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l transfer in mid-infrared process
analysis with in situ attenuated total reflectance
immersion probes†

Andrew J. Parrott, a Allyson C. McIntyre,a Megan Holden,a Gary Colquhoun,b

Zeng-Ping Chen,c David Littlejohna and Alison Nordon *a

Process applications of mid-infrared (MIR) spectrometry may involve replacement of the spectrometer and/

or measurement probe, which generally requires a calibration transfer method to maintain the accuracy of

analysis. In this study, direct standardisation (DS), piecewise direct standardisation (PDS) and spectral space

transformation (SST) were compared for analysis of ternary mixtures of acetone, ethanol and ethyl acetate.

Three calibration transfer examples were considered: changing the spectrometer, multiplexing two probes

to a spectrometer, and changing the diameter of the attenuated total reflectance (ATR) probe (as might be

required when scaling up from lab to process analysis). In each case, DS, PDS and SST improved the

accuracy of prediction for the test samples, analysed on a secondary spectrometer–probe combination,

using a calibration model developed on the primary system. When the probe diameter was changed,

a scaling step was incorporated into SST to compensate for the change in absorbance caused by the

difference in ATR crystal size. SST had some advantages over DS and PDS: DS was sensitive to the

choice of standardisation samples, and PDS required optimisation of the window size parameter (which

also required an extra standardisation sample). SST only required a single parameter to be chosen: the

number of principal components, which can be set equal to the number of standardisation samples

when a low number of standards (n < 7) are used, which is preferred to minimise the time required to

transfer the calibration model.
1. Introduction

Quantitative analysis of multi-component samples using spec-
troscopic techniques such as near- and mid-infrared absorption
and Raman scattering oen requires the construction of
multivariate calibration models. The development of these
models generally requires substantial investment of resources
and time.1–3 Unfortunately if the instrumentation or measure-
ment conditions change aer the formation of the model, the
calibration performance can be signicantly degraded.1,3–6

Therefore, a number of strategies have been devised to main-
tain the performance of multivariate calibration models.1,3–5,7
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One solution is to build a calibration model that is robust to
changes in conditions.5,8 This can involve construction of
a global model that contains all of the expected variation for
a range of measurement or instrumental conditions. However,
it is not always possible to anticipate new sources of variation or
dene the extent of their variability in the data. In addition,
global models tend to require a large number of calibration
samples.1,5 Alternatively, data pre-processing, such as multipli-
cative signal correction,9 nite impulse response ltering,10

orthogonal methods,8,11,12 generalized least squares,13 and
wavelength selection can be employed to reduce the sensitivity
of the resulting model to changes in conditions.14 A down side
of these methods can be that they tend to remove variation not
present in all of the different conditions (or different instru-
ments), and so can reduce the sensitivity of the model to the
analyte of interest.6,15

One of the simplest ways of dealing with changes in
measurement or instrumental conditions is to update the
original model through addition of spectra acquired under the
new set of conditions.6,7 The drawback of this method is that
a large number of samples may need to be added to prevent
domination of the model by the original calibration samples.
However, the relative importance of a small number of new
samples can be increased if they are appropriately weighted.16 A
Anal. Methods, 2022, 14, 1889–1896 | 1889
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number of methods, including Tikhonov regularisation, have
been proposed for determination of the weighting factors.17,18

An alternative to model updating is calibration transfer,
where the aim is to maintain the predictive ability of a model
developed under an initial set of conditions (denoted primary)
when it is applied to spectra collected under another set of
conditions (denoted secondary).1,5–7,19 Calibration transfer
methods achieve this by adjustment of the regression coeffi-
cients, the predicted values, or the spectral responses.1,5

A widely used, and relatively simple approach for stand-
ardisation of the predicted values is the univariate slope and
bias correction (SBC) method.1,5,20 SBC tends to work well when
the spectral differences arising from the change in instrument
are relatively simple and systematic for all samples. However,
where this is not the case other approaches, such as stand-
ardisation of the spectral responses, should be considered.

