
typic screening/selection. Despite the general success of
enzyme directed evolution, current technologies only scratch
the surface of the vast space of protein sequences. New meth-
ods for efficiently exploring productive sequence space, and
rapidly screening phenotypes are therefore as important as
ever. Recent commoditization of massively parallel DNA
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sequencing technologies (i.e., next-generation sequencing) are
further providing new capabilities for generating large datasets
of sequence-function pairings. The purpose of this review
article is to explore recent developments within several the-
matic areas of enzyme engineering with an emphasis on screen-
ing methods design and new workflows supported by next
generation sequencing and machine learning.

2. Multi-enzyme cascades as readout
systems

Many enzymes in nature perform reactions in which products
are not easily measured by available instruments at high-
throughput. However, a comprehensive toolbox of techniques
to measure enzymatic activity is essential for success in a
directed evolution campaign. Coupling the initial reaction to
one or more auxiliary reactions through a cascade can address
this challenge. The most common auxiliary reactions use other
enzymes, which in turn produce a measurable change of
absorbance or fluorescence. For coupled enzyme reactions
systems, typically the auxiliary enzymes need to be in excess
compared to the primary enzyme. In this way, the system can be
setup such that the rate-limiting step is the reaction performed
by the first enzyme. Under these conditions, the overall mole-
cule flux through the pathway reports the activity of the initial
enzyme.” Measuring absorbance or fluorescence through
coupled reactions allows continuous monitoring of enzyme
activity, and enables simple identification of deviations in
activity such as lag period or a falling-off in reaction rate.>®
In addition, in coupled enzyme assays it is necessary to take
into account the suitability of the environmental conditions
(temperature, pH) for all involved enzymes in the cascade.

As the need for the improved enzymes in various industries
has increased over the years, methods for activity detection in
enzyme engineering experiments have been fine-tuned. It has
become important that enzyme assays have high sensitivity and
are adapted to medium- and high-throughput screening cam-
paigns. The numerous examples of coupled assays used in
directed evolution and enzyme engineering outlined below
have demonstrated the versatility of enzyme cascades in this
context.

2.1 Enzyme cascades in library screening and directed
evolution

Enzyme cascades can be applied to produce detectable changes
in absorbance upon modification of cofactors’ and this process
can be used as a platform for enzyme engineering. For example,
this strategy was applied in a microwell plate assay to perform
directed evolution of lipases and esterases, where the product
of these hydrolases (acetic acid) acts as a substrate for an
enzyme cascade composed of four different enzymes. As a
result of this cascade, an increase in the 340 nm extinction
was detectable due to the accumulation of the cofactor NADH.®
Other molecules, such as Ellman’s Reagent, have also been
used for colorimetric output in a four-step enzyme cascade to
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assess the activity of S-adenosylmethionine-dependent methyl-
transferases.’ In another example, Ortiz-Tena and colleagues devel-
oped a system where two reactions were performed by five different
enzymes, all coordinated into an enzyme-coupled reporter system
for the activity of sulfatases.”® In this case, the activity of the
sulfatase shifts the equilibrium of the first reaction, generating
GDP as a side-product. As a result, pyruvate phosphate dikinase,
pyruvate oxidase and horseradish peroxidase (HRP) in a subsequent
reaction were coordinated to produce Bindschedler’s green dye. The
sequential use of an oxidase followed by a peroxidase to create
either a dye or a fluorophore is well established and has been
combined in multiple ways, proving that robust and sensitive
enzyme cascades are a transferable tool among enzyme engineering
campaigns.

More recently, Begander and colleagues'' developed a simi-
lar two-step reaction scheme to assess the enzymatic activity of
a p-glycerate dehydratase. In this work, the second reaction
uses the same set of enzymes to convert pyruvate into Bindsche-
dler’s green dye. It is noteworthy that the key elements of a
previously built pathway were successfully transferred to a
screening system for a new target enzyme. This demonstrates
the capacity of enzyme cascades to widen the applicability of
pre-existing screening systems.

