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Almost 60% of commercialized pharmaceutical proteins are glycosylated. Glycosylation is considered a

critical quality attribute, as it affects the stability, bioactivity and safety of proteins. Hence, the develop-

ment of analytical methods to characterise the composition and structure of glycoproteins is crucial.

Currently, existing methods are time-consuming, expensive, and require significant sample preparation

steps, which can alter the robustness of the analyses. In this work, we suggest the use of a fast, direct, and

simple Fourier transform infrared spectroscopy (FT-IR) combined with a chemometric strategy to address

this challenge. In this context, a database of FT-IR spectra of glycoproteins was built, and the glyco-

proteins were characterised by reference methods (MALDI-TOF, LC-ESI-QTOF and LC-FLR-MS) to esti-

mate the mass ratio between carbohydrates and proteins and determine the composition in monosac-

charides. The FT-IR spectra were processed first by Partial Least Squares Regression (PLSR), one of the

most used regression algorithms in spectroscopy and secondly by Support Vector Regression (SVR). SVR

has emerged in recent years and is now considered a powerful alternative to PLSR, thanks to its ability to

flexibly model nonlinear relationships. The results provide clear evidence of the efficiency of the combi-

nation of FT-IR spectroscopy, and SVR modelling to characterise glycosylation in therapeutic proteins.

The SVR models showed better predictive performances than the PLSR models in terms of RMSECV,

RMSEP, R2
CV, R

2
Pred and RPD. This tool offers several potential applications, such as comparing the glycosy-

lation of a biosimilar and the original molecule, monitoring batch-to-batch homogeneity, and in-process

control.

Introduction

Glycosylation is considered the most common post-transla-
tional modification (PTM) of proteins and affects more than
60% of therapeutic proteins, including monoclonal antibodies
(mAbs) and fusion proteins.1 This PTM results in the binding
of carbohydrates to specific sites of the amino acid chain of

proteins.2 These carbohydrates are linked to an oxygen or a
nitrogen atom, and they are called O-glycans or N-glycans,
respectively. All N-glycans (Fig. S3†) have a common main struc-
ture of five monosaccharides, composed of a linear chain of two
N-acetylglucosamines (GlcNAc), mannose and two further
branching mannoses. This core structure is named M3
(Fig. S3†). In addition, mannose can be added to this elemen-
tary structure to form M4, M5, M6… and form a high-mannose
glycan. Furthermore, the addition of fucose, GlcNAc, galactose
(Gal), and N-acetylneuraminic acid (Neu5Ac; sialic acid) mono-
saccharides form a complex N-glycan. The most abundant
N-glycan in mAbs is the complex-type FA2, characterised by the
M3 core structure with fucose linked to the first GlcNAc and
extension of the branching mannoses with additional GlcNAc
monosaccharides. Furthermore, the addition of β-linked galac-
tose to this complex-type FA2 forms FA2G1 and FA2G2 glycans,
which can be terminated with sialic acids (N-glycolylneuraminic
acid, Neu5Gc) and/or α-linked galactose.3–5
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Glycosylation is considered a critical quality attribute
because it impacts the stability, pharmacokinetics, pharmaco-
dynamics (PK/PD), and the safety (immunogenicity) of the
product.5 It is a complex process involving hundreds of
enzymes specific to each cell. This PTM is influenced by many
parameters during the manufacturing process, including host
system type (mammalian cells, yeast strains, plant cells, insect
cells or genetically modified animals) and environmental con-
ditions of culture (bioreactor type, culture media and process
parameters).6–8 Even though these parameters are controlled
during the production, the process generally generates micro-
and macro-heterogeneity in the glycosylation of proteins.
Micro-heterogeneity corresponds to heterogeneity in the struc-
tures of glycans occupying a particular glycosylation site, at the
same time macro-heterogeneity can be defined as the differ-
ence in frequencies of occupation of glycosylation sites in a
glycoprotein batch.1,8 These differences significantly affect the
protein glycosylation profile, and therefore the quality and
safety of the final therapeutic product. Hence, the regulatory
authorities require the systematic characterisation of the com-
position and structure of glycoproteins throughout the drug
development and manufacturing processes to ensure the
quality and consistency of the final drug product.9,10