Spectral response standardisation generally requires
measurement of carefully selected standardisation samples on
both the primary and secondary instruments.1 A transformation
matrix, which relates the spectral responses for the stand-
ardisation samples measured on the primary and secondary
instruments, is then calculated and used to transform spectra
acquired on the secondary instrument into the corresponding
spectra as if they were acquired on the primary instru-
ment.1,5,6,19,21 This means that the calibration model developed
on the primary instrument can continue to be used under the
new conditions. The two most popular and well established
spectral response standardisation methods are direct stand-
ardisation (DS) and piecewise direct standardisation (PDS).19,21

In both cases, a linear model is used to relate the spectral
responses on the primary and secondary instruments, but for
PDS the transformation matrix is estimated by a moving
window procedure. As a consequence, PDS can be used to
correct non-linearities in the data and so generally outperforms
DS. However, there are disadvantages associated with PDS
including the need to optimise the window size (which affects
the performance of the algorithm), and issues with determining
the rank of each local regression model (poor estimation can
lead to spectral artefacts).1,5,22,23

To address the limitations of DS and PDS a wide range of
spectral response standardisation methods have been reported
in the literature,1–3,5–7,24–36 including several methods which do
not require standardisation samples but instead rely on
measurement of a selection of new samples in the new condi-
tion (or with the new instrument).1,3,5,37–44 However many of
these methods require a very high number of samples to be
measured in the new condition, in some cases 50% to 100% of
the size of the initial calibration set, and so in effect are
approaching full recalibration.24–28,38,42 This limits the benets
of calibration transfer in terms of savings in time and resources.
Many methods also have more than one ‘tuning’ parameter
which must be optimised to get good results,1–3,6,25,29–33,43 which
further increases the time burden of the method.

Furthermore, the vast majority of reported calibration
transfer methods have only been demonstrated with near-
infrared (NIR) spectra.1,3,5,7,45 There are very few applications of
calibration transfer with mid-infrared (MIR) spectra,46–49
1890 | Anal. Methods, 2022, 14, 1889–1896
especially in applications such as in situ measurements for
process analysis and control. Advances in bre optics have
allowed access to the MIR region with bre coupled probes, so
that there are many new opportunities for in situ MIR
measurements in process analysis.50–52 Therefore there is a need
for calibration transfer methods which can easily be applied for
MIR applications.

Spectral space transformation (SST)53 is a calibration transfer
method which has been shown to have favourable performance
compared to standard methods such as DS and PDS.6,53

Advantages of SST include the ability to work with a small
number of standardisation samples, and easy application
because it has only one adjustable parameter. SST has been
successfully demonstrated with NIR,53,54 MIR,53 and Raman
spectroscopy.55

The aim of this study was to assess the applicability of SST
for use with in situ MIR measurements using bre coupled
attenuated total reectance (ATR) probes under a wider set of
scenarios than previously reported.53 The examples considered
arise frequently in process applications of MIR spectrometry
with an in situ ATR probe, but have not been discussed in the
literature to date. These include: changing a spectrometer,
multiplexing two equivalent probes to a single spectrometer,
and increasing the diameter of the ATR probe to mimic transfer
of a process from laboratory to pilot plant scale. Seven different
combinations of MIR spectrometer and attenuated total
reectance (ATR) probes were used to analyse ternary mixtures
of acetone, ethanol and ethyl acetate as a model system. Cali-
bration models developed on one spectrometer–probe combi-
nation were then applied to data acquired on other
spectrometer–probe combinations to assess the impact of
changes in the spectrometer and/or probe on the predictive
performance of the models. The performance of SST was
compared to the standard methods DS and PDS in terms of
predictive accuracy, sensitivity to the choice of standardisation
samples, and ease of use. A simple modication to the SST
algorithm is proposed that allows it to be easily and accurately
used across a wider set of situations than explored previously.
2. Materials and methods
2.1. Samples

Sixteen samples containing acetone, ethanol and ethyl acetate
were prepared according to a ternary mixture design (see Fig. 1)
to assess the MIR ATR probes and spectrometers. This model
system was selected to create MIR spectra typical of hydro-
carbon mixtures where there are overlapping absorption
features as well as some discrete bands, and taking account of
the miscibility and chemical hazards of the three components.
The samples were divided into calibration (samples 1 to 10) and
test (samples 11 to 16) sets, with the compositions of the
samples given in Table S1 in the ESI.†
2.2. Mid-infrared spectrometry

MIR spectra were acquired using three infrared spectrometer
systems: an ABBMB3000 FTIR (Clairet Scientic, Northampton,
This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Ternary mixture design used for preparation of the calibration
(samples 1 to 10 denoted by grey circles) and test (samples 11 to 16
denoted by red squares) sets.

