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The rate-limiting step for diagnostics development is the discovery and validation of biomarker analytes.

We describe a new analyte-agnostic and label-free approach based on colorimetric reactions involving

type I polymerization photoinitiators. We demonstrate that a chemically diverse array of hydrogels

embedded with cleaved type I photoinitiators could act as microreactors, undergoing colorimetric reac-

tions with bound analytes. The colorimetric signatures produced were visually distinctive and readable

with a flatbed document scanner. Signatures of a broad range of sample types were accurately differen-

tiated by unsupervised clustering without knowledge of any analytes bound to the array. The principles

described have the potential to enable scalable and cost-effective analysis of complex samples.

Introduction

Although photoinitiators were originally designed to facilitate
the curing of various polymeric materials, they can in theory
also be repurposed as colorimetric sensors. For example, when
the type I photoinitiator 2,2-dimethoxy-2-phenylacetophenone
(DMPA) is exposed to UV light, it undergoes photocleavage,
producing free radical fragments which either participate in
polymerization reactions or cross-react among themselves to
create a spectrum of recombinant species.1 At least some of
these recombinant species have the potential to react with ana-
lytes to produce colorimetric products. For instance, it is well-
known that unreacted photoinitiator molecules undergo slow
cleavage reactions to create recombination products which
promote the phenomenon of yellowing.2 This yellowing
increases with longer exposure to daylight, suggesting that the
rate of color development is enthalpically-driven. Color devel-
opment, although aesthetically undesirable for many commer-
cial plastics, is potentially useful for analyte sensing. Indeed,
benzil and benzoin which are related to photocleavage pro-
ducts of Type I photoinitiators2,3 have been shown to be
effective spray reagents for visualizing organic compounds on
Thin Layer Chromatograms.4

These observations suggest that many photopolymerized
materials in common everyday use could be repurposed as
chemical sensors with minimal modification. Hydrogels are
especially relevant because they have the ability to sequester
and concentrate analytes from challenging sample types such
as urine.5 Rather than sensing a specific analyte, each hydrogel
would bind with a group of analytes compatible with its
physicochemical properties. Subsequently, these bound ana-
lytes would react with unconsumed photoinitiator species and
recombination products to produce color. This type of array,
often described as a cross-reactive array6 or chemical-
tongue,7,8 would aggregate a larger amount of information
than arrays which sense specific analytes. In this work, we
describe a simple and economical sample profiling method
based on repurposing photopolymerization initiators to create
colorimetric cross-reactive chemical arrays.

Results
Photoinitiators produce colorimetric signals in hydrogels

2,2-Dimethoxy-2-phenylacetophenone (DMPA) is one of the
most commonly-used initiators for photopolymerization reac-
tions. DMPA, when exposed to ultraviolet (UV) light, splits it
into a benzoyl fragment and a ketal fragment, which can
further dimerize or recombine to create multiple products1,9,10

(Fig. 1a). Two such products, benzil and benzoin, are known to
have colorimetric properties when heated with analytes.4

GC-MS analysis of DMPA cleavage products after a short
exposure to UV light showed that benzil and benzoin methyl
ether were indeed present (Fig. 1b and ESI Fig. S1†). Further,
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DMPA when heated in solution produced yellow products but
only if exposed to UV light before heating (Fig. 1c). When mix-
tures containing different ratios of regular DMPA and UV-
exposed DMPA were heated, colorimetric products were pro-
duced in direct proportion to the relative percentage of UV-
exposed DMPA (Fig. 1d). These results together demonstrate
that photocleaved DMPA is necessary for colorimetric products
to be formed upon heating.

Polymers which encapsulate photocleaved DMPA can in
theory be used to bind and visualize analytes without the need
for labels. Analytes would bind differentially depending on the
physical properties of the polymer, while the photocleaved
DMPA would enable visualization upon heating. Creating an
array of polymers with varying composition would then allow
us to create a colorimetric signature, enabled by the variable
binding of analytes across the different spots as well as their
reaction with photocleaved DMPA.

