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Prediction of the photoelectrochemical
performance of hematite electrodes using
analytical data

Yuya Nagai and Kenji Katayama @ *

Machine learning (ML) has been extensively utilized in various fields of chemistry, such as molecular
design and optimization of the fabrication parameters of the material. However, there is still a difficulty in
applying ML for devices/materials fabricated in a lab because plenty of data for accurate calculation are
difficult to obtain due to the limited number of samples. As a promising energy-harvesting material, we
have studied hematite electrodes for photocatalytic water splitting. Herein, we have examined the critical
factors affecting the photoelectrochemical (PEC) performance by applying ML for a limited number of
fabricated electrodes to reveal the origin of poor reproducibility of the performance. To find the dominant
factors affecting the PEC performance, the feature values were directly extracted from analytical data
such as X-ray diffraction, Raman, UV/vis and photoelectrochemical impedance spectroscopy (PEIS)
measurements. The dominant factors for the performance were identified from the prediction analysis of
the performance by ML. Two types of descriptors were examined; all the analytical data were included
and those without the PEIS data, which had a high correlation with the photocurrent. The determination
coefficients (R?) of the prediction accuracy were >0.8 in both cases and the dominant features were
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Introduction

Machine learning (ML) and deep learning (DL) have been
extensively utilized for molecular design, prediction of chemi-
cal reactions, and generation of crystal structures have been
demonstrated,’™ and datasets, descriptors, and methods are
summarized in a calculation framework.® Furthermore, gen-
erative models have been recently applied for predicting the
structure or generating the data for learning, such as 3-D in-
organic crystal structures’ and microstructures of thin films
based on the composition and synthetic conditions.® By com-
bination with a robotic operation, the synthesis process has
been automated.” ML has been applied for the prediction of
chemical reactions and physical properties based on a large
database. Furthermore, a large number of chemical structures
are virtually generated and connected to the properties calcu-
lated by quantum chemical calculations. However, there is still
difficulty in applying ML/DL for the improvement/optimization
of chemical reactions, material preparation, and device devel-
opment in which actual experimental data are necessary for
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identified for the improvement of PEC performance without any prior knowledge.

training, but a limited number of the data are available for
practical purposes.

In the development of materials/devices such as thermo-
electric, optoelectric, and photoelectric devices, it takes a long
time to fabricate them in practice. This is because the number
of devices is often limited to 10* on the lab scale, which makes
it difficult to apply ML for the prediction/optimization of
physical/chemical properties. Furthermore, the device per-
formance is determined not only by the chemical compo-
sitions but also by the thickness, roughness, quality, etc. These
are varied by the experimental operation parameters (tempera-
ture, concentration, flux, etc.). For these reasons, a limited
number of applications using ML are found in the develop-
ment processes of actual devices.

DL and neural network approaches with plenty of data are
not helpful in many cases for material/device optimization to
understand the origin of the physical properties because it is
difficult to find out the crucial descriptors in the network,
especially from a limited number of data. General ML strategy
is more appropriate to understand the relationship between
the descriptors and the target values, and various selection
methods from many types of descriptors have been pro-
posed.’® Various optimization techniques have been studied
using the Bayesian optimization process via Gaussian
regression for the data not based on a mathematical
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model.'"* For example, a cross-coupling reaction was opti-
mized in terms of concentrations and catalysts with a small
number of synthetic data.® Recently, Tamura et al. demon-
strated the optimization of material properties using mole-
cular descriptors and the experimentally obtained analytical
data.' Also, the solubility data were also predicted with a com-
bination of analytical data and molecular descriptors.'® These
ML approaches for a small number of data could provide
understandable insights into the development of materials/
devices.

We have studied promising energy-harvesting materials/
devices. Photocatalytic devices are used to decompose con-
taminants and to clean the atmosphere, and they are also
promising devices for water splitting into oxygen and hydrogen
using solar energy.'® A hematite (iron oxide) electrode is
known as an oxygen-evolution photocatalyst with visible light
absorption, and there have been many studies to improve the
photoelectrochemical performance (PEC) by fabrication and
modification of surfaces with passivation and addition of
cocatalysts."”'® However, one of the major drawbacks of the
hematite electrode is poor reproducibility of the performance,
and the underlying reasons for this are often unclear.