Table 2 Combinations of spectrometer and ATR probe used to
analyse the ternary mixture samples

Combination
number Spectrometer Probe

1 MB155 1
2 MB155 2
3 MB3000 2
4 MB3000 3
5 MB3000 1
6 FTLA2000 1
7 FTLA2000 2
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UK), an ABB BOMEN MB155 FT-NIR/IR (Clairet Scientic)
operated in MIR mode, and an ABB FTLA2000 series FTIR (ABB,
Québec, Canada). All spectrometers employed a DTGS detector
and a SiC source. An external power supply was used with the
MB155 spectrometer to allow short-term operation of the SiC
source at a higher voltage to increase the intensity. Each spec-
trometer was coupled via polycrystalline silver halide bres to
Hastelloy bodied immersion probes with diamond ATR crystals
of different diameters (Fibre Photonics Ltd, Livingston, UK).50

Details of the three probes investigated in this study are given in
Table 1. The ternary mixtures were analysed using seven
different combinations of the three ATR probes and three MIR
spectrometers (see Table 2). Spectra were acquired using 51
scans with a resolution of 16 cm�1 in the 400 cm�1 to 4000 cm�1

range using either Horizon MB FTIR soware version 2.1.9.0
(ABB) or GRAMS/AI soware version 4.04 (Thermo Scientic,
UK). Absorbance spectra were calculated using an air back-
ground, which was acquired prior to analysis of the samples.
2.3. Data analysis

All data were imported into MATLAB version R2018b (Math-
works Inc., Natick, MA, USA) with PLS_Toolbox version 8.6.2
(Eigenvector Research Inc., WA, USA). The spectral region
between 579 cm�1 to 1844 cm�1 was selected for analysis.

2.3.1. Calibration models. Partial least squares (PLS) cali-
bration models were built using spectra acquired on each of the
spectrometer–probe combinations and the corresponding
Table 1 Details of the three probes investigated

Probe
Outer diameter of
probe sha (mm)

Silver halide bre
length (m)

ATR diamond crystal
size (mm)

1 12 1.5 3
2 12 1.7 3
3 2.7 1.1 1.2

This journal is © The Royal Society of Chemistry 2022
concentration data for samples 1 to 10. A separate model was
built for each analyte (i.e. PLS1) resulting in a total of 21 models,
for all models mean centring was used as the pre-processing
method. The calibration models were then used to predict the
concentrations of acetone, ethanol and ethyl acetate in samples
11 to 16 using spectra acquired on the same spectrometer–
probe combination.

The models were assessed using the root mean square error
of calibration (RMSEC) and root mean square error of predic-
tion (RMSEP). The optimum number of latent variables for each
model was determined from a plot of RMSEC against the 2-
norm of the regression vector, kbk2, i.e. by consideration of both
the model bias and variance.56,57 Each plot exhibited a charac-
teristic L-shaped curve with the optimum (most harmonious)
model located in the corner region of the plot, i.e. the point
where addition of further latent variables resulted in a large
increase in variance relative to a small decrease in bias.

The performance of the calibration models when the probe
and/or spectrometer was changed was assessed by applying the
calibration model built on one spectrometer–probe combina-
tion (the primary system) to the test data acquired on the other
six spectrometer–probe combinations (secondary system).

2.3.2. Calibration transfer. The study assessed the ability of
three calibration transfer algorithms, DS, PDS and SST, to
maintain the predictive ability of a model, constructed on one
spectrometer–probe combination (the primary system), when
applied to spectra acquired on another spectrometer–probe
combination (the secondary system).

The DS and PDS algorithms used were from PLS_Toolbox.
For PDS, the number of principal components (PCs) used in the
calculation of the transformation matrix was determined with
a tolerance value of 0.0001 (the default setting); this value gives
the minimum relative size of the singular values to include in
each model. The optimum window size for PDS was selected
from the range 1 to 101 using a step size of 2 on the basis of the
RMSEP value obtained for a calibration sample acquired on the
secondary system that was not used for standardisation. The
SST algorithm used is described in the paper by Du et al.53 and
the calculations were performed by an in-house function
written in MATLAB. SST eliminates the spectral differences
arising from changes in instrumentation through trans-
formation between two spectral spaces spanned by the corre-
sponding spectra of a subset of standardisation samples
measured on the two instruments. Determination of only one
Anal. Methods, 2022, 14, 1889–1896 | 1891
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model parameter is required, i.e. the number of PCs repre-
senting information in the spectra of the standardisation
samples. This parameter can be set to a value equal to or slightly
larger than the number of signicant singular values of the
combined spectral matrix of the standardisation samples.
Alternatively, when only a limited number of standardisation
samples are available, the number of principal components can
just be set equal to the number of standardisation samples.53

Therefore, in this case, the number of PCs selected was set equal
to the number of standardisation samples, i.e. 4, in all cases.