To investigate this idea, prototype polymer arrays were
created, featuring 14 distinct hydrogels (labeled A1 to A14)

polymerized with DMPA on a microscope slide. Colorimetric
signatures on these arrays were first profiled without analytes
in relation to three variables (a) UV exposure time during
polymerization, (b) polymeric DMPA concentration and (c)
heating temperature. All arrays were imaged using a regular
flatbed document scanner and spot intensities were analyzed
using ImageJ (Fig. 2a).

First, UV exposure time was varied (5, 20 or 60 min) while
keeping both DMPA concentration (1×) and heating tempera-
ture (250 °C) constant. It was observed that colorimetric
signals increased with UV exposure. Further, a longer UV
curing time was important to guarantee that the spots were
fully cured. Hence, UV curing time for subsequent experiments
was fixed at 60 min. Next relative DMPA concentration was
varied (0.5×, 1×, 2×, 4×) while keeping heating temperature
(250 °C) constant. It was observed that color intensity
increased in proportion to DMPA concentration. Since colori-
metric signals were visible at DMPA 2× and 4× in the absence
of any analytes, we picked DMPA 1× concentration for all sub-

Fig. 1 Pre-exposure of DMPA to UV light enables the generation of colorimetric products when heated. (a) Schematic of radicals formed after
DMPA photocleavage as well as their recombinant products. (b) Summary of DMPA photocleavage products detected by GC-MS. (c) Vials of mineral
oil with or without DMPA were either pre-exposed or not exposed to UV light for 1 hour before being heated at 250 °C for 5 minutes. Only the
sample containing DMPA pre-exposed to UV produced colorimetric products. (d) Mixtures were created with various volumetric ratios of non-UV
exposed DMPA and UV-exposed DMPA. Upon heating at 250 °C for 5 minutes, colorimetric products were produced in direct proportion to the rela-
tive percentage of UV-exposed DMPA in each mixture. Each data point comprised 6 replicates.
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sequent experiments because it was the concentration which
produced a reasonably low background. Finally, heating temp-
erature was varied (100 °C, 150 °C, 200 °C, 250 °C, 300 °C,
350 °C, 400 °C) while maintaining UV exposure and DMPA
concentration at the values fixed from the previous two experi-
ments. Heating temperature produced the largest effect on col-
orimetric signal, with a dramatic increase at 350 °C and
400 °C in the absence of analytes. To maintain a low back-
ground when analytes were absent, all subsequent experiments
in this study used a heating temperature of 250 °C, DMPA con-
centration of 1× and UV curing time of 60 min.

Consistent with the earlier experiments with DMPA in solu-
tion, colorimetric signals in the DMPA cured hydrogels were
observed within the hydrogel spots with color intensity
increasing in proportion to UV exposure, DMPA concentration
and temperature (Fig. 2b). Taken together, these data demon-

strate that photocleavage products do play a pivotal role in
forming colorimetric products. Alongside DMPA, we also
tested two alternative photoinitiators: 1-hydroxycyclohexyl
phenyl ketone (HCPK) and 2-hydroxy-2-methyl-1-phenyl- 1-pro-
panone (HMPP). Similar results were observed for HCPK and
HMPP, with both showing the same UV and concentration
dependence in colorimetric signals as DMPA (ESI Fig. S2†).
Further, HCPK and HMPP (tested alongside DMPA) also reca-
pitulated the temperature dependence observed for DMPA (ESI
Fig. S3†). Taken together, these data show that the obser-
vations with DMPA are generalizable to other similar
photoinitiators.

Array signatures can distinguish between well-defined analytes

To test real-world analytes, we created an improved array (the
‘α-array’) by expanding the number of spots from 14 to 70 and

Fig. 2 DMPA-cured hydrogels produce colorimetric signals which are dependent on UV exposure time, DMPA concentration and temperature. (a)
An assortment of monomers A1 to A14 containing DMPA as a photoinitiator were photopolymerized on silanized microscope slides as shown in the
spot legend. Slides in triplicate were studied in relation to the magnitude of colorimetric signals produced as three parameters were varied: UV
exposure time (5, 20, 60 min), relative DMPA concentration (0.5×, 1×, 2×, 4×) and heating temperature (100 °C, 150 °C, 200 °C, 250 °C, 300 °C,
350 °C, 400 °C). Slide images acquired by a flatbed scanner in transmittance mode are shown, along with an inverted LUT (lookup table) version for
visual clarity. (b) Scatter plots of the intensity values (relative signal) for each spot are displayed for all tested conditions. Means, 95% CI intervals and
p-values are also reported. The data show that the colorimetric signal produced varies positively with increasing UV time, DMPA concentration and
temperature.
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by varying the constituents of the hydrogels to create diverse
combinations of charge, polarity, hydrophobicity and size
exclusion.