Current glycosylation analysis methods are complex and
time-consuming processes, consisting of long sample prepa-
ration protocols requiring a minimum of three steps: glycan
release, labelling and glycan purification. Each step can suffer
from several potential sources of error.11 Therefore, the
efficiency is not always consistent and can lead to variations in
the results from one laboratory to another.7 To overcome these
limitations, it is proposed to use a vibrational spectroscopy
technique – FT-IR spectroscopy. Firstly, this technique has
already been used to analyse biomolecules for a wide range of
applications. For example, it is a tool of choice for the struc-
tural characterisation of proteins.12–15 It has also been used to
monitor the carbohydrate content, notably in algae cultures.16

The study by Khajehpour et al. demonstrated the correlation
between the intensity of the spectral bands in 1200 and
1000 cm−1 and the amount of carbohydrates in glycoproteins.
These absorption bands are mainly due to the stretching of
the C–C and C–O bonds of the carbohydrate skeleton.17

Moreover, a recent study by Derenne et al.5 showed that the
use of FT-IR for the analysis of glycosylation profiles presents
several advantages. Firstly, it is a simple, fast, and non-destruc-
tive tool. Secondly, FT-IR spectra of glycoproteins generate an
average but the accurate fingerprint of the glycosylation
profile. This signature reflects not only important differences
such as the presence or absence of certain monosaccharides
but also small modifications of the global content of glycans
or monosaccharides.

The objective of the present work is twofold. First, the study
aims to demonstrate the use of FT-IR spectra to analyse the
total quantity of carbohydrates present in various types of gly-
coproteins. Second, the study intends to extract from FT-IR
spectra the relative amount of each major monosaccharide
(mannose, N-acetylglucosamine, galactose, fucose and sialic

acid). Therefore, several regression models were calibrated to
assess the global rate of glycosylation and determine each
monosaccharide’s relative quantity. In this work, the global
rate of glycosylation is defined as the ratio between the mass
of glycans and the total mass of the protein. To build such pre-
dictive models, infrared spectra of reference samples were
measured. Two databases of FT-IR spectra were constituted:
the first one included 18 proteins and was used to calibrate
the model for the global rate of glycosylation. The second one
gathered 32 proteins and was exploited to calibrate the models
used to predict the relative quantity of each monosaccharide.
The global rate of glycosylation and the composition in mono-
saccharides were determined using reference MALDI and
LC-FLR-MS methods respectively.

Two regression algorithms were considered and compared
to correlate the spectral information and the quantitative refer-
ence values. These methods differ in their ability to model
complex, potentially nonlinear, relationships. The Partial Least
Squares Regression model (PLSR), one of the most used
regression models for analysing spectroscopic data, was
applied. PLSR, whose main strengths are its simplicity and
interpretability,18 is often used to process high dimensional
data.19 It deals with a linear relationship between the para-
meter to be predicted and the intensity of the spectral absorp-
tion bands. Therefore, it is appropriate for the analysis of
chemical processes that follow the Beer–Lambert law.19–21

PLSR regression was applied to manage some highly correlated
and possibly noisy predictor variables. It is based on a dimen-
sion reduction process in order to deal with the strong colli-
nearities of the spectral data.22 In most cases, PLSR methods
are able to cope with low degrees of non-linearity, including
additional latent variables. However, spectra can contain
highly nonlinear effects for various reasons, such as differ-
ences in viscosity, temperature, or chemical biological compo-
sition of the sample matrix.19 Thereby, PLSR may not predict
the parameter of interest well enough. Support Vector
Regression (SVR) method has emerged as a powerful alterna-
tive to PLSR thanks to its many attractive features. First, it can
find nonlinear global solutions and thus properly model
complex nonlinear relationships and select only the samples
representative of the problem, which are then called support
vectors. Second, this method gives high prediction
accuracy18,19 and is less sensitive to spectral noise. Moreover,
SVR models are robust models that can handle possible spec-
tral variations due to nonlinear interference.23

