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Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease in urgent need of disease bio-

markers for the assessment of promising therapeutic candidates in clinical trials. Raman spectroscopy is an

attractive technique for identifying disease related molecular changes due to its simplicity. Here, we describe a

fibre optic fluid cell for undertaking spontaneous Raman spectroscopy studies of human biofluids that is suit-

able for use away from a standard laboratory setting. Using this system, we examined serum obtained from

patients with ALS at their first presentation to our centre (n = 66) and 4 months later (n = 27). We analysed

Raman spectra using bounded simplex-structured matrix factorization (BSSMF), a generalisation of non-nega-

tive matrix factorisation which uses the distribution of the original data to limit the factorisation modes (spectral

patterns). Biomarkers associated with ALS disease such as measures of symptom severity, respiratory function

and inflammatory/immune pathways (C3/C-reactive protein) correlated with baseline Raman modes. Between

visit spectral changes were highly significant (p = 0.0002) and were related to protein structure. Comparison

of Raman data with established ALS biomarkers as a trial outcome measure demonstrated a reduction in

required sample size with BSSMF Raman. Our portable, simple to use fibre optic system allied to BSSMF shows

promise in the quantification of disease-related changes in ALS over short timescales.

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative con-
dition caused by the progressive loss of motor neurones in the
brain and spinal cord. As a result, patients experience weak-
ness of limb and respiratory muscles, as well as of the muscles
controlling speech and swallowing. Despite significant pro-
gress in understanding the disease, ALS remains incurable
with an average survival time of two years from the point of
diagnosis.1

As a result, many clinical trials are underway which attempt
to treat different aspects of the disease. Development of bio-
markers of disease that can identify early changes are therefore
a priority area of ALS research. Recent imaging,2 electrophysio-
logical3 and serum4–6 biomarker studies have demonstrated
early changes in longitudinal measurements (within
3–6 months) with the potential to improve clinical trial
design.7

Raman spectroscopy is a form of vibrational spectroscopy
based upon the inelastic scattering of light. Interest in the
application of Raman spectroscopy to neurological disorders is
growing due to the simple, label-free nature of the
technique.8,9 Biofluids are particularly appealing in biomarker
research due to the ease of sample acquisition. Thus far, bio-
fluid based ALS studies have typically employed surface
enhanced Raman spectroscopy,10–12 in which inelastic scatter-
ing is potentiated by plasmon excitation in nanoparticles.13

Spontaneous Raman spectroscopy, which is more straight-
forward to implement but generates a far weaker signal, has
also been used, albeit less frequently, in studies on ALS14 and
other neurodegenerative diseases.15 While most applications
have employed standard laboratory-based microscope formats,
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fibre optic technologies are gaining momentum due to their
potential for use in clinical environments.16 Invasive, in vivo
fibre optic based measurements have been a focus for develop-
ment but bedside testing of easily obtainable samples, such as
blood, would potentially avoid complex laboratory assays and
provide rapid results upon which clinicians could act.

Parallel to technological advances, the development of data
analysis algorithms is key for the incorporation of Raman
spectroscopy into clinical research and, ultimately, clinical
practice.17,18 With the exception of deep learning methods,
most statistical analyses begin with dimension reduction, a
process which aims to improve data visualisation and remove
redundant information. Non-negative matrix factorisation
(NMF) is popular method, used for both dimension reduction
and feature extraction within signal processing and biomedical
fields.19 The technique combines multivariate analysis and
linear algebra to decompose the original data into two lower
ranking matrices (i.e. with fewer dimensions). In the context of
Raman spectroscopy, one of these matrices contains the spec-
tral patterns, also termed ‘modes’, for which the non-negative
constraint provides a physically realistic output. The other
matrix contains the associated coefficients, typically termed
‘weights’, which represent the relative importance of a given
pattern to a given sample. Recently, generalisations of NMF,
termed simplex structured matrix factorisation, have been pro-
posed which do not impose the non-negative constraint.20 A
newly developed variant of this approach, termed bounded
simple structured matrix factorisation (BSSMF), uses the distri-
bution of the original data to impose bounds on the approxi-
mation.21 As for other forms of matrix factorisation, two lower
rank matrices are produced, however, BSSMF imposes the
interval found in the origin data upon the decomposition.
Thus, when applied to spectral data, such restrictions should
enhance the interpretability of the dominant spectral patterns
that are identified.