Such an array works on a very different principle, and
would serve a different purpose, from other colorimetric
agents used in ELISAs, such as 3,3′,5,5′-tetramethylbenzidine
(TMB). Hence, the limitation of the array approach described
here is that the limit of detection is high. To study the effective
working analyte concentrations which produce colorimetric
signals, both glucose and ascorbic acid were tested using the
new 70-spot α-array at concentrations ranging from 0 to
55 mM (ESI Fig. S4†). It was observed for both analytes that
visible colorimetric signatures were produced at 55 mM and
5.5 mM but not at concentrations below 5.5 mM. In short, the
method described here would not be suitable for detecting low
concentrations of analyte since its working concentration is

within the millimolar range. On the other hand, this array
would theoretically be well-positioned to create colorimetric
profiles of complex mixtures and a spectrum of analyte
classes, without the need for special adaptation.

To investigate the breadth of analytes able to be processed
using this array, a panel of 39 samples spanning different
analyte classes was assembled. The panel comprised small
molecules, proteins, detergents, polymers, salts and complex
mixtures. Six replicate arrays were incubated with each sample
for 10 minutes, heated at 250 °C for 5 minutes and imaged on
a flatbed scanner. These reaction conditions were chosen to
minimize the background from reactions within photocleaved
species, hence allowing the signal from reactions between
photocleaved species and bound analytes to be visualized.
Samples could be visually distinguished not just by spot inten-
sity patterns but also by color (Fig. 3). For instance, some

Fig. 3 Visibly distinct colorimetric signatures are produced by various analytes. A total of 39 samples which includes small molecules, detergents,
polymers, salts and complex mixtures were tested with 6 arrays by incubating at room temperature for 10 minutes, followed by heating at 250 °C for
5 minutes and imaging on a flatbed scanner. Each analyte exhibits a unique browning and colorimetric profile (transmittance and LUT respectively),
hence demonstrating that the polymer array platform can not only detect but also differentiate between different types of samples.
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samples were blue-shifted while others were red-shifted. At a
broad level, the blue shift was associated with analytes which
had reducing properties, such as sodium hydroxide, sodium
carbonate and cysteine. This observation is consistent with
previous data showing that a mixture of benzoin and benzil in
a reducing environment produces blue products.11 In contrast,
the most red-shifted analytes (e.g. green tea, lysis buffer, milk,
collagen) did not share a common theme. Although the exact
mechanism is not yet accounted for, a red-shift may possibly
be explained by benzil having been shown in previous studies
to form red reaction products with many amino acids.4

Unsupervised hierarchical clustering was performed on all
234 (39 × 6) arrays. Clustering results were near-perfect with
97.8% (229/234) of arrays correctly clustered (Fig. 4). Of the 5
arrays which clustered incorrectly, 4 mis-clustered with other
samples which shared similar chemical structures and pro-
perties: one glucose array was clustered with sucrose, one
lambda-carrageenan array was clustered with kappa-carragee-
nan and two phenol arrays were clustered with cresol. The
remaining mis-clustered array was lysine which was incorrectly
clustered with sodium chloride, presumably due to both
having fainter signatures. According to the hierarchical cluster-
ing dendrogram, urea is the analyte with the greatest distance
from the other analytes. This is due to urea’s very distinctive
profile which features 7 spots at the bottom two rows and 4
spots to the top left exhibiting strong gray coloration, and the
remaining spots being relatively low in color. Another relevant
observation is that urea is a component of urine, and the urea
array accordingly reflects the 7 + 4 gray spots of the urea
profile as a subset of its own profile.