Materials and methods
Chemicals, reagents, and proteins for the analysis of the
global rate of glycosylation

Eighteen therapeutic proteins were used in this study to build
a database. The glycoproteins were provided by the Saint-
Pierre hospital (Brussels, Belgium). They include three mono-
clonal antibodies (mAbs) and one therapeutic Fc-fusion
protein. These proteins and their producers are as follows:
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- Infliximab (Remicade® 100 mg, Janssen Biologics)
- Cetuximab (Erbitux® 5 mg mL−1, Merck KGaA)
- Nivolumab (Opdivo® 10 mg mL−1, Bristol Myer Squib)
- Aflibercept (Zaltrap® 25 mg mL−1, Sanofi-Aventis)

The following 13 other glycoproteins were purchased from
Sigma-Aldrich (Merck):

- Alpha1-acid glycoprotein
- Alpha-crystallin
- Apo-transferrin
- Carboxypeptidase Y
- Conalbumin
- Avidin
- Fetuin
- Lactoferrin
- Lectin from Glycine max
- Lectin from Phaesolus vulgaris
- Lectin from Maackia amurensis
- Peroxidase
- Ribonuclease B

Finally, the last protein called PPp was provided by Xpress
Biologics (Liege, Belgium). It was produced in Pichia pastoris
and was received at a concentration of 25.97 mg mL−1 in PBS
buffer (pH 7.2). The proteins were dissolved in 0.9% NaCl at
10 mg mL−1.

Size exclusion spin columns were used to remove residual
salts and excipients present in the formulations of the thera-
peutic proteins. These excipients (mannitol, Tween 80, Tween
20, trehalose, sodium citrate and sodium acetate, etc.…), can
indeed interfere with FT-IR measurements in the spectral
region between 1200 and 950 cm−1 due to the vibrational fre-
quencies of their chemical bonds, which are close to those of
carbohydrates shown in Fig. S1-A and S1-B.† Therefore, as
explained in the work of Derenne et al.,5 for FT-IR measure-
ments a buffer exchange step with 0.9% NaCl was performed
using Micro Bio-SpinTM P-6 Gel columns (Tris buffer, sample
volume 10–75 µL, 6000 Da MW limit). Also, the samples were
prepared using the same method with (NH4)2CO3 for buffer
exchange for the MALDI measurements.

Chemicals, reagents, and proteins for the analysis of the
composition in monosaccharides

Thirty-two therapeutic proteins were used to build a second
database, and for some proteins*, two batches were analysed.
These glycoproteins were provided by the Saint-Pierre hospital
(Brussels, Belgium) and by the pharmacy of the University
Hospital Center of Liège (CHU Liège, Belgium). They include
twenty-three monoclonal antibodies (mAbs), one therapeutic
Fc-fusion protein and three s mAbs biosimilars.

The 27 proteins and their producers are as follows:
- Adalimumab* (Humira® 40 mg, Abbvie)
- Aflibercept* (Zaltrap® 25 mg mL−1, Sanofi-Aventis)
- Avelumab* (Bavencio® 20 mg mL−1, Merck)
- Bevacizumab* (Avastin® 25 mg mL−1, Roche Pharma)
- Cetuximab* (Erbitux® 5 mg mL−1, Merck KGaA)
- Daratumumab (Darzalex® 20 mg mL−1, Janssen

Biologics)

- Durvalumab (Imfinzi® 50 mg mL−1, AstraZeneca)
- Golimumab (Simponi®100 mg, Janssen Biologics)
- Infliximab (Remicade® 100 mg, Janssen Biologics)
- Ipilimumab* (Yervoy® 5 mg mL−1, Bristol Myer Squibb)
- Natalizumab (Tysabri® 300 mg, Biogen)
- Nivolumab* (Opdivo® 10 mg mL−1, Bristol Myer