Even though hematite electrodes contain ‘Fe,O;’ in their
chemical composition, each photoelectrode possesses a variety
of PEC performance. Thus, we used analytical data as an indi-
cator for each photoelectrode, which could have unintended/
unnoticed information of each sample. We used various
analytical measurements such as X-ray diffraction, Raman, UV/
vis, and photoelectrical impedance. The feature values were
extracted directly from the analytical data to find out the domi-
nant factors for the PEC performance by ML.

Analytical data such as spectral data have been used in
combination with ML/DL; spectral data can be converted into
material properties or vice versa. It was demonstrated that
X-ray analytical data could be converted to a crystalline struc-
ture.’® For example, XANES spectra were used to obtain the
atomic arrangement.”® This indicates that the analytical data
could include the structural and physical features of materials.
Many feature extraction techniques have also been developed,
such as determinant estimation from the three-dimensional
data (such as a hyperspectral image) with a combination of
matrix decomposition.*"** Thus, we examined the critical
factors that affect the PEC performance of hematite data with
a variety of performances by applying ML using a limited
number of fabricated photoelectrodes in combination with
various analytical data.

Methods

The spectral/pattern data were preprocessed by the noise/back-
ground removal method, such as spline fitting and frequency
filtering for the removal of high-frequency noise. The intensi-
ties, positions, widths and areas of peaks were extracted as
feature values of analytical data without any prior (biased)
information. The irrelevant features were determined by a

1314 | Analyst, 2022, 147,1313-1320

View Article Online

Analyst

comparison between the standard deviation of each feature
and the noise amplitude, and they were eliminated to avoid
overfitting. After selecting the descriptors from the spectra/pat-
terns, they were listed as a table (X). The target value (Y) was a
photocurrent value at a specific bias voltage. Y data were pre-
dicted using the descriptors, X using various ML models. The
number of descriptors was reduced by understanding the
dominant descriptors, based on the cosine-similarity map,*
least absolute shrinkage and selection operator (LASSO),
partial least squares (PLS), and stepwise regression. An ML
model was constructed by support vector regression (SVR),
Gaussian process regression (GPR), decision tree regression
(DT), and random forest regression (RF). Five-fold cross-vali-
dation was used to avoid overfitting in the fitting process.

Hematite electrodes were fabricated by a solution-derived
method.”® An FTO substrate (~7 Q sq~', Sigma-Aldrich or
SOLARONIX) was cut into 2 x 3 cm pieces, and a piece of the
substrate was immersed in a precursor solution of hematite
except for the top region (ca. 0.5 cm) for wiring (0.15 M iron(m)
chloride hexahydrate (FeCl;-6H,0, 99.9%, Wako) and 1 M
sodium nitrate (NaNOj3, 99.9%, Wako) at 100 °C for one hour
and then sintered in an electric furnace to obtain a thin film
of o-Fe,O;. The surface area was ca. 5 cm?’. Twenty-eight
samples were prepared for the analyses as stated in the first
paragraph of the Results and discussion section. They were
prepared at different sintering temperatures ranging from 600
to 750 °C. In the following section, additional 47 samples were
prepared at a sintering temperature of 650 °C. Seventy-five
samples were used in total. A three-electrode setup was used
for the photoelectrochemical measurements, and the hematite
samples were measured with a platinum wire as the counter
electrode and an Ag/AgCl electrode as the reference electrode,
and the potential was converted into reversible hydrogen elec-
trode (RHE). Linear-sweep voltammetry was performed in a
KOH solution (pH = 13.61) at a scan rate of 0.01 V s~ using a
three-electrode setup under 1 sun conditions (100 mW c¢m™?)
to obtain the PEC performance. The photocurrent density at
1.23 V (vs. RHE) was used as a target photocurrent. The
samples were analyzed by UV/vis spectroscopy (USB2000+,
Ocean optics), photoelectrochemical impedance spectroscopy
(PEIS) (Model 660A, BAS, and 12604, Solatron), X-ray diffrac-
tion (XRD) (Ultima IV, Rigaku), and Raman spectroscopy
(NRS-3000, JASCO or Lamda Vision, excitation wavelength:
532 nm). In the PEIS measurements, electrodes were measured
at 0.83 V (vs. RHE) with an AC voltage amplitude of 5 mV in
the frequency range from 0.001 to 10 000 Hz. The data number
was 12 in one order of frequency. These analytical data were
used for the explanation of the target value.