In this proof-of-concept study, we constructed a portable
fibre optic Raman system for the study of biofluids in clinical
environments. We studied serum samples collected from ALS
patients at two time points and analysed the Raman spectra
using BSSMF. We compared Raman data to established clinical
measures of disease severity, standard clinical analytes known
as promising biomarkers of disease activity (C-reactive
protein,22 ferritin23 and complement24) and the leading new
serum biomarker for ALS (neurofilament-light, NfL25,26). Our
data show promise in optimising the biomarker potential of
serum Raman studies in ALS.

Methods
Participants and clinical assessments

Samples were collected as part of A Multicentre Biomarker
Research Strategy in ALS (AMBRoSIA) study, a longitudinal,
observational biomarker study. The study was approved by an
NHS Research Ethics committee (reference: 16/LO/2136).

66 patients were recruited at their first presentation to the
Royal Hallamshire Hospital, Sheffield, UK. After written
consent was obtained blood samples were collected and
clinical measures of disease completed. Forced vital capacity
(FVC), assessment of respiratory function, was measured
using a handheld spirometer and a percentage of the
patient’s predicted value calculated using subject age and
height. The ALS Functional Rating Scale-Revised (ALSFRS-R),
the established symptom severity score for ALS, was com-
pleted. A baseline disease progression rate (DPR) was calcu-
lated as (48-ALSFRS-R)/(months from symptom onset at the
time of first sample collection). A second data collection
visit, comprising repeat clinical assessments and venepunc-
ture, was undertaken 4 months after the first visit in n = 27
patients.

Serum assays

Following venepuncture, samples were separated out for
further processing of the different biomarkers. For ferritin,
CRP and complement (C3 and C4), samples were sent to the
Clinical Chemistry and Clinical Immunology laboratories at
Sheffield Teaching Hospitals NHS Foundation Trust. For NfL
and Raman studies, serum was separated from blood (centri-
fuged at 3500 rpm at 4 °C for 10 minutes) and stored in liquid
nitrogen. For NfL, these were thawed on ice and quantified
using the Mesoscale Discovery (MSD) R-PLEX electrochemilu-
minescent (ECL)-ELISA platform, as per the manufacturer’s
instructions.

Raman spectroscopy

Raman spectra were obtained from the samples of all patients
using a custom made, fibre optic coupled, liquid measurement
cell (Fig. 1; Clifton Photonics Ltd, Bristol, UK). This cell
focusses laser excitation into a 40 μl disposable aluminium
sample container with an objective lens of focal length 25 mm
and collects scattered light in reflection mode. The internal
optics provide filtering for the rejection of elastically scattered
light and clean-up of the incident laser beam. The collection
optics have focal length 25 mm and numerical aperture of
0.22. Optical fibres coupled the cell to an 830 nm diode laser
(Process Instruments, Salt Lake City, USA) and a Raman
Explorer spectrometer (Headwall Photonics Inc. Bolton,
Massachusetts, USA). The spectrometer was used in conjunc-
tion with an Andor iDus 420 CCD and Andor Solis software
(Andor Technology ltd, Belfast UK) for data acquisition.

Acquisition of Raman spectra was undertaken in a windowless
hospital clinic room. Serum samples were thawed on ice and
25 μl pipetted into the aluminium sample holder. A laser power
of 60 mW measured at the sample was used. PTFE spectra were
collected at the start of each recording session for wavenumber
calibration. In addition, a background signal was collected with
an empty aluminium pan in situ within the recording chamber.
For each serum sample, an 8 seconds exposure was used, and 20
spectra were recorded (total recording time therefore 160
seconds). The individual spectra were then averaged prior to ana-
lysis. Replicates were taken from 20 samples chosen at random;
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for these, a second 25 μl of serum was taken from the main
aliquot and the spectral collection process noted above repeated.