Squibb)
- Ocrelizumab (Ocrevus® 300 mg, Roche)
- Omalizumab (Xolair® 150 mg mL−1, Novartis)
- Panitumumab* (Vectibix® 25 mg mL−1, Amgen)
- Pembrolizumab* (Keytruda® 50 mg, Merck)
- Pertuzumab* (Perjeta® 30mg mL−1, Roche Pharma)
- Ramucirumab* (Cyramza® 10mg mL−1, Eli-Lilly)
- Rituximab* (Mabthera® 10 mg mL−1, Roche Pharma)
- Secukinumab (Cosentyx® 150 mg mL−1, Novartis)
- Tocilizumab* (Roactemra® 20 mg mL−1, Roche)
- Trastuzumab* (Herceptin® 150 mg, Roche Pharma)
- Trastuzumab-emtasine (Kadycla® 160 mg, Roche

Pharma)
- Vedolizumab (Entyvio® 60 mg mL−1, Takeda)
- Biosimilar of Rituximab* (Truxima® 10 mg mL−1,

Celltrion)
- Biosimilar of Infliximab (Remisma® 100 mg, Celltrion)
- Biosimilar of Infliximab (Inflectra® 100 mg, Hospira)

The following glycoproteins were purchased from Sigma-
Aldrich (Merck):

- Alpha1-acid glycoprotein
- Etanercept (European Pharmacopoeia Reference

Standard)
- Avidin
- IgG1 Kappa from Human Myeloma
- Ribonuclease B

Salts and excipients were removed from all samples using
size exclusion spin columns, following the method used pre-
viously for the analysis of the global rate of glycosylation.

Chemicals, reagents, and proteins used to investigate the
cause of non-linearity

Monosaccharides were purchased from Sigma-Aldrich (Merck)
and from Dextra* at 10 mg ml−1:

- Sialic acid
- Galactose
- Fucose
- N-Acetylglucosamine
- D-Mannose*

Glycans (Fig. S3†) were purchased from Dextra at 1 mg
ml−1:

- FA2, FA2G1, FA2G2
- M5, M6, M7

Reference analysis of the global rate of glycosylation

MALDI-TOF MS measurements. All the MALDI-TOF MS
(Matrix-Assisted Laser Desorption/Ionization Time Of-Flight
mass spectrometry) measurements were performed at Quality
Assistance (Thuin, Belgium). The experiments were performed
with a Microflex LRF60 equipment (Bruker Daltonics) with
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nitrogen laser source (337 nm, 60 Hz) operated in linear posi-
tive mode (delay: 600 ns, ion source 1 voltage: 20 kV, ion
source 2 voltage: 18 kV, lens voltage: 9 kV, mass range
10–180 kDa). The samples were loaded on an MSP polished
steel target. The calibration was performed with Protein
Standard II (Bruker).

Alpha crystallin, PPp and the three lectins were diluted to
0.1 mg mL−1 in 0.1% formic acid. All the other proteins were
diluted to 0.2 mg mL−1 with 0.1% formic acid. The samples
were loaded on the target using the dried droplet method with
the addition of 0.5 µL sample followed by 0.5 µL of the matrix
(10 mg mL−1 sinapinic acid in H2O/ACN/FA 70/30/0.1). The
target was dried under vacuum.

LC-ESI-QTOF measurements. The acquisition of the
measurements by ESI-QTOF was carried out for analysis of
Lactoferrin, and Ribonuclease B. RP-UHPLC-ESI-QTOF ana-
lyses were performed at Quality Assistance (Thuin, Belgium)
with an H-Class Bio UPLC system (Waters, Milford, MA, USA)
using a Bioresolve RP mAb polyphenyl column (2.1 × 150 mm,
1.7 µm particle size, Waters). The mass spectra were obtained
with an online Xevo G2-XS QTOF mass spectrometer (Waters)
coupled with the UHPLC system and equipped with a z-spray
electrospray ionization (ESI) source.