Other directed evolution experiments have not only used
multi-enzyme cascades to produce a readable output, but also
evolved multiple enzymes within a cascade simultaneously.
These directed co-evolution experiments targeted two cellulases
(an endoglucanase and a p-glucosidase) expressed from a single
operon in E. coli. The operon was targeted by error-prone PCR
to generate mutagenic libraries. Screening took place as a result
of co-expression, where the conversion of the insoluble sub-
strate to oligosaccharides was catalysed by the endoglucanase.
Subsequent activity of B-glucosidase produced glucose, which
was in turn used as a substrate to the glucose oxidase/HRP
cascade that produced a colorimetric dye.’*'® Most interest-
ingly, this experimental setup enabled screening for synergistic
effects between individual components in the cascade. The
enzymes were evolved individually and simultaneously, with
the latter approach proving more effective.

The development of microfluidic high-throughput screening
(HTS) methods to detect changes in absorbance is also of
special interest for enzyme evolution. The technique allowed
in vitro evolution of an r-phenylalanine dehydrogenase by
coupling its activity to a reaction that forms a formazan dye
through the oxidation of NADH. This work opens a window of
opportunity to evolve a wide range of enzymes with HTS
methods, which were previously unavailable.'* This system
does not use enzyme cascades directly coupled to the reaction
of interest, but instead relies on a tetrazolium dye for coupling,
an approach that allowed for a 25-fold improvement in detec-
tion when compared to direct NADH detection. This shows the
power of signal amplification and the applicability of coupled
assays within the setting of directed evolution in HTS
methods.™

Fluorescence-based detection is generally more sensitive
than absorbance-based detection, and much of the recent
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research has focused on creating fluorescent outputs from
enzyme-coupled reporter systems. For example, directed evolu-
tion of geraniol synthetase was enabled by the implementation
of an enzyme-coupled assay in vivo. Activity of this enzyme
resulted in the accumulation of the reduced cofactor NADH,
which served as a co-substrate for a secondary reaction cata-
lyzed by diaphorase, resulting in production of the red fluor-
escent compound resorufin.”® Such a strategy was used for
developing a HTS cellulase assay in which expressed variants of
cellulases were isolated in droplets together with their encod-
ing genes, the reaction substrate (i.e. carboxymethyl cellulose),
and the readout enzymes hexose oxidase and vanadium bro-
moperoxidase. The former enzyme is a promiscuous oligosac-
charide oxidiser which produces H,0, whilst the latter is the
output enzyme producing a positively charged fluorophore in
proportion to H,0, abundance.'®'” Enzyme coupling has also
aided the efficient engineering of highly stereoselective cyclo-
hexylamine oxidases using droplet-based HTS methods, where
horseradish peroxidase couples the activity of the oxidase with
the fluorogenic dye Amplex UltraRed."®

Another approach to enzyme HTS focused on selectively
labelling cell surfaces with a fluorophore in order to screen
active variants within a library. This strategy relies on cell-
surface display of active enzymes and a subsequent enzyme-
coupled assay that triggers labelling of the cell surfaces. Some
of the earliest examples of applying this HTS method to
directed evolution generated an enantioselective esterase by
displaying esterases and peroxidases on the cell surface of
E. coli. To do so, the different enantiomers were fluorescently
labelled and when the esterase was active, the fluorophore from
the substrate was released. This enabled the peroxidase to
covalently bind it to cell-surface proteins. Finally, the positive
variants were sorted using fluorescence activated cell sorting
(FACS)." Further research adapted this technology to the yeast
S. cerevisiae and combined it with microfluidics to evolve
glucose oxidase (GOx). Cells expressing a library of randomised
variants of the enzyme were emulsified in single water-in-oil
microdroplets together with the substrate (glucose), a reporter
enzyme (HRP) and a fluorescent substrate for the reporter
enzyme (fluorescein tyramide), which was covalently linked to
the cell surface of yeast when hydrogen peroxide was produced
by GOx. After incubation with the enzyme cascade, the oil phase
was removed and the labelled cells were analysed using FACS.>°
The use of microfluidics inhibited crosstalk and allowed the
use of a longer enzyme cascade without requiring the display of
both components. However, since the fluorophore had to be
covalently linked to the cell-surfaces, lower signal amplification
was observed.