Results and discussion

Photocurrent prediction of photoanodes from the analytical
data including the photoelectrochemical impedance data

Twenty-eight hematite photoanode samples were prepared.
They were sintered at four different temperatures from 600 to

This journal is © The Royal Society of Chemistry 2022
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Fig. 1 (a) The current density — voltage curves for 28 samples of hema-
tite photoanodes. The potential is given versus reversible hydrogen elec-
trode (RHE). (b) The photocurrent densities at 1.23 V vs. RHE at different
calcination temperatures.

750 °C. The current-potential curves for them are shown in
Fig. 1(a). The photocurrent density at 1.23 V vs. RHE was used
as a metric of the photoelectrochemical (PEC) performance
(water oxidation potential). The photocurrent values of the
photoanodes widely varied in a range from 2.8 to 450% from
the average photocurrent. Although there was a general ten-
dency that the photocurrent densities increased with the calci-
nation temperature, they still showed a large variation even at
the same calcination temperature, as shown in Fig. 1(b). All
the samples were analyzed with PEIS, UV/vis spectroscopy,
Raman spectroscopy, and XRD to represent the difference in
the physical properties of the photoanodes.

The feature values were extracted from the analytical data
after the removal of noise and background using general data
processing such as smoothing and spline approximation for
the background. The baseline was not removed for the UV/vis
spectra because it had a correlation with the photocurrent
density. After preprocessing, the intensities, positions, areas,
and widths of the peaks were selected as feature values.
Initially, we did not remove any specific peaks and included as
many peaks as possible, and unnecessary features were auto-
matically removed by the following descriptor selection pro-
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cesses by ML predictions. The features used in the analytical
data are shown in Fig. 2.

Next, the feature values were refined because the features
contributing to the photocurrent are limited. The irrelevant
features to the photocurrent were removed if the standard devi-
ation normalized by the average value was smaller than 1%.
When they were smaller than the noise amplitude, they simply
affect the calculation accuracy inversely by overfitting the pre-
diction to the noise fluctuation, and it is better to eliminate
them. For this reason, the number of features was reduced
from 99 to 72. The excluded features were mainly from the
location of the XRD and Raman peaks.

Then, the determinant factors for the photocurrent were
investigated to reveal the origin of the photocurrent variation.
In this process, the inverse values of the descriptors were
added to the original descriptors to evaluate the inverse
relationship between the descriptors and the performance.
Several descriptor selection methods were tested, and the
results by the stepwise regression are shown in Table 1. Linear
regression models were constructed by changing the combi-
nation of descriptors and searching for the optimal combi-
nation based on the squared sum of the residual error. The
response plot is shown in Fig. 3, where the predicted values by
the model are plotted against the target values. The prediction
accuracy was sufficiently high (determination coefficient: R* =
0.98), and clearly, the result indicates that the selected descrip-
tors worked as the determining factors for the photocurrent.

For the refinement of the model, the nonlinear regression
method was utilized to predict the performance with the
selected five descriptors. As for a nonlinear prediction
method, GPR, SVR, DT and RF regressions were examined, and
GPR provided the highest prediction rate. The data derived
from twenty-eight samples were divided into two parts with a
ratio of 8:2. The former corresponds to the training data for
making a prediction model, and the latter was used for model
validation. Five-fold cross-validation was used; five different
combinations of the training and test datasets were used to
avoid overfitting to a specific dataset. Fig. 4 shows a response
plot for the training and test data, where the caption (1%, 2",
3™, 4™ and 5™) of the plots indicates all the different training
and test datasets in the cross-validation. The average R> values
of the five training and test data were 0.91 and 0.91, respect-
ively. The same level of the determination coefficients for the
test data with the training data assures accuracy without over-
fitting. Therefore, the model constructed by ML was
sufficiently accurate only by the features extracted from the
analytical data, even for a small number of samples.