To our knowledge, this is the first demonstration of an
array platform which is able to profile such a broad spectrum
of sample types. Many of the samples tested were chemically
similar and were yet able to be distinguished. For example, the
lambda, kappa and iota forms of carrageenan were clustered
separately with the exception of one array. Complex mixtures
such as coffee, curry, green tea, LB media, milk and Nutrient
Broth were distinguished without error. Also, all salts (potass-
ium sorbate, sodium citrate, sodium carbonate, ammonium
sulfate and sodium chloride) clustered perfectly. Given the
accuracy of unsupervised clustering, it was not surprising that
supervised linear discriminant analysis showed robust cluster-
ing of all 39 samples (ESI Fig. S5†).

To further study the data using a machine learning
approach, one-shot learning using the k-nearest neighbors
algorithm (KNN) was performed on the data set (Fig. 5). Very
briefly, one array out of the 6 independent replicate arrays for
each of the 39 analytes was randomly selected and used as a
training dataset. Each analyte was hence represented by only
one training example. The remaining 195 arrays not within the
training dataset were then sequentially evaluated using KNN
with k = 1 nearest neighbors. KNN classification performed
well with an overall accuracy of 96.4% (188/195) and F1 score
of 95.9% (Fig. 5 and ESI Fig. S6†). This accuracy was similar to
the clustering results, but the spectrum of misclassifications
was different from the clustering experiment.

Misclassifications of lambda-carrageenan accounted for 4 of
the 7 misclassifications. Notably, 3 lambda carrageenan arrays
were misclassified as kappa carrageenan. The remaining mis-
classifications were single events: glucose as sucrose, glypho-
sate as iota-carrageenan, iota-carrageenan as coffee, and
lambda carrageenan as curry. Differences in misclassification
are to be expected since KNN will be sensitive to the initial ran-
domly chosen training dataset. Despite having a single train-
ing instance per class, KNN classification still managed to
achieve 96.4% accuracy, demonstrating that the results were
robust.

Discussion

Hydrogel materials have long been used as polymeric sensors.
In fact, hydrogel arrays have been developed before as analyte
capture surfaces for analysis by mass spectrometry. The use of
hydrogels as a chromatographic surface allows for the capture
and immobilization of analytes in a hydrated environment
with the hydrogel acting as a MALDI12 or SELDI13–17 target. As
a specific example, Grus et al.14 demonstrated that a diversity
of chromatographic surfaces (cation exchange, anion
exchange, and reverse-phase) could be used with
SELDI-TOF-MS to analyze patient tears and to differentiate
between patients and dry eye. Hence, it has been known for a
long time that hydrogels can play an analyte binding role. In
this work, we show that hydrogels can also act as a reaction
matrix to produce color as an alternative to using mass spec-
trometry as a readout for analyte binding. In essence, the very
photoinitiators used to cure these hydrogels may also be used
to create a visual signal.

Of interest to any chemist would be the mechanism by
which colorimetric signals are produced on the array. Our
current hypothesis is that colorimetric signals are produced by
recombinant products created during UV-cleavage of DMPA,
which comprise benzil and benzoin or derivatives thereof
(Fig. 1). It is clear from a previous study that benzil or
benzoin, when used as TLC spray reagents on the same ana-
lytes, are each independently able to produce a different spec-
trum of colorimetric signals.4 Since both benzil and benzoin
are likely to be present in the array spots, the ratio of benzoin
to benzil could hence be relevant to what colorimetric pro-
ducts are produced. Analytes could influence color production
by skewing this ratio. For example, an analyte could selectively
react with and deplete one but not the other. Alternatively, an
analyte could promote the oxidation of benzoin to benzil, or
conversely, the reduction of benzil to benzoin.18 Other plausi-
bly relevant mechanisms exist. For example, the rearrangement
of benzil into benzilic acid and related derivatives have been
shown to produce colored products.19,20 Indeed, the colori-
metric reaction potential of benzoin and benzil has been
amply demonstrated in the literature.11,21 Since these colori-
metric reactions are occurring within hydrogels, the reaction
environment within these hydrogels (e.g. charge and size exclu-
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Fig. 4 Colorimetric signatures co-cluster with analyte ID without supervision. Unsupervised hierarchical clustering was performed on 234 α-arrays
covering 39 analytes and 6 replicates per analyte. Each analyte is represented in the legend in order of appearance in the dendrogram from top to
bottom. Arrays and array spots were both clustered using the Euclidean distance measure. 229 out of 234 arrays (97.86%) were correctly clustered.
The five misclassified arrays were 1× Glucose, 1× Carrageenan (lambda), 2× Phenol and 1× Lysine.
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sion), as well as the type of analytes they bind, are likely to
affect what colorimetric products are formed.