The sensitivity of the three transfer algorithms to the choice
of standardisation samples was assessed by selecting different
subsets of four calibration samples, spanning different regions
in the design space (see Fig. 1). The following combination of
samples was used: 1, 2, 3 and 7; 4, 5, 6 and 7; 7, 8, 9 and 10; 2, 4,
5 and 7; 1, 4, 6 and 7; and 3, 5, 6 and 7. For PDS, the window size
had to be re-optimised for the different sets of standardisation
samples, and was optimised using a calibration sample
acquired on the secondary system that was not used for
standardisation. Calibration sample 8, 9 or 10 was used in all
cases except where the standardisation samples were 7, 8, 9 and
10, in this case the window size was optimised using calibration
sample 1, 2 or 3.
3. Results and discussion
3.1. Effect of changing spectrometer–probe combination

Fig. 2 shows an overlay of the absorbance spectra for acetone,
ethanol and ethyl acetate acquired using spectrometer–probe
combination 5. The spectra of the individual components
exhibit extensive overlap and consequently, multivariate
regression is required for quantitative analysis of mixtures of
the three analytes.

The RMSEP values obtained for calibration models built
(using samples 1 to 10) and applied to data (for samples 11 to
16) acquired on the same spectrometer–probe combination are
Fig. 2 Absorbance spectra in the selected region, 579 cm�1 to
1844 cm�1, for acetone, ethanol and ethyl acetate obtained using
spectrometer–probe combination 5.

1892 | Anal. Methods, 2022, 14, 1889–1896
given on the diagonal of Table 3. Such values provide a measure
of the baseline performance of each of the calibrations models.
All models exhibit good linearity over the entire calibration
range for prediction of each of the three analytes with R2 of
between 0.977 and 1.000, as shown by Fig. S1 (in ESI†). In
general, the poorest predictions were obtained for data
acquired on the MB155 spectrometer (combination 1 and 2).
This was the oldest instrument used in the study, and the gain
of the detector had to be set to its maximum setting to obtain
a measurable signal.

The off diagonal RMSEP values in Table 3 give the predictive
accuracy for models built on one spectrometer–probe combi-
nation (the primary system) and used to predict the composi-
tion of samples acquired on another spectrometer–probe
combination (the secondary system). In general, the predictive
accuracy of the calibration models was least affected when the
spectrometer was changed (e.g., primary system 6 to secondary
system 5). In comparison, the predictive accuracy of the cali-
bration models was degraded most markedly when the probe
diameter was changed (e.g., primary system 4 to secondary
system 5), as also shown by Fig. S2 in the ESI.† However, there
was also some reduction in the performance of the calibration
models when they were applied to data acquired using
a different 12 mm diameter probe (e.g., primary system 7 to
secondary system 6). The reason for this can be observed in
Fig. 3. There is minimal difference between the spectra of ethyl
acetate acquired using the same probe (probe 1) but different
spectrometers (FTLA2000 or MB3000), i.e. spectrometer–probe
combinations 6 and 5 (Fig. 3a). In comparison, there is
a signicant difference between the spectra acquired using the
same spectrometer (MB3000) but with probes of different
diameters (probes 1 or 3), i.e. spectrometer–probe combina-
tions 5 and 4 (Fig. 3c). The smaller absorbance obtained with
the 2.7 mm diameter probe can be attributed to the smaller
diamond cone, which gives rise to a shorter effective pathlength
because there are fewer average internal reections.58 A smaller
spectral change was observed when two probes of the same
diameter (probes 1 or 2) were used, i.e. spectrometer–probe
combinations 6 and 7 (Fig. 3b), these variations can be attrib-
uted to small differences in the design and construction of the
two probes.58
3.2. Comparison of calibration transfer methods