In the selected features, three PEIS and one XRD features
were selected. The features, R1 and R3, in PEIS represent
resistances between a solution and a hematite electrode and
between an FTO and a hematite electrode, respectively.*” It is
obvious that the efficiency of the photoelectrodes was domi-
nated by interfacial conditions. The contact between the FTO
and hematite electrodes was a more serious factor to improve
in these sample sets because the coefficients shown in Table 1
for the R3 descriptors had larger coefficients than those for

Analyst, 2022,147,1313-1320 | 1315
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Fig. 2 The analytical data for hematite electrodes (28 samples) with an indication of feature values; (a) UV/vis spectra, (b) phase shift and (c) impe-
dance in the PEIS data, (d) XRD patterns, and (e) Raman spectra. Each separated region is shown in red rectangles or stars with labels.

Table 1 Selected descriptors by the stepwise regression and the coeffi-
cient for each descriptor
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the R1 descriptors. Furthermore, we could find a minor corre-
lation with a peak in the XRD, which corresponds to the (110)
surface of hematite. This is consistent with a previous study
indicating that the (110) surface is relevant to the hematite
photocatalytic performance.* From these results, a reduction  Fig. 3 The scatter plot for the true current and the predicted current.
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Fig. 4 The scatter plots of the true current densities versus the pre-
dicted values for hematite electrodes for the (a) training data and (b) test
data. 1%, 2", 3™ 4% and 5" correspond to the datasets with different
combinations of the training and test data in the cross-validation
calculation.

of the resistivity at two interfaces (FTO/hematite and hematite/
solution) are the key issues, and also it is preferred to have the
(110) facet on the electrode. Thus, we could find the important
features from these analytical data without prior knowledge.

However, the obtained result was straightforward for the
electrode preparation because it includes PEIS, a similar
measurement as the photocurrent measurement (PEC). Since
the measurement setup of PEIS was the same as the current-
voltage measurement and the photocurrent was measured
using both the measurements, it is reasonable that many of
the features were selected from the PEIS data. Except for the
descriptors in PEIS, the analyses could only give single infor-
mation on the structural properties. Thus, we studied the cor-
relation between the photocurrent and the analytical data
except for the PEIS data in the next step.

Photocurrent prediction of photoanodes using analytical data
without the photoelectrochemical impedance data

For a valid prediction without the PEIS data, we increased the
number of the samples to 75. Seventy-five hematite photo-
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anode samples were prepared under the same experimental
conditions, and the corresponding current-potential curves
are shown in Fig. 5. As a metric of the PEC performance, the
photocurrent density at 1.23 V vs. RHE was used again. The
photocurrents were dispersed in a range from 1.2 to 350%
from the average photocurrent, irrelevant to the sintering
temperatures. All the samples were analyzed by UV/vis spec-
troscopy, Raman spectroscopy, and XRD to represent the
difference between the photoanodes. The spectral data were
preprocessed by background and noise elimination, the same
as in the previous section, and the intensities and positions of
the peaks were selected as feature values. The features of the
peaks and the peak regions were labeled as shown in Fig. 6.
The selected features of the peaks and the regions were a little
different from those used in the previous section due to the
S/N ratio of the analytical data. The peak intensities of the
XRD patterns and the Raman spectra were normalized by one
of the peaks to handle the intensity difference among the
samples due to the day-to-day error conditions of the analytical
equipment. In addition, the first derivatives of the spectra
were considered for the UV/vis and Raman spectra to extract
the shoulder peaks at around 550 nm for UV/vis and 650 cm™"
for Raman. Thirty-seven features were extracted as feature
values. Similarly, as in the previous section, the descriptors
with the normalized standard deviation <1% were removed.
The number of features was reduced from 37 to 20.