Eluent A was 0.1% formic acid (FA) in H2O, and eluent B
was 0.1% FA in acetonitrile. The elution profile was as follows:
0–2 min, isocratic on 5% B; 2–3 min, linear gradient to 20% B
and 3–13 min, linear gradient from 20% B to 90% B,
13–15 min, isocratic on 90% B, 15–17 min, linear gradient to
10% B and from 17 to 19 min, linear gradient to 90% B, and
19–21 min; linear gradient to 5% B and isocratic for 2 min and
5% B. The flow rate was 0.3 mL min−1. Lactoferrin and
Ribonuclease B were diluted to 0.5 mg mL−1 in eluent A. 2 µL
of each sample were injected into the column, which was ther-
mostated at 80 °C. The samples were kept at 5 °C and the
detection was performed at a wavelength of 280 nm using a UV
detector.

The mass spectra were acquired on the m/z range of 400 to
5000 in positive ion mode. The capillary voltage was set at 2.5
kV, the sample cone at 120 V and the source operated at
100 °C. Nitrogen was used as desolvation gas (500 °C, 800 L
h−1) and cone gas at 100 L h−1. An on-line mass correction was
applied using Leucine Enkephalin. Molecular mass was calcu-
lated by deconvoluting the mass spectra using MaxEnt1
algorithm.

Reference analysis of the composition of monosaccharides

LC-FLR-MS N-glycans characterisation
Glycoworks RapiFluor-MS N-glycan. The Glycoworks

RapiFluor-MS N-glycan 24 samples kit (#176003713) was pur-
chased from Waters Corporation (MA, USA). This analytical
method allows quick deglycosylation followed by rapid label-
ling and cleaning of the labelled glycans (N-glycans release).

UPLC-FLR-MS analysis. Labelled N-glycans were analysed via
HILIC separation combined with fluorescence (FLR) and mass
spectrometry (MS) detection using a UPLC-MS system
equipped with an ACQUITY UPLC BEH Amide (2.1 × 150 mm,

1.7 µm particle diameter and 130 Å pore size) column (Waters
Milford, MA). The details of this method were described in the
article by Derenne et al.5 MS data were obtained using a Single
Quadrupole Detector 2, SQD2 (Waters Milford, MA) in ESI
positive mode and the data were acquired using Empower 3.1
software.

FT-IR measurements

The Bruker Tensor 27 FT-IR spectrometer (Bruker Optics
GmbH, Ettlingen, Germany) with Opus 6.5 software (Bruker
Optics GmbH, Ettlingen, Germany) equipped with a mercury-
cadmium-telluride detector was used for spectra acquisition.
The recordings were performed in ATR mode using a Golden
GateTM ATR accessory (Specac, Orpington, United Kingdom)
with an integrated total reflection element composed of a
single reflection diamond, with an angle of incidence of 45°.
The spectra were acquired over the spectral range between
4000 and 600 cm−1 at a resolution of 2 cm−1 and with 128
scans. 0.5 µL were deposited on the diamond crystal and dried
quickly with a constant and gentle nitrogen flow for
5 minutes.5 After acquiring each spectrum, the crystal was
cleaned with water and a cleaning check was performed
spectroscopically.

Furthermore, a background was recorded before the start of
the measurements and prior to each new sample. Regarding
the global rate of glycosylation analysis, for each glycoprotein,
6 spectra were recorded with 6 distinct deposits. As for the ana-
lysis of the composition of monosaccharides, three indepen-
dent samples were prepared for each glycoprotein on three dis-
tinct days to obtain triplicate measurements. In total, 18
deposits were made, resulting in the measurement of 18
spectra. Therefore, for the analysis of the global rate of glycosy-
lation, a total of 108 spectra were acquired (18 glycoproteins ×
6 spectra), and for the analysis of the composition of monosac-
charides, a total of 846 spectra were acquired (one batch for
17 glycoproteins and two batches for 15 glycoproteins: 47
samples × 18 spectra). Finally, for the investigation of the
cause of non-linearity, the glycans (FA2, FA2G1, and the high
mannose: Man-1, Man-3, Man-5, Man-6, Man-8) were studied.
In this context, 6 spectra (6 distinct deposits) were recorded
for each sample.