Implementing enzyme cascades in evolutionary workflows
not only allows detection of a large variety of products but can
also amplify signals and provide easily detectable products with
a high signal to noise ratio.”! Moreover, the introduction of
cascades avoids the accumulation of products in the reaction
vessel and can mitigate issues such as product inhibition and
product toxicity.>> Furthermore, enzyme cascade readout sys-
tems can avoid the requirement of using chemically modified
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substrate analogues, avoiding bulky fluorescent groups and
allowing enzyme variants to be screened on natural
substrates.?® Finally, multi-step enzyme cascades offer oppor-
tunities to increase screening throughput by in some cases
providing an optically readable output that can be evaluated at
higher speed and throughput than conventional chemical
analysis such as mass spectrometry or liquid chromatography.
Enzyme cascades when combined with novel reaction compart-
mentalization strategies have the potential to enable more
efficient evolution workflows. Based on these advantages, the
establishment of novel enzyme cascades can broaden the scope
of possible enzyme targets that can be screened and studied by
directed evolution.

3. Compartmentalization methods in
high-throughput screening

An essential feature for directed evolution is maintaining a
phenotype-genotype link through the screening process. For
pooled screening of binding proteins (e.g., antibodies), labelled
target biomarkers can be used to tag cells displaying variants of
the binder, however, for enzyme screening the persistent mole-
cular diffusion of substrate and product molecules away from
the biocatalyst creates a physical/chemical challenge that must
be overcome to achieve fidelity of the genotype-phenotype link.
In order to preserve this link, various reaction compartmenta-
lization strategies have been developed throughout the years.
One of the most widely utilized compartmentalization methods
is simple microtiter plate (MTP) screening, which depending on
infrastructure may allow analysis of 10" variants per day.
Recently, a fully automated robotic platform was described
for MTP library screening of four different enzymes, which
increased throughput 2 to 3 fold compared to manual handling
of clones.?* However, with the recent rise of ultra-HTS methods,
medium-throughput MTP technologies are becoming outdated.
Bacterial and eukaryotic cells with their natural membranes
can also serve as natural compartments, and these approaches
were first exploited for HTS and used in many enzyme directed
evolution campaigns, some of which will be explained in
detail in the following sections. However, beyond MTP and
membrane-separated cells as compartments, artificial reaction
compartments in the form of single and double emulsions have
emerged for entrapment of cells*® or in vitro translation/
transcription (IVTT) machinery to produce the enzyme of
interest and physically colocalize genotype and phenotype®®
(Fig. 1a and b).

Beside these well-established compartments used in HTS,
new methods are regularly being developed to increase
throughput and sensitivity of the screening process. Some of
the more recent examples include screening in microcapillary
arrays,”” microbeads,?® or liposomes.>® Microcapillary array
screening offers the advantage of cell spatial separation com-
parable to MTP platforms but with significantly higher
throughput. This method uses a sorting method based on a
pulsed ultraviolet laser, and extracts cells from a microcapillary
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Fig. 1 Examples of compartmentalization methods for high-throughput screening. (a) Aqueous droplet entrapping a gene and an in vitro translation/
transcription (IVTT) mixture for expression of cellulase A2 (CelA2) which converts fluorescein-di-B-p-cellobioside (FDC) to fluorescein. (b) Aqueous
droplet entrapping a yeast cell expressing glucose oxidase (GOx) on the surface which, produces H,O, for subsequent reaction with horseradish
peroxidase (HRP) and covalent labelling of the cell with tyramine-fluorescein. (c) Intracellular expression of monoamine oxidase (MAO-N) oxidizes
(S)-(—)-alpha-methylbenzylamine (AMBA) producing H,O,. Carboxy-2,7-dichloro-dihydrofluorescein diacetate (C-H,DCFDA) is cleaved by intracellular
esterase, generating carboxy-2,7-dichloro-dihydrofluorescein (C-H,DCF) which is oxidized to fluorescein by an intracellular peroxidase in the presence
of H,O,. (d) A GFP reporter is down-regulated by expression of a repressor (ArgR) in the presence of L-arginine (L-Arg), or upregulated with induced
expression of arginine deiminase (ADI) that depletes L-Arg. (e) GOx expressed on the yeast surface triggers encapsulation of the cell in a fluorescent
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with high selectivity and viability. The versatility of this screen-
ing method has been shown in the engineering of binders,
fluorescent proteins and enzymes. The authors point out
several distinctions between high-throughput FACS-based
screening and microarray capillary screening. Some of them
include the possibility of distinguishing enzyme variants based
on reaction kinetics instead of a single point fluorescent
intensity, as well as the possibility of direct cell imaging and
decoupling cell analysis and sorting.>”