The performance of three calibration transfer algorithms, DS,
PDS and SST, was assessed under three different scenarios. The
rst scenario reects the case of an upgrade of a spectrometer,
and uses spectrometer–probe combination 6 as the primary
system and spectrometer–probe combination 5 as the
secondary system. The second scenario represents the situation
that might occur if two probes are multiplexed to the same
spectrometer, but the calibration model is developed with only
one of the probes. This scenario uses spectrometer–probe
combination 7 as the primary system, and combination 6 as the
secondary. The nal situation represents the scaling up of the
probe diameter which might arise when transferring a method
developed in the laboratory to a pilot plant. This example uses
This journal is © The Royal Society of Chemistry 2022
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Table 3 RMSEP values (% w/w) for ternary mixture components obtained using calibration models developed on one spectrometer–probe
combination (the primary system) and applied to data acquired on the same and different spectrometer–probe combinations (the secondary
system). Figures shown in bold indicate the same calibration and test spectrometer–probe combinations. The values in parentheses indicate the
number of latent variables retained on each primary system (and used when predicting concentrations from both primary and secondary test
spectra)

Component
Secondary
system

Primary system

1 2 3 4 5 6 7

Acetone 1 3.2 (4) 8.6 8.8 65.3 6.1 7.1 6.9
2 30.6 5.5 (3) 5.3 91.1 15.8 17.7 10.4
3 37.0 8.1 4.3 (3) 92.3 13.7 15.7 8.5
4 45.8 20.9 20.6 3.7 (4) 19.1 20.0 22.9
5 7.8 8.7 7.5 78.4 2.0 (3) 1.9 6.4
6 6.8 9.2 8.1 77.7 2.2 1.7 (3) 7.3
7 18.9 5.8 4.4 87.2 6.0 6.4 1.0 (3)

Ethanol 1 4.5 (3) 7.3 10.1 98.2 6.2 8.1 7.2
2 13.8 5.5 (3) 4.3 124.4 11.7 12.9 9.3
3 13.2 6.1 3.1 (3) 119.1 10.0 11.8 8.3
4 27.2 32.4 35.4 2.9 (5) 24.6 25.1 24.6
5 7.7 5.8 7.4 108.1 2.0 (3) 2.8 3.2
6 8.6 7.2 8.2 110.7 2.3 1.0 (2) 3.5
7 12.2 4.9 3.4 129.9 5.3 4.0 1.2 (2)

Ethyl acetate 1 1.9 (3) 9.2 10.0 38.7 2.2 3.1 5.4
2 7.4 3.4 (2) 3.8 49.6 8.0 7.7 2.7
3 4.7 3.9 3.5 (3) 42.8 5.2 4.9 1.9
4 25.0 32.8 35.7 0.9 (4) 26.9 29.0 25.1
5 1.0 8.5 9.6 39.0 0.9 (3) 2.0 4.6
6 1.2 8.5 10.0 40.2 0.6 1.5 (3) 4.4
7 6.6 2.8 3.3 51.5 6.3 5.4 0.4 (4)
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combinations 4 and 5 as the primary and secondary systems
respectively. In all three scenarios, it would be desirable to be
able to use the calibration model developed on the primary
system with the secondary system without any reduction in
predictive performance.

A comparison of the RMSEP values obtained for the different
scenarios outlined above when using DS, PDS, or SST are listed
in Table 4. Fig. S2 in the ESI† shows the plots of predicted vs.
actual concentrations for calibration models constructed on
a primary system and used to predict the composition of test
samples acquired on a secondary system with and without SST
standardisation for the three different scenarios. In general, it
can be seen from Table 4 and Fig. S2† that use of DS, PDS and
SST with four standardisation samples (samples 1, 2, 3 and 7)
gives more accurate predictions than when the model devel-
oped on the primary system is applied to data acquired on the
secondary system without any calibration transfer.