FT-IR data analysis

Data preprocessing and removal of outliers. The choice of
preprocessing is crucial in the case of multivariate data ana-
lysis, since it can dramatically influence the results obtained.
Therefore, an optimization of preprocessing is required. After
removing the outliers, the preprocessing optimization was per-
formed for each model considering the root mean square error
of cross-validation (RMSECV) and by R2

CV using Venetian
blinds (10 data splits, 1 sample per blind) as a cross-validation
strategy.

The reference water vapour spectrum was obtained, in the
absence of sample, as the difference between a spectrum
recorded before and after purging the sample room with dry
air. Therefore, the reference water vapour spectrum was
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recorded in the same conditions of samples acquisition and
was subtracted from all FT-IR spectra, with 1956–1935 cm−1 as
reference peak.24,25

The preprocessing retained for the model of the global rate
of glycosylation is the Savitzky–Golay 1st derivative (polynomial
order: 2, window size: 15) to improve the signal/noise ratio and
the standard normal variate (SNV) to reduce the effect of the vari-
ation of the signal linked to the quantity of samples deposited on
the crystal and the impact of sample drying on the crystal.

The FT-IR spectra used to build the monosaccharide model
were preprocessed by the Savitzky–Golay 2nd derivative (poly-
nomial order: 3, window size: 15) and SNV.

All instrumental techniques, including FT-IR spectroscopy,
are affected by noise. The latter is considered in our case as an
additional spectral perturbation, which is not related to the
chemical nature of the sample26 but rather to the parameters
of the spectrophotometer, such as the number of scans and
the spectral resolution.27 It should be noted that a low sample
concentration generates a weak signal and has a high noise
impact. In this study, the noise was defined as the standard
deviation in the spectral region from 2000 to 1900 cm−1 (since
there is no biological related absorption band). The signal was
defined as the maximum intensity between 1180 and
965 cm−1 in the spectrum after subtraction of a baseline
drawn through these two points. Consequently, the signal-to-
noise ratio was calculated for each IR spectrum to assess its
spectral quality. All IR spectra recorded with a signal-to-noise
ratio less than 60 were eliminated. In addition, spectral
smoothing of the remaining IR spectra was applied to further
reduce the noise level. It was carried out by apodizing the
Fourier transform using a Gaussian function with a final
resolution of 4 cm−1.

Principal component analysis (PCA) was performed on the
spectra of each glycoprotein to detect outliers. The first princi-
pal component (PC) was selected to minimize the total dis-
tance between the data and its projection on the PC. Also, the
variance of the projected points was maximized. An 85%
Hotelling’s T2 confidence ellipse was built around the mean
position of each glycoprotein in the score plot, based on a
PC1-PC2 space. For each glycoprotein, the FT-IR spectra
outside the confidence ellipse were considered outliers. The
PCA was performed on both the training set and the test set
(Table S4†). The future samples will be projected onto the
defined PCA to ensure that they have the same variance as the
calibration data set. This verification is performed by looking
at the orthogonal and score distances of the new samples to
the pre-defined PCA space. A new spectrum exhibiting orthog-
onal and score distances higher than the 85% confidence limit
will be considered as an outlier.

Data analysis. PLSR and SVR models were performed in
MATLAB® (Statistics and Machine Learning Toolbox™,
MATLAB R2017b, The MathWorks, Inc., Natick,
Massachusetts, United States) using PLS_Toolbox® 8.2.1
(Eigenvector Research, Inc., Manson, WA, United States).