3.1 Cells as natural compartments

The use of microbial cells, typically bacteria or yeast, as natural
compartments for enzyme directed evolution campaigns has
been explored going back many years. The main advantages
that cell compartments bring are a direct genotype-phenotype
link, ease of manipulation, and ease of recovery of selected
clones. Despite these advantages, there are a number of limita-
tions associated with the use of cells as sole natural compart-
ments for high-throughput screening. One limitation is that
typically the substrate must readily pass through the cell
membrane. Modified substrates can be used for such purposes,
but as the saying goes “you get what you screen for”,*° and
using a substrate that is structurally as close as possible to the

2458 | Chem. Commun., 2022, 58, 2455-2467

final desired or natural substrate is critical. In these campaigns,
conversion of the membrane-permeable substrate into product
by a single enzymatic turnover or multi-enzyme reaction cas-
cade should give a readable signal, preferably by modulating
cell fitness (e.g., live/die-based selection) or generating a fluor-
escent signal. Furthermore, the product should not diffuse out
of the cell.

Recently a FACS-based HTS system using E. coli cells as natural
compartments was reported for monoamine oxidase, where all the
above-mentioned considerations were made.*' Sadler et al. used an
acetylated fluorescein derivative as an indirect reporter probe that
could diffuse into the cell, where the intracellular esterases cleaved
acetyl groups leaving the probe susceptible to oxidation in a
presence of H,O, and endogenous peroxidases. This approach
generated a fluorescent compound (Fig. 1c) that served as the signal
for single-cell sorting. This screening method was shown to be
versatile, and many different substrates could be screened using the
same assay. A similar approach was used for directed evolution of
P450 BM3 monooxygenase, in which 7-benzoxy-3-carboxycoumarin
ethyl ester underwent intracellular de-esterification and subsequent
dealkylation by P450, forming a fluorescent coumarin derivative.*

In developing approaches that leverage appropriate sub-
strate/product pairs, linking fluorescent protein expression to

This journal is © The Royal Society of Chemistry 2022
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enzyme activity can simplify and increase the throughput of
screening assays. One such example was demonstrated in the
work of Chen et al., in which the authors developed a screening
platform based on ligand-mediated eGFP expression.*® They
constructed a 2-vector E. coli expression system, where one
vector carried the enzyme of interest (arginine deiminase) and
the other vector carried the genes for eGFP (expressed under
argG promoter) and argR which acts as a repressor of the argG
promoter in presence of arginine. This system relied on the
competitive conversion/binding of arginine between arginine
deiminase and the arginine repressor. When inactive or low
activity enzyme variants were expressed, arginine bound to
argR and together they repressed eGFP biosynthesis, while
expression of high-activity enzyme variants depleted arginine
resulting in an increase in eGFP biosynthesis (Fig. 1d).

One more example of fluorescent protein expression linked
to enzyme activity was reported by Sanchez and Ting** for
directed evolution of TEV protease toward increased k... They
expressed TEV protease in the yeast cell and used a TEV
cleavage sequence linked to the transcription factor, which
was subsequently released and translocated to the nucleus to
start transcription of a reporter protein, citrine. This screening
method for TEV protease differed from a previous method
reported by Yi et al,*® who screened a TEV-P library for
substrate specificity using yeast surface display. Yi applied
endoplasmic reticulum (ER) sequestration, which allowed for
simultaneous expression and localization of both enzyme and
substrate library in the ER, followed by substrate surface dis-
play upon enzyme cleavage.