The pathways for how such reactions occur within hydro-
gels are part of ongoing research. The lack of full mechanistic
knowledge should not however prevent us from exploring the
practical potential of these colorimetric hydrogel arrays. The
principle demonstrated in our study will certainly not replace

mass spectrometry or ELISAs, since they are magnitudes more
sensitive in their limit of detection relative to the hydrogel
arrays. However, there are many use cases where analyte con-
centration is not limiting and where a cost-effective profiling
tool based on colorimetric change might be more scalable and
effective. These use cases would leverage on the advantages of
the hydrogel array approach. One advantage of this approach

Fig. 5 K-nearest neighbors (KNN) one-shot learning accuracy. One-shot learning using KNN with k = 1 nearest neighbors was performed. A con-
fusion matrix is shown for 39 analytes each represented by 5 independent replicate arrays (total: 195 arrays). The training set for this classification
consisted of an independent set of 39 arrays, with each array being the sole training example for one of the 39 analytes. Summary performance stat-
istics are shown in the table below the confusion matrix.
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is the ease of use. Contact with the sample and the application
of heat are all that is required for colorimetric signal develop-
ment. Another advantage is that this approach is analyte
agnostic, hence avoiding the biomarker discovery bottleneck
in diagnostic test development. The ability to interrogate the
total analyte space and draw complex correlations is lost when
focusing on a single or few biomarkers. A limitation of signa-
ture biomarkers is that the signatures by themselves do not
contain knowledge of the analytes associated with a particular
sample or disease class. However, if identification of the
specific biomarkers is important, one can also use the
described platform to identify specific biomarkers bound to
the hydrogels which illuminate and rationalize the various sig-
natures associated with a particular disease. Particularly in
clinical assay development, the use of photoinitiators already
present in hydrogels would remove the need for labels, hence
avoiding the problems of label bias, the added effort of label-
ing reactions and background noise caused by non-specific
labeling. Chemical signatures created this way could then be
correlated with a desired classification output (e.g. analyte or
disease classes) using machine learning techniques.

Methods
Silanization of glass slides

Borosilicate glass slides were initially washed 3 times with dis-
tilled water, followed by sonication in absolute ethanol for
5 minutes to remove surface contaminants. Slides were blow
dried then completely dried in an oven at 120 °C for 5 minutes
followed by coating with 3-methacryloxypropyl-
trimethoxylsilane through vapor deposition overnight at 93 °C
and 580 mmHg. Thereafter, slides were dried in an oven at
120 °C for 1 hour.

Heating of UV-exposed DMPA in mineral oil

A DMPA solution was prepared by dissolving 30.6 mg of DMPA
in 400 µl of DMSO and adding this solution to 3.6 ml of
mineral oil in a 15 mL tube. The mixture was vortexed vigor-
ously for a few seconds. 400 µl of the DMPA-mineral oil
mixture was then added to each of two glass vials. One vial was
exposed to UV light for 60 minutes (min) using a Biorad UV
transilluminator (302 nm) and the other was used as a ‘non-
UV exposed’ control. Additionally, controls without DMPA were
also prepared by adding 400 µl of DMSO to 3.6 mL of mineral
oil and vortexing vigorously for a few seconds. In a similar
fashion, 400 µl of the DMSO-mineral oil mixture was then
added to each of two glass vials. One vial was exposed to UV
light for 60 min and the other was used as a non-UV control.
All 4 samples were then heated on a hot plate at 250 °C for
5 min, and subsequently cooled to room temperature for
30 min. The related study on various ratios of Regular
DMPA : UV-exposed DMPA (termed UV− : UV+) was carried out
as follows. A DMPA solution was prepared by dissolving 1.5 g
of DMPA in 6 ml of DMSO. Two glass vials of 700 µl DMPA
were prepared and one was exposed to UV (365 nm) for 1 hour