SVR method. The SVR models were evaluated using the
Gaussian RBF kernel (Radial Basis Function). It is a Gaussian

kernel that expresses sample-to-sample similarities by the
equation K(xi,xj) = exp(−γ∥xi − xj∥2). With γ > 0 and xi, xj are
input features values for i and j samples and γ is the kernel
parameter.28–30 The nonlinear SVR model requires the deter-
mination of three meta-parameters: the cost C, and the vari-
ables ε and γ.29,31 C represents the error regularization para-
meter, ε corresponds to the size of the margin, and is corre-
lated to the number of support vectors selected. Only samples
with prediction errors larger than ±ε are considered support
vectors and then contribute to the final prediction of the
model.18,32 The γ parameter represents the variance of the RBF
kernel. It determines the nonlinear mapping of the input data
and characterises the degree of non-linearity of the model.33

The excellent generalization performance of SVR models
requires the simultaneous optimization of its three meta-para-
meters (C, ε and γ). This optimization is performed through a
grid search using 2-step cross-validation.30,34 First, a coarse
grid search is performed to select approximately the best
region, followed by a finer grid search to obtain optimal
values. Regarding the PLSR model, it only requires the deter-
mination of a single meta-parameter, namely the number of
latent variables (LVs).22

Performance evaluation of the PLSR and SVR models. The cali-
bration and validation sets were the same for each PLSR and
SVR model. The samples were split into a training set (66%)
and a test set (33%). For the study of the global rate of glycosy-
lation, the Kennard – Stone algorithm was used to perform the
split because it enables a uniform selection of samples cover-
ing most of the sources of variation in the data set.35 Different
spectral ranges were considered to build the models, and
based on low value in terms of cross-validation performance
(RMSECV) and of external validation performance (RMSEP),
the spectral range between 1179 and 965 cm−1 was retained.
Regarding the study of the composition of monosaccharides,
the data were split manually into a training and test set.
Therefore, the influence of the splitting on the performance of
the models was evaluated. Two different models with different
samples splits were built. To calibrate and optimize the
models, Venetian blinds was used as a cross-validation strategy
while keeping the replicates together. Venetian blinds was
tuned by certain parameters to build the models with a data
split of 10 and one sample per blind (thickness).
Consequently, the calibration models were evaluated using the
Root Mean Square Error of cross-validation (RMSECV).
Furthermore, the optimal number of LVs in PLSR models was
selected based on a minimum RMSECV.

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðŷCV;i � yiÞ2

n

vuuut

where ŷCV,i is the value predicted by the cross-validated model
for sample i. yi is the measured value obtained for sample i
and n is the number of samples.

In the last step, the models were evaluated by external vali-
dation, by projecting an independent test set. These models

Paper Analyst

1090 | Analyst, 2022, 147, 1086–1098 This journal is © The Royal Society of Chemistry 2022

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Fe

br
ua

ry
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

0/
24

/2
02

5 
3:

10
:2

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1an00697e


were evaluated using the Root Mean Square Error of Prediction
(RMSEP) and R2 of prediction.

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnp
i¼1

ðŷi � yiÞ2
np

vuut
where yi is the measured reference values obtained for the test
set. ŷi corresponds to the predicted values for sample i and np
is the number of samples in the test set.

Accordingly, the performances of the PLSR and SVR models
were evaluated by comparing the results obtained by the cali-
bration performances: (RMSECV) and R2

CV and by the external
validation performances: (RMSEP) and R2 of prediction. Low
values of RMSECV and RMSEP are expected to indicate high
accuracy, and a high value of R2 indicates that the model cor-
rectly handles the spectral variability and is, therefore, able to
accurately estimate the concentration. Additionally, the ratio of
performance to deviation (RPD) was evaluated by dividing the
standard deviation (SD) of the reference values of the samples
in the validation set by the standard error of prediction
(SEP).36,37

RPD ¼ SD
SEP

with SEP ¼ RMSEP

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

ðyi � ȳÞ2
s

where yi is the measured value for predicting sample i. ȳ is
the mean of the reference data for the samples in the vali-
dation set. n is the number of observations in the prediction
set.