Analysis

Spectral analyses were undertaken using MATLAB (Version
R2021b, The MathWorks, Inc., Natick, MA, USA). Analyses
were undertaken across all spectra (i.e. visit 1 and visit 2), with
separation of the two visits undertaken post-hoc. Spectra were
first windowed between 900 and 1800 cm−1. At <900 cm−1 the
spectra were dominated by silica-related artefact from the fibre
optics. At >1800 cm−1 the spectra consisted of non-biological
noise. Windowed spectra were interpolated to integer wave-
number spacings, followed by background subtraction using
the rubber band algorithm27 and standard normal variate
(SNV) normalisation. Peaks were identified using the find-
peaks MATLAB function.

BSSMF21 was also applied across all spectra i.e. visit 1 and
visit 2 were analysed as one dataset. The data are built up as
an n × m matrix, X, where n is the 900 wavenumbers and m is
the number of spectra (herein, 66 first visit samples plus 27
seconds visit samples equals a total of 93 spectra). For a rank r
factorisation, (where the rank, r, represents the number of spec-

tral patterns output from the factorisation) BSSMF approxi-
mates X as the product of two low rank matrices:

X � WH;

where W has n rows and r columns, and H has r rows and m
columns. The unique characteristic of the BSSMF method is
that entries in each column of W are bounded to belong in the
interval of the observed dataset X. Thus, the data in the matrix
W represent the dominant spectral patterns in the dataset and
are termed ‘modes’. By bounding these modes into the interval
of the observed data range we identify spectra which are phys-
ically realistic to observe. The columns of H belong to the unit
simplex; these are the weightings and represent the relative
importance of each spectral pattern (i.e. mode) to each sample.
To select the rank of the decomposition, r, that is, the number
of spectral patterns to be found, the root mean square residual
(R) between replicate data of 20 samples was calculated:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Pm
j¼1

X1ij � X2ij
�� ��2

n�m

vuuut

where X1 is the first run of the replicates and X2 is the repeat
set (see ESI Fig. S1† for a subtraction spectrum of the technical
replicates). For the matrix reconstruction, the root mean square
residual (D) between the dataset (X) and the approximation
(WH) was determined:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Pm
j¼1

X ij � ðWHÞij
���

���2

n�m

vuuut

The rank was chosen when the decomposition residual
became smaller than the deviation between replicates (i.e.
when D < R). This was satisfied for a rank of 5; thus, 5 domi-
nant spectral modes were found (M1–M5). All subsequent ana-
lyses were applied to the weighting matrix, H. These included
Pearson correlations with the different markers of disease
(NfL, CRP, ferritin and complement, FVC, ALSFRS-R, DPR)
which were undertaken using visit 1 data. For assessment of
visit 1 vs. visit 2 repeated measures one-way analysis of var-
iance with a false discovery rate correction (Q = 0.05) was per-
formed using GraphPad Prism (Version 9).

In addition, principal component analysis (PCA) was
applied to the 5 spectral weightings of the entire dataset, and
the direction of maximum variance (PC1) was calculated
(BSSMF-PCA). Considering the jth sample, the BSSMF-PCA

value is given by
P5
r¼1

ðp r½ � �HrjÞ, where p[r] is the PC1 coefficient

for the rth dimension. For identification of patterns associated
with more/less severe disease the five modes were split into
two subgroups, depending upon whether the respective coeffi-
cient, p[r], was positive or negative. If a mode has a positive
coefficient, then as its weighting increases, a relative increase
in the BSSMF-PCA value is observed. By contrast, increasing
weight for the modes with negative coefficients results in a
relative decrease in BSSMF-PCA. The PC coefficients were then