Another screening strategy relying on yeast surface display
was developed for the directed evolution of bond-forming
enzymes>®?” such as microbial transglutaminase, an enzyme
with potential for antibody-drug conjugate synthesis. Deweid
et al.*” displayed microbial transglutaminase on the yeast sur-
face and used intrinsic lysine residues to form an isopeptide
bond with a biotinylated oligopeptide. This scheme led to
enzyme auto-labeling which enabled the screening of mutant
libraries using increased selective pressure by reducing sub-
strate availability.

Fluorescent proteins are not necessarily only used as repor-
ters for enzyme activity, but their applicability as carriers for
non-canonical amino acids in library screening of p-cyano-r-
phenylalanyl aminoacyl-tRNA synthetase (pCNFRS) has been
shown in the work of Kwok et al.*® The authors used a strain-
promoted azide-alkyne click (SPAAC) reaction to distinguish
superfolder GFP with incorporated p-azido-L-phenylalanine
(pAzF), and based on the reaction selectivity they successfully
evolved pCNFRS to preferentially incorporate pAzF from the
mixture of pAzF and p-cyano-i-phenylalanine (pCNF).

3.2 Cellfree artificial compartments

Artificial reaction compartments in the form of single (water-in-
oil) or double (water-in-oil-in-water) emulsions have emerged as
an alternative to cellular compartmentalization for the evolu-
tion of enzymes. This approach is advantageous for enzymes or
substrates that are toxic to the cell.*®* These aqueous

This journal is © The Royal Society of Chemistry 2022
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compartments are able to colocalize genotype and phenotype,
and provide the possibility to segregate DNA for translation
in vitro to synthesize the enzyme of interest, thus eliminating
the need for cell translational machinery.’® One of the first
FACS based high-throughput screenings of enzyme libraries in
double emulsions was conducted by Mastrobattista et al.>® They
evolved the protein Ebg into an enzyme with significant -
galactosidase activity using a fluorogenic fluorescein-based
substrate, which after enzyme conversion was entrapped in
the aqueous compartment. The separation of droplets by an oil
phase is meant to prevent signal cross-talk. However, cross
diffusion between droplets for emulsion-based systems is one
limitation when choosing a substrate. Differently from cell
compartmentalization, here neither the substrate nor product
should diffuse across the oil phase. A similar fluorogenic
substrate was used for in vitro high-throughput screening of a
randomized cellulase library, which yielded a cellulase variant
with a 13.3-fold increase in catalytic activity (Fig. 1a).*" In this
work, the authors analyzed the influence of different emulsifi-
cation techniques like stirring, homogenization and membrane
extrusion for homogeneity of droplets in size and shape.

The challenge of emulsion polydispersity has been
addressed using well-controlled microfluidic-based emulsion
production methods. Microfluidic systems allow for highly-
controlled water-in-oil droplet emulsification, and allows
reagent addition by droplet fusion or micro-injection followed
by droplet sorting.*” Fallah-Araghi et al. used a microfluidic
system to compartmentalize single genes of B-galactosidase
and amplify them by PCR before fusing the droplets with an
IVIT mix and a fluorogenic substrate. Although microfluidic
sorting rates can in some cases be 10-fold lower than typical
FACS sorting rates, microfluidics offer a high level of control
over the reaction volumes and conditions. Combining
microfluidic-based water-in-oil and later water-in-oil-in-water
emulsions with FACS sorting can significantly improve the
speed of sorting as well as the enrichment factor.*®

Microfluidic droplet-based screening relies typically on
fluorogenic substrates, or alternatively on fluorescent reporter
protein expression, an approach called affinity-fed translation
(AFD).** By using an enzyme that produces an amino acid, it
was possible to control the expression of a reporter protein in
an aqueous droplet with IVTT. The sensitivity of screening was
improved by expressing the enzyme of interest and reporter
protein simultaneously. Very recently a novel detection method
was also introduced that coupled microfluidic screening and
sorting with mass spectrometry,*® which is very powerful as it is
chemically generalizable.

3.3 Cells entrapped in artificial compartments

Parallel to the development of cell free artificial compartments
for the directed evolution of enzymes, progress in the compart-
mentalization of whole cells in emulsions has also been
made.*® Entrapping whole cells in artificial compartments
can produce higher numbers of enzyme molecules per droplet
(~10* compared to ~10” that are typically obtained using
IVIT). With a higher number of molecules, sensitivity of the
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assay and selection are significantly enhanced, despite the low
signal-to-background ratio. Using such an approach, Aharoni
et al. evolved serum paraoxonase with negligible thiolactonase
activity to a variant with approximately 100-fold increased
catalytic activity compared to the wild type enzyme.