When the spectrometer was changed (scenario 1), use of DS,
PDS and SST had only limited impact on the predictive accuracy
of a model developed on the primary system when it was
applied to test data acquired on the secondary system. This is
because there was minimal difference between the spectra
acquired on the two spectrometers and hence, the performance
of the primary model with test data acquired on the secondary
system was only marginally poorer than with that acquired on
the primary system. The exception is the model for ethyl acetate
where DS, PDS and SST gave slightly improved predictions
compared to when the model was applied to test data acquired
on the primary system. It may be that any non-linearities in the
This journal is © The Royal Society of Chemistry 2022
data that are not modelled effectively by the original model can
be removed by the standardisation procedures; this would give
rise to improved predictions. When two different 12 mm probes
were used (scenario 2), the predictive accuracy for DS, PDS and
SST was comparable to that when the model was applied to test
data acquired on the primary system. DS and PDS also retained
the predictive accuracy of the model developed on the primary
system when the diameter of the probe was changed (scenario
3); however, the performance of SST was poorer than both DS
and PDS for the prediction of all analytes and in particular ethyl
acetate.

When the magnitude of the primary and secondary absor-
bance spectra are very different (as is the case for scenario 3, as
shown by Fig. 3c), the rst few PCs from the singular value
decomposition of the combined spectral matrix of the stand-
ardisation samples, as used in the SST algorithm,53 will tend to
explain only variations in the minor factors for the spectra with
the greater absorbance. A simple method to remove this
problem is to scale the spectra acquired on the secondary
system. In this work, the spectra acquired on the secondary
system were scaled by kXpkF/kXskFwhere kXpkF and kXskF are the
Frobenius norms59 of the primary (Xp) and secondary (Xs)
standardisation spectra, respectively. It can be seen from the
nal row in Table 4 that use of scaling prior to application of the
SST algorithm reduced the RMSEP values by on average a factor
of 2 such that its performance was comparable with that of DS
and PDS. It should be noted that other scaling or normalisation
methods could potentially be applied, and this method used
was chosen as it is very straightforward to apply. The scaling
Anal. Methods, 2022, 14, 1889–1896 | 1893
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Fig. 3 Absorbance spectra in the selected region, 579 cm�1 to
1844 cm�1, for ethyl acetate obtained using spectrometer–probe
combinations (a) 5 and 6 the spectrometer upgrade scenario, (b) 6 and
7 the multiplexed probes scenario, and (c) 4 and 5 the scenario when
different diameter probes were used.
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step has no signicant impact on the performance of SST when
the magnitude of the primary and secondary absorbance
spectra are comparable, as in Fig. 3a and b, as shown by
comparing results of SST with and without scaling for scenario 1
and 2 as listed in Tables 4, S2 and S3.†

3.3. Choice of standardisation samples

The variation in the RMSEP values obtained for acetone,
ethanol and ethyl acetate as a function of the composition of
standardisation samples for DS, PDS and SST is given in Tables
S2, S3, and S4 in the ESI† for scenarios 1, 2, and 3 respectively.
Regardless of the choice of the standardisation samples, it can
be seen from the results listed in Tables S2 to S4† that use of DS,
PDS and SST improves the accuracy of the predictions when the
model developed on the primary system is applied to data
acquired on the secondary system. However, it is only when the
1894 | Anal. Methods, 2022, 14, 1889–1896
standardisation samples were 1, 2, 3 and 7 (i.e. spanning the
entire design space) that the predictive accuracy was compa-
rable to that where the calibration and test samples were
acquired on the same system (i.e. primary), with the three
standardisation methods performing equally well.

However, it is noticeable that the results are affected by the
degree of difference between the two datasets. When the
primary and secondary systems were spectrometer–probe
combinations 7 and 6, respectively, the difference between the
two datasets is relatively small. In this case, the predictive
accuracy obtained when the standardisation samples were 7, 8,
9 and 10 was comparable to that obtained with samples 1, 2, 3
and 7. In addition, the performance of DS was more sensitive to
the composition of the standardisation samples than PDS and
SST. When the difference between the two datasets was rela-
tively large, i.e. when the primary and secondary systems were
spectrometer–probe combinations 4 and 5, respectively, the
performance of DS and SST was degraded when the composi-
tion of the standardisation samples spanned only selected
regions in the entire design space. In comparison, PDS was less
affected by the composition of the standardisation samples.
However, the performance of PDS was affected by the choice of
sample used for optimisation of the window size when the
standardisation samples were 2, 4, 5 and 7, 1, 4, 6 and 7, and 3,
5, 6 and 7. For these combinations of standardisation samples,
which only span a small area of the design space, in general,
poorer predictions were obtained for the test samples when the
sample for window size optimisation was located in the centre
of the design space covered by the standardisation samples.
This is because in these examples, calibration transfer with PDS
has been optimised to work within a very small compositional
range and therefore, when attempts were made to transfer
samples outside this region, poorer performance was observed.
The optimum window size can vary quite widely with the choice
of standardisation samples and the sample used for optimisa-
tion of the window size.
3.4. Ease of use

While DS is perhaps the easiest procedure to use in that it
requires no user input or parameter optimisation, it is more
sensitive to the composition of the standardisation samples
than PDS and SST, irrespective of the spectral difference
between the primary and secondary systems.