Fig. 1 The portable fibre optic Raman system. (a) The 3D printed fluid
cell and schematic of the system. (b) Mean (± standard deviation)
spectra (all samples).
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used to derive a linear combination of the modes for the two
subgroups (more/less severe disease). To do this, each BSSMF
mode in the subgroup was multiplied by the absolute value of
the respective PC1 coefficient, |p[r]|. Hence, by assessing how
the BSSMF-PCA value correlates with disease it is possible to
assign labels of more severe and less severe disease to these
two combined spectral patterns (as shown in Fig. 2b). For the
visit 1 vs. visit 2 analysis, the paired data (mode weights and
BSSMF-PCA scores) were identified for post hoc analysis and
the same PC coefficient procedure applied.

The sample size for the number of patients required in a
hypothetical clinical trial was calculated at 5% significance
and 80% power:28

Number of patients sample sizeð Þ ¼ 2�
Z1� α

2
þ Z1�β

ES� p
100

0
B@

1
CA2

where Z is the standard normal distribution for the respective
significance level (α = 0.05) and power (1 − β = 80%), p is the
treatment effect percentage and ES is the effect size of the bio-
marker, calculated by assessing the mean change over time (μ)
and the standard deviation of the change (σ):

ES ¼ μ

σ

Results and discussion
Baseline data

Patient characteristics are shown in Table 1. Raman spectra
were obtained and Raman spectra demonstrated features
similar to those seen in other blood biofluid studies,14,29 with
prominent peaks relating to phenylalanine (999 cm−1), the
amide III region (between 1205 cm−1 and 1340 cm−1), the CH2

Fig. 2 Spectral patterns arising from the BSSMF and their linear combinations. (a) Modes from the BSSMF factorisation of all data. Visit 1 outputs
were then correlated with visit 1 clinical/biomarker data to established associations with disease severity (n=66 samples from 66 patients). (b) Modes
were combined with PCA and then the relevant PC1 coefficients used to derive spectral patterns associated with worsening disease (modes 1, 3, 5)
and less severe disease (modes 2, 4).
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deformation of lipids/proteins (1448 cm−1) and amide I region
(1650–1660 cm−1) (Fig. 1). Tentative assignments were taken
from the literature (see ESI Table S1† for references).

BSSMF was undertaken and the five modes demonstrated
similar prominent peaks to the raw spectra (Fig. 2a). Shifts
were evident for certain peaks. These included phenylalanine
peaks (999/1000 and 1024–1027 cm−1), the CH2 deformation of
lipids/proteins (1446–1450 cm−1) and α-helical protein content
(938–942 cm−1). There were also differences in the promi-
nence, or even presence/absence of other peaks, including
1078–1080 cm−1 (present in modes M1–M4), 1153 cm−1

(present in M1, M2, M5), 1240 cm−1 (M5), 1520 cm−1 (promi-
nent in M2). See ESI Table S1† for further mode peak
assignments.

Correlations between spectra obtained from samples taken
at the baseline visit (i.e. visit 1, n = 66) and clinical/biochemi-
cal characteristics were explored using mode weights. These
demonstrated that some modes were associated with more
severe disease (M1, M3, M5), and some with less severe
disease (M2, M4; Fig. 2a; see ESI Table S2† for full correlation
statistics). Particularly prominent correlations were seen for
FVC and the inflammatory/immune proteins C-reactive protein
(CRP) and C3. FVC is an established respiratory assessment
used in ALS. CRP is an acute phase protein which acts as an

activator of the complement system, a key component of the
innate immune system. Both are increased in ALS and associ-
ated with a more severe form of disease.22,30–34 In keeping
with these prior reports, in our analyses modes associated
with increasing CRP/C3 were also associated with worsening
disease.