Next, the determinant factors for the photocurrent were
examined. Various methods were tested and the result of the
stepwise regression was used to identify the important descrip-
tors. The calculation selected 12 feature values. The extracted
descriptors are shown in Table 2 with the coefficients in the
prediction model function. Fig. 7 shows a scatter plot for the
predicted and experimental values. As shown in Fig. 7, the pre-
diction accuracy was sufficiently high according to the deter-
mination coefficient (0.894). We could successfully determine
12 descriptors to determine the photocurrent, even without
the PEIS data.
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Fig. 5 The current—-voltage curves for 75 samples of hematite photo-
anodes. The potential is given versus RHE.
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Table 2 Selected descriptors obtained by the stepwise regression and
the coefficients in the prediction model for the data without the PEIS
data

Descriptors Coefficient
UV_Vis_pks_abs —0.939
UV_Vis_average_abs 0.400
Raman_pk2_int 0.587
Raman_pk3_int —0.394
Raman_pk5_int —-0.876
Raman_pk2_loc 0.431
XRD_pk3_int 0.865
XRD_pk4_int —0.724
XRD_pk6_int —0.516
XRD_pk7_int 0.363
XRD_pk9_int —-0.637
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Fig. 7 The scatter plots of the true current and the predicted current.
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For the improvement of the prediction model function,
nonlinear regression methods were utilized to predict the per-
formance with the selected 12 descriptors. The models were
tested with 5-fold cross-validation, and GPR provided the best
results. Fig. 8 shows a scatter plot for the predicted photo-
current versus the target values. As described in the previous
section, five different combinations of datasets were indicated
by the 1%, 2™9, 3 4™ and 5™ and the average R* values are
shown in Fig. 8. As shown in Fig. 8, the determination coeffi-
cients were 0.856 and 0.855 for the training and test data. The
same level of accuracy for the training and test assures the val-
idity of the calculation. Therefore, the model constructed by
ML was accurate enough to predict the target values, even
without the PEIS analytical data.

In the selected features, two UV/vis, four Raman and five
XRD features were selected, which included reasonable and
unexpected descriptors. In the UV/vis spectra, the intensities
in two regions (R1 and R3) were selected; the former rep-
resents the light absorption near the band edge, which is
understandable because it is relevant to the light absorption.
However, the light absorption in the near-infrared region
seems irrelevant intuitively, but this absorbance reflects the
light scattering ability of the particulate electrodes due to the
roughness of the surfaces. The surface roughness possibly
enhanced the light absorption of particles. The (110) peak in
the XRD pattern was selected, the same as in the previous
section, and reasonably understood. However, the other four
selected peaks in the XRD patterns correspond to the peaks of
FTO, which have been ignored mostly, but they were selected
possibly because the peak intensities of FTO are relevant to
the sample thickness (the FTO peaks are reduced with an
increase in the thickness of a hematite layer). Three Raman

This journal is © The Royal Society of Chemistry 2022
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combinations of the training and test data in the cross-validation
calculation.

peaks (R2, R3 and R5) corresponding to E, were extracted as
important descriptors.”**® These structural orders are relevant
to the photoelectrochemical performance. The result shows
that the ML prediction could extract dominant descriptors
without any prior knowledge, even without the photoelectro-
chemical data, and the information could be related to the
necessary structural information of materials.

Conclusion

We applied ML techniques to predict the photocurrent den-
sities of hematite photoelectrodes from various analytical data,
such as UV/vis spectroscopy, Raman spectroscopy, XRD, and
PEIS, and successfully found important factors for the
improvement of photocurrents. The descriptors were selected
directly from the analytical data, such as the peak intensities
and positions, and all the features were used to determine the
dominant factors in the analytical data by the stepwise
regression, and finally the prediction function was refined
using a GPR model. The prediction was provided at first using
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all the analytical data, and could reach a determination coeffi-
cient of ~0.9. Furthermore, the prediction was possible even
without the PEIS data, which is a similar type of measurement
method to the photocurrent measurement. The latter predic-
tion provided more information on the structure and physical
properties. From the analyses, the ML prediction could offer
various important factors without any prior knowledge, even
for the situation where a small number of data is available in
the practical development of devices/materials. This method-
ology would work effectively for any material/device develop-
ment with a target value since the descriptors were identified
without any prior information about the sample system from
the analytical data for dozens of samples. The significant
descriptors about hematite were clarified in this study and this
will lead the photocurrent enhancement by inductive search-
ing and tuning the experimental parameters affecting the
descriptors, and it is now under progress.

Data and software availability

All the source analytical data and the codes for the descriptor
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