When the difference between the primary and secondary
systems is large, PDS is the least sensitive to the choice of
standardisation samples. However, PDS requires optimisation
of two parameters: window size and number of PCs, both of
which have a signicant impact on predictive accuracy. The
optimisation of the window size requires at least one extra
sample in addition to the standardisation samples. In
comparison, SST requires optimisation of only one parameter:
the number of PCs. This can simply be set equal to the number
of standardisation samples when only a limited number of
samples are available (n < 7).53 Accordingly, in this work the
number of PCs was always set to 4, and SST was essentially
performed without an adjustable parameter. For situations
This journal is © The Royal Society of Chemistry 2022
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Table 4 RMSEP values (% w/w) for acetone, ethanol and ethyl acetate when the calibration and test spectra were acquired on different
spectrometer–probe combinations and using DS, PDS, or SST as the calibration transfer method. Samples 1, 2, 3 and 7 were used for stand-
ardisation. Values without calibration transfer are repeated from Table 3 for convenience of comparison

Scenario Calibration (primary) system Test (secondary) system
Standardisation
method Acetone Ethanol Ethyl acetate

1: Spectrometer upgrade 6 6 None 1.7 1.0 1.5
6 5 None 1.9 2.8 2.0
6 5 DS 2.2 2.4 0.9
6 5 PDSa 1.7–2.3 2.0–2.6 0.6–0.9
6 5 SST 2.3 2.5 0.8
6 5 SST with scaling 2.3 2.5 0.8

2: Multiplexed probes 7 7 None 1.0 1.2 0.4
7 6 None 7.3 3.5 4.4
7 6 DS 1.4 1.0 1.6
7 6 PDSa 1.3–1.5 0.8–0.9 1.0–1.1
7 6 SST 1.4 1.0 1.0
7 6 SST with scaling 1.4 1.0 1.0

3: Different probe diameter 4 4 None 3.7 2.9 0.9
4 5 None 78.4 108.1 39.0
4 5 DS 3.0 3.0 1.3
4 5 PDSa 3.0–3.1 3.0–3.5 1.1–1.6
4 5 SST 5.2 4.0 3.6
4 5 SST with scaling 3.0 2.6 1.0

a The window size for PDS was optimised using sample 8, 9 or 10. Therefore, the ranges of RMSEP values obtained for the secondary test samples
transformed using these window sizes are given. Full details are listed in Tables S2, S3, and S4 in the ESI for scenarios 1, 2, and 3 respectively.
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where a larger number of standardisation samples are available,
the performance of SST is relatively insensitive to the choice of
number of PCs as long as this number is set higher than the
number of signicant singular values in the combined spectral
matrix of the standardisation samples.53

Where spectra acquired on the primary and secondary
systems differ in magnitude, then the secondary spectra should
be scaled prior to application of SST. It was found that simply
scaling by the ratio of the Frobenius norms yielded good results.
One advantageous feature of the proposed scaling method is
that it has no impact on performance for datasets where the
magnitudes are comparable, therefore the SST version with the
extra scaling step can be used in all situations without any extra
user intervention or decisions.
4. Conclusions

The study has demonstrated that DS, PDS and SST can be used
to maintain the performance of calibration models built with
MIR spectra acquired using bre coupled ATR probes, an
application largely neglected in the current literature on cali-
bration transfer. It has been demonstrated that all three
methods can be effective, irrespective of the different types of
spectral change caused by altering the spectrometer–probe
combinations. SST, with the addition of a simple scaling step,
was found to be amore straightforwardmethod compared to DS
or PDS. This is because DS is highly sensitive to the composition
of the standardisation samples used, and PDS requires the
optimisation of two parameters. The study has demonstrated
particular advantages of SST for in situ MIR analysis, especially
when faced with the need to replace spectrometers, ATR probes,
This journal is © The Royal Society of Chemistry 2022
or to change the size of the ATR crystal during scale-up of
manufacturing.
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