while the other was kept in the dark. Various UV−: UV+ ratios
by volume were prepared in a final volume of 100 µl. To each
preparation was added a reaction buffer of 100 µl DMSO +
3.8 ml Mineral Oil. For the DMPA negative control, 100 µl of
DMSO was substituted for the DMPA solution. All 4 samples
were heated on a hot plate at 250 °C for 5 min, and sub-
sequently cooled to room temperature for 30 min.
Spectrophotometry (Molecular Devices Emax Precision) was
performed by reading the absorbance (405 nm) of each sample
(read volume: 300 µl).

Mass spectrometry of DMPA exposed to UV

DMPA was dissolved in acetonitrile at 20 mg ml−1 and then
either subjected to UV exposure, or no UV exposure as a nega-
tive control. The DMPA solutions were then transferred to new
glass vials and analyzed by GCMS (Agilent). Column para-
meters were: Agilent® J&W™ DB-5 ms GC column, 30 m,
0.25 mm, 0.25um, 7 inch cage. Oven program was as follows:
(1) 50 °C for 5 min; (2) 10 °C min−1 to 150 °C for 5 min; (3)
25 °C min−1 to 250 °C for 5 min. Solvent delay: 7.00 min. Low
Mass: 50.0. High Mass: 500.0.

Photoinitiator (PI) solutions

PI solutions for DMPA and HCPK were prepared by combining
100 µl of 0.255 g ml−1 PI (in DMSO), 80 µl Glycerol, 400 µl dis-
tilled water and 3.42 ml DMSO. PI solution for HMPP was pre-
pared by combining 30 µl of 1.04 g ml−1 PI (in DMSO), 80 µl
Glycerol, 400 µl distilled water and 3.49 ml DMSO.

Single monomer arrays containing polymers A1 to A14

10 µl of DMPA PI solution was added to 10 µl of 14 monomer
stock solutions labeled A1 to A14 (which were respectively acryl-
amide, 2-carboxyethyl acrylate, acrylic acid, 2-cyanoethyl acry-
late, N-[tris(hydroxymethyl)methyl] acrylamide, hydroxypropyl
acrylate isomers, 4-hydroxybutyl acrylate, N-hydroxyethyl acryl-
amide, N,N-dimethylacrylamide, N-isopropylacrylamide, N-(1,1-
dimethyl-3-oxobutyl) acrylamide, 2-methacryloxyethyl phenyl
urethane, 1-acryloyloxy-3-(methacryloyloxy) 2-propanol and
ethylene glycol phenyl ether acrylate) and mixed well with a
pipet. Arrays were created by spotting 1.5 µl of each solution
onto a silanized glass slide and polymerized with a 302 nm UV
transilluminator (Biorad 2000 UV transilluminator) for 60 min.
UV light exposure catalyzes both the curing of the polymer and
also the covalent attachment of the polymers onto the silanized
glass surface.

DMPA, HCPK and HMPP temperature study using single
monomer arrays

Single Monomer Arrays were made as described using PI solu-
tions containing either DMPA, HCPK or HMPP. Three columns
of polymers A1 to A14 were spotted, each photopolymerized
with either DMPA, HCPK or HMPP. The arrays were then
heated at varying temperatures on a heated plate at 100 °C,
150 °C, 200 °C, 250 °C, 300 °C, 350 °C or 400 °C for 5 min. The
surface temperature of the heated plate was verified by an
infrared thermometer during the heating process. The arrays
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were then digitally scanned for image analysis. All data points
were generated in triplicate.

Digital scanning and data analysis of single monomer array
data

Slides were scanned with a digital scanner (EPSON Perfection
v500) at 1200 dpi and saved as JPEG images. The images were
then converted to 8-bit grayscale and inverted. A central circu-
lar region of standardized area within each spot was selected
using the area selection tool and analyzed by Image J software.
Mean intensity values were measured for each spot.
Additionally, background mean intensity values were also
measured for each array. All spot mean intensity values were
then background subtracted and then plotted against heating
temperature for each photo-initiator species (DMPA, HCPK,
HMPP) All data points were generated and analyzed in tripli-
cate. Statistical analyses were performed using the Student’s
t-test to compare each data point against heating at 100 °C.