Analogous to substrate diffusion into the cell, researchers have
investigated substrate delivery through the oil phase into aqueous
droplets to precisely control the start of the enzymatic reaction and
minimize background fluorescence for highly active enzymes.*®"
One of these works developed fluorescence droplet entrapment
(FDE) substrates for three classes of enzymes (phosphotriesterases,
esterase and glucosidases).”” The authors investigated the hydro-
phobicity of fluorogenic substrates in terms of permeability through
water-in-oil-in-water emulsions, cell membranes, and diffusion out-
side the inner aqueous droplets using log D values as an evaluation
parameter. In their work, Ostafe et al.*® used a substrate delivery
system for glucose oxidase expressed on the yeast surface. Yeast cells
were entrapped in water droplets and B-octylglucoside was added to
the primary emulsion, where it underwent enzymatic cleavage by
externally added B-glucosidase generating glucose. After the glucose
became available for glucose-oxidase, cells harboring active variants
were covalently labeled with fluorescein-tyramine and extracted
from the emulsion droplets. Extraction of the covalently labeled
cells simplified the FACS analysis compared to sorting water-in-oil-
in-water double emulsions. Further improvements in screening
enzyme variants with higher catalytic efficiency instead of the overall
activity could be obtained by normalizing fluorescent signals to the
expression levels of the enzyme. Normalization was done with either
antibody labelling of the enzymes expressed on the cell surface,*® or
using co-expression with a reporter gene.***

Microfluidic approaches are also compatible with high-
throughput screening and enzyme evolution using whole cells
in droplets and emulsions.'®*%*" Cell recovery and post-
screening analysis is more straightforward than for IVITT sys-
tems, with all the benefits that microfluidic emulsification
brings. One of the first successful fluorescent activated droplet
sorting (FADS) experiments with whole cells was conducted on
a model library of B-glucosidase expressed in E. coli,>> which
was later used for sorting of the horseradish peroxidase library
expressed on the yeast surface, enabling discovery of an enzyme
variant with nearly diffusion-limited catalytic efficiency.”?
Besides fluorescent detection, absorbance activated droplet
sorting (AADS) was developed and validated for whole cells in
microfluidic droplets by sorting a phenylalanine dehydrogen-
ase library.”" Absorbance as a detection method can signifi-
cantly extend the scope of enzymatic assays that can be used in
directed evolution, despite the lower sensitivity (compared to
fluorescence) afforded by short microscale path lengths.

3.4 Cell encapsulation in hydrogels

Emerging technology for high-throughput enzyme screening
based on whole cells relies on encapsulation in fluorescent
hydrogels, as reported by our group and others.”** High-
throughput screening in hydrogels was firstly introduced by
Pitzler and colleagues for the directed evolution of phytase in
E. coli cells.>® Their screening system used an enzymatic
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phytase/glucose oxidase cascade in which H,0, produced by
glucose oxidase reacts with Fe®" ions to produce hydroxyl
radicals. Hydroxyl radicals can then initiate copolymerization
of N-vinyl-pyrrolidone, poly(ethyleneglycol)-diacrylate, and
fluorescent Polyfluor 570 on the E. coli cell surface, creating a
shell around the cell. Using hydrogel encapsulation, the
authors were able to differentiate between active and inactive
cells, and thereby evolve the phytase and isolate a variant with
31% increased catalytic activity for non-natural fluorescent
substrate and 5% increased catalytic activity toward phytic
acid. The same technology was used for directed evolution of
esterase, lipase and cellulase using glucose derivatives as
substrates.”® Even though the applied screening system was
shown to be adaptable for different classes of hydrolases, the
use of non-natural substrates can lead to false-positive variants
and should be taken with caution.