The combined BSSMF-PCA metric was also found to be
associated with more severe disease (see ESI Table S2† for cor-
relations and ESI Table S3† for PC coefficients). Thus, more/
less severe disease spectral patterns were obtained (Fig. 2b). By
using multiple measures of disease this approach provides a
more comprehensive means of findings spectral features
associated with worsening disease. These patterns demon-
strated peak differences related to protein structure (938–952,
1253/55, 1316/1320, 1654/6 cm−1) and lipids (1100 cm−1). Peak
shifts such as these have been described in other diseases,
such as malignancy35,36 and necrosis.37 The understanding of
the exact mechanisms driving such shifts is incomplete but
may involve altered inter-molecular interactions.38 Thus,
changes in chemical bond length or symmetry, perhaps
related to structural alterations of proteins, may drive such
changes.

While environmental factors such as sample temperature
could also contribute, we noted that other peaks demonstrated
alterations in shape and intensity, or were absent in some
modes (e.g. 1335, 1520 cm−1). Instrument calibration was per-
formed prior to each recording session and average spectra
from each visit manifested several prominent common peaks
(e.g. 999, 1080, 1123, 1153, 1205, 1554, 1656 cm−1; Fig. 3).
These observations would suggest that systematic differences
in recording conditions were not the dominant reason for
peak differences found in the matrix decomposition.

Interestingly, peak alterations indicative of changes in
protein structure have also been identified in Raman serum
studies of other neurodegenerative conditions.15 These dis-
orders, which include ALS, are increasingly recognised as pro-
teinopathies, in which misfolded proteins play a key driving

Table 1 Clinical details of the ALS patients

Mean age (s.d.) 62 years (12)

Gender (n, %) Male: 37 (56%)
Female: 29 (44%)

Site of disease onset (n, %) Limb: 55 (84%)
Bulbar: 8 (12%)
Respiratory: 1 (2%)
Cognitive: 1 (2%)

Mean disease duration (s.d.) 22 months (21.7)
Mean ALSFRS-R score (range) 37 (17–48)
Mean DPR (range) 0.8 (0–6)
Mean % predicted FVC (range) 86 (12–141)

Fig. 3 Change in clinical and biochemical measures of disease. (a) Changes in key clinical and biochemical measures of disease (n = 27; see ESI fig.
S2† for data from other measures). (b) Mean (± standard deviation) for Raman spectra obtained from patients attending both visit 1 and visit 2 (n =
27). *p < 0.05, **p < 0.01.
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role in disease initiation and spread.39 For example, analysis of
protein aggregates within blood from ALS patients demon-
strated the presence of a large number of proteins involved in
the proteasome, the clearance system for defective proteins,
illustrating that the effects of abnormal proteins can spread
across the blood–brain barrier.40 Assessing whether Raman
spectroscopy could provide a simple point of care assay on
such aggregates would be a useful future work. In addition,
peaks associated with carotenoids were more prominent in the
less severe disease pattern (1153, 1521 cm−1). Carotenoids
exhibit free radial scavenging and interact with the Nrf2 signal-
ling pathway, both of which have been implicated in ALS.41,42

Interestingly, increased carotenoid intake has been shown to
correlate with less severe disease,43 although the relationship
between intake and disease is likely to be complex.44

Change over time: visit 1 vs. visit 2

Second visit assessments were performed 4 months after the
first visit in n = 27 patients. Established clinical (ALSFRS-R,
FVC) and biochemical biomarkers (NfL) demonstrated signifi-
cant change between the two visits, indicating disease pro-
gression in these patients (Fig. 3a; see ESI Fig. S2† for remain-
ing biomarkers). The weightings of modes M3, M4 and M5
from the BSSMF also demonstrated significant changes
(Fig. 4a). The BSSMF-PCA scores increased over time (moving
from negative to positive; Fig. 4b), which represents a shift
from the less severe to the more severe spectral pattern in the
earlier analysis. Significant differences were observed in the
visit 1/visit 2 BSSMF-PCA scores (p = 0.0002; Fig. 4b).