Hydrogel arrays

The α-arrays were created as described in the following patent
application: Piloto, Obdulio, and Cheong, Ian Shen-Yi. 2016.
Detectable arrays, systems for diagnosis, and methods of
making and using the same. USPTO 20160274103:A1. US
Patent, filed September 22, 2014, and issued September 22,
2016. Details of how these α-arrays were constructed are
described in the ESI† Materials and methods.

Profiling of 39 analytes using α-arrays

A total of six α-arrays were incubated with each of 39 analytes
for 10 min at room temperature. The analytes tested were as
follows: Green Tea Extract, Lambda Carrageenan, Kappa
Carrageenan, Iota Carrageenan, Coffee, Curry Powder all at
0.1% w/v; Sodium Chloride, Sodium Citrate, Sodium
Carbonate, Ammonium Sulfate, Potassium Sorbate, HCl,
NaOH, Urea, Sucrose, Glucose, Galactitol, Sorbitol, PEG400,
SDS, Triton X-100, Glycine, Lysine, Cysteine, Collagen,
Glyphosate, Bovine Serum Albumin, Phenol, m-Cresol, Vitamin
C, Vitamin D, Dawn Ultra Soap all at 0.1% (w/v for solids, v/v
for liquids); Whole milk (10% w/v); Human urine (40% v/v);
TAE buffer, Lysis buffer from Applied Biosystems, Lysogeny
Broth, Nutrient Broth all at 1X concentration; and Distilled
water. After incubation, the arrays were removed and air dried
at room temperature for 20 min and further dried on a heated
plate at 100 °C for 20 min. Subsequently, the arrays were
heated on a heated plate at 250 °C for 5 min to develop their
colorimetric signal profiles. Arrays were scanned with a digital
scanner (EPSON Perfection v500) at 1200 dpi and saved as RGB
JPEG images. Each array spot was cropped using a fixed
window size and then split into R, G and B channels for
further analysis. The R, G and B intensities of each spot were
obtained by summing the respective R, G and B pixel intensi-
ties for each spot window. A vector of 210 spot intensities (70
spots × 3 color channels) was obtained from each array data
point. Each vector was ‘L1’ normalized. Unsupervised hierarch-
ical clustering analysis was performed using the hierarchical_-

clustering.py software authored by Nathan Salomonis (J. David
Gladstone Institutes, San Francisco California). ‘L2’ was used
for both the row-wise and column-wise metrics. A heatmap
was generated using the color gradient ‘gist_ncar’. To score the
clustering results, misclassified arrays were first identified
using the following two step process. Step 1: for each class of 6
arrays, identify the largest contiguous cluster. Step 2: any array
which was not part of this largest contiguous cluster was con-
sidered misclassified. The clustering accuracy was thus calcu-
lated as (Total # of arrays − # of misclassified arrays)/Total # of
arrays × 100%. For visualization, scanned array images were
montaged using ImageJ. An ‘LUT’ (Look Up Table) version was
also created by inverting the montage and applying the
‘brgbcmyw’ LUT in ImageJ. 2D and 3D Linear Discriminant
Analyses were performed using the sklearn.lda.LDA module in
the scikit-learn 0.16.1 library package. The general color
profile of the scanned array images was obtained by using the
Color Inspector 3D plugin in ImageJ to analyze the montage of
39 × 6 original array images.

One-shot learning using K-nearest neighbors (KNN)

The dataset generated from 39 analytes and 6 replicates were
further analyzed by KNN. A vector of 210 spot intensities (70
spots × 3 color channels) was obtained from each array data
point. Each vector was ‘L1’ normalized. KNN classification was
performed using R (v 4.2.1). One array out of the 6 indepen-
dent replicate arrays for each of the 39 analytes was randomly
selected and used as a training dataset. The remaining 195
arrays not within the training dataset were sequentially evalu-
ated using KNN with k = 1 nearest neighbors. The confusion
matrix and all performance statistics were generated using the
caret package.
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