In a work from our group, we developed hydrogel-based enzyme
activity assays using Fenton chemistry to generate polymerization
initiators.>”>° To adapt these approaches to library screening, we
developed a hydrogel encapsulation system for screening GOx
libraries expressed on the yeast surface for increased enzyme activity
and stability.® Cells expressing active enzyme variants were encap-
sulated in fluorescent alginate carrying phenol moieties that poly-
merized in the presence of H,O, and HRP (Fig. 1e). By screening for
variants that could encapsulate the cells following exposure to a
denaturing agent, variants with higher stability and activity could be
sorted and isolated by FACS. The main advantage of this system is
that it allows screening of enzyme libraries in a pooled fashion.
Since the radicals generated to initiate the polymerization reaction
have limited stability in biological media, the polymerization
remains localized to the cell surface. This represents a reaction-
based compartmentalization approach and enables one-pot library
screening, greatly increasing throughput. Other bottlenecks in
throughput including transformation efficiency and FACS deter-
mine the ultimate throughput of such systems. This hydrogel high-
throughput screening represents the first system used for the direct
screening of enzyme stability by flow cytometry, obtaining GOx
variants with 13 to 15% increased thermal stability compared to the
wild type enzyme. In addition, several advantages were shown when
the alginate hydrogel was used for cell encapsulation compared to
the previously described method based on Fenton chemistry.>
Alginate hydrogels are thick and robust, protecting the cells from
osmotic lysis and allowing size-based filtration of encapsulated
cells.”® Besides, the reaction mixture doesn’t require multiple
monomer and polymer components, but a single fluorescent poly-
mer. Future work in our group on HRP-mediated alginate polymer-
ization is focusing on screening for alternative reaction chemistries
using enzymatic cascades that generate H,O, as the final reaction
product.

4. Next-generation approaches in
enzyme engineering

Well-defined library construction methods combined with
thorough phenotypic characterization can shed light on
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structural and biophysical properties of enzymes, report func-
tional consequences of altered residues, and predict their
natural evolutionary trajectories. Over the years the optimiza-
tion of screening methods based on multi-enzyme cascades as
readout systems and the development of adequate compart-
mentalization strategies to guarantee the genotype-phenotype
linkage have favoured a higher processivity in testing enzyme
variants therefore facilitate a more systematic and complete
investigation of enzyme sequence landscapes. Relatively
recently the field of enzyme engineering started also to take
advantage of the revolutionary advancements in DNA sequen-
cing technologies giving rise to very powerful workflows for the
study of enzyme properties by combining the use of high
efficiency screening and next-generation DNA sequencing.
Below we give a brief summary of prior works that made use
of systematic scanning-based mutagenesis approaches coupled
with medium to high-throughput screening for the study of
enzymes. We also include a further subsection to describe
recent studies combining the use of high efficiency screening
and next-generation sequencing for the investigation of various
enzyme properties.

4.1 Systematic investigation of enzyme sequence landscapes

The availability of automated robotic systems paired with
controlled mutagenesis protocols allowed, already several years
ago, a noticeable boost in mutant libraries quality and screen-
ing efficiency leading to a more comprehensive investigation of
enzyme sequences and properties. In this class of experiments,
enzyme variants are typically tested individually in MTPs at
medium throughput.

One of the first comprehensive mutagenesis scans on an
enzyme was presented by Gray and colleagues, who screened
variants of a dehalogenase enzyme using a multi-well plate
assay to identify single mutants with higher thermostability.®*
Since then, analogous screening workflows were applied to the
detection of stability enhancing mutations of other enzymes
such as xylanase®”® and phytase® and similarly to the study of
enantioselectivity of a nitrilase catalyst by combining an MTP
assay with mass spectrometry.®® Recently Fulton and colleagues
reported a systematic study on a lipase A to determine the effect
of single mutations on its detergent tolerance.®® Another lead-
ing example of linear scanning of sequence space supported by
MTP screening was presented by Van der Meer and
colleagues.®”®® In this work, single mutants of the enzyme 4-
oxalocrotonate tautomerase (4-OT), a promiscuous catalyst of
carbon-carbon bonding reactions, were screened for enhanced
Michael-type addition activity and improved enantioselectivity.
In addition, selected mutations impacting the enantioselectiv-
ity of the catalyst were combined, favoring the expression of
multiple mutant variants producing products with further
improved enantiopu