Several reports utilising more traditional techniques for
monitoring ALS (such electrophysiological and imaging
studies) have demonstrated significant changes in disease
state within 4 months.2,3 The most promising serum bio-
marker at present is NfL, a structural protein found in axons
which is released when axons degenerate. Recent multi-centre
work from the AMBRoSIA study group found that levels
increased over time and modelling its inclusion as a trial
outcome measure reduced sample size requirements.26

To investigate the potential of our Raman paradigm in a
longitudinal setting, a hypothetical clinical trial was con-

structed and sample sizes for the number of patients required
(not the volume of serum) were calculated (Table 2). In com-
parison to established ALS biomarkers (ALSFRS-R, FVC, NfL),
Raman data from modes M3-5 and the linear combination of
all modes (BSSMF-PCA) required smaller sample sizes.

Fibre optic Raman systems have been investigated for
in vivo applications, for example, for deployment during
surgery and endoscopy.16 Serum studies have largely employed
either standard microscope formats (e.g.45), but smaller porta-
ble systems are being investigated (e.g.46). More recently, opto-
fluidic systems, which combine microfluidics to separate
blood components with Raman, have been developed.47,48

Whether using a portable system such as ours, or a miniature
optofluidic design, being able to take Raman to the clinic
offers the possibility for real-time molecular fingerprinting at
the point of care. Such information could help guide clinical
decision making in the precision medicine era. This might
benefit a range of diseases, as well as a variety of care settings,
for example, emergency care, surgery and outpatient clinics. In
addition to immediate patient benefit, reduced decision-
making times can also have potential knock-on effects in cost
benefit analyses. Developing an evidence base for point of care
Raman spectroscopy through high quality, multi-centre
studies with parallel health economic assessments, will be a
priority for the field as it continues to develop.

The complexity of Raman spectra and the subtle molecular
differences found in disease necessitates multivariate analysis,
often beginning with dimensionality reduction. The typical
approach (PCA) can distort the spectral profile and present
physically unrealistic results. Non-negative matrix factorisation
can overcome some of these issues and provide a quantitative
measure of the importance of different spectral patterns to
disease.49,50 The bounded simplex structured matrix factoris-
ation used here does not impose the non-negative constraint;
instead the factorisation matrix W is bound within an interval
defined by the original data.21 Thus, the data within W can be
interpreted in the same way as the original data (X). Bounded
component analysis approaches are similar in their approach,
although more difficult to interpret.51 In our analyses we also
combined modes to gain a more complete picture of the bio-
chemical changes occurring over time. Analysing Raman data
in this fashion could facilitate clinical trials, with reduced

Table 2 Hypothetical clinical trial sample sizes

Effect
size

Sample size: 50%
treatment effect

Sample size: 20%
treatment effect

Raman
M1 −0.35 529 3310
M2 −0.26 941 5883
M3 0.89 80 502
M4 −0.85 87 547
M5 0.84 89 557
BSSMF-PCA 0.85 87 547
ALSFRS-R −0.44 323 2024
FVC −0.78 102 642
Neurofilament-light 0.7 128 798

Fig. 4 Longitudinal BSSMF mode and BSSMF-PCA changes. (a)
Changes in individual BSSMF mode weights. (b) Change in BSSMF-PCA
scores from visit 1 and visit 2. ns – not significant, ***p < 0.001.
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sample size numbers reducing trial costs. This, in turn, can
help utilise resources more efficiently, meaning more studies
could be funded in the search for new treatments.
Furthermore, the integration of advanced analysis algorithms
with portable fibre optic technology, or indeed other plat-
forms, can aid the development of biomedical Raman spec-
troscopy as a point of care technology.

Conclusions

Herein, we have presented a novel, portable fibre optic system
for the study of human biofluids. As the development of bio-
markers for monitoring ALS is an area of intense investigation,
we tested the system on serum from ALS patients collected at a
4-month interval. We analysed data using a matrix decompo-
sition technique with enhanced physical interpretation con-
straints. Key spectral features appeared to relate to protein
structure. Further assessment of serum samples over longer
time periods could provide additional insights into the
complex biochemical changes occurring the serum of patients
with ALS and facilitate more efficient clinical trial design.
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