The Ratio of Performance to Deviation (RPD) corresponds
to the factor by which the prediction accuracy increases related
to the mean composition. Ideally, in the case of good model

calibration, the ratio is greater than two.37,38 Three categories
of the RPD ratio were identified to interpret the model’s
reliability: RPD > 2: excellent model, 1,4 < RPD < 2: fair model,
and RPD < 1,4: non-reliable model.

Results and discussion
Comparison of the performances of PLSR and SVR to
determine the global rate of glycosylation

The first objective of this study was to build a model to predict
the global rate of glycosylation. This study focused on three
monoclonal antibodies (mAbs), one fusion protein (Fc), four-
teen other glycoproteins, among which some have a very dis-
tinctive glycosylation profile. For example, alpha1-acid glyco-
protein only contains sialylated glycans; O- and N-glycans of
fetuin have a high content of sialic acid; ribonuclease B and
avidin have a high content of high-mannose glycans.5 In this
study, only three antibodies were investigated since most anti-
bodies will have a very similar global rate of glycosylation. If all
antibodies were to be considered in the model of the global
rate of glycosylation, we would have faced a lack of variance in
the model. The total mass of each protein was expressed in Da
and was obtained based on the MALDI-TOF data, except for
lactoferrin and Ribonuclease B, whose masses were obtained
based on ESI-QTOF measurements. These data are illustrated
in Table 1. The mass of the glycans is obtained by subtracting
the theoretical mass of the amino acid sequence from the total
mass. The assumption made during this study was that there
is no post-translational modification other than glycosylation.
The model of the global rate of glycosylation was established
between 0% and 41% (w/w).

Fig. 1 illustrates all the recorded spectra and, Fig. 2 shows
the results of data modelling for the prediction of the global

Table 1 Total mass, theoretical mass of the sequence and global rate of glycosylation for the 18 proteins. The measurements were obtained by
MALDI-TOF for all proteins except for Lactoferrin and Ribonuclease B, for which they were acquired by ESI-QTOF

Proteins
Theoretical mass of
the sequence (Da)

Intact mass
(Da)

Global rate of
glycosylation (% (w/w))

Measurement
method

Aflibercept 96 918 114 606 15.43 MALDI-TOF
Alpha1-acid glycoprotein 21 560 36 725 41.29
Alpha-crystalline 19 790 19 915 0.63
Apo-transferrin 75 195 80 039 6.05
Avidin 14 343 15 955 10.10
Carboxypeptidase Y 47 319 57 553 17.78
Cetuximab 145 440 153 811 5.44
Conalbumin 75 828 77 837 2.58
PPp 7700 7686 0
Fetuin 36 353.24 46 434 21.71
Infliximab 145 889.86 150 598 3.13
Lactoferrin 76 165.29 81 584 6.64 ESI-QTOF
Lectin (Glycine max) 27 571 29 445 6.36 MALDI-TOF
Lectin (Maackia amurensis) 27 044.85 31 982 15.44
Lectin (Phaseolus vulgaris) 27 347 29 904 8.55
Nivolumab 143 616 147 008 2.31
Peroxidase 33 918 43 799 22.56
Ribonuclease B 13 690.3 15 037 8.96 ESI-QTOF
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rate of glycosylation and Table 2 illustrates the performance
criteria of both PLSR and SVR models. This result confirms
the possibility to measure the global rate of glycosylation by
FT-IR. The SVR model shows better results compared to PLSR

in terms of R2
CV of cross-validation (0.99 vs. 0.97) and RMSECV

(0.38 vs. 2.20), R2
Pred of external validation performance (0.99

vs. 0.89) and RMSEP (0.64 vs. 4.05) over a calibration range
from 2 to 41% (w/w).

The optimal SVR parameters selected by cross-validation
were set as: C = 10, ε = 0.0001 and γ = 0.01. In our case, a small
ε leads to a narrow margin, which means a large number of
support vectors were selected in the model. In this study, the
SVR model was considered an adequate method for the predic-
tion of the global rate of glycosylation. Indeed, in this case, the
SVR method is better at handling the complex relationship
between FT-IR spectra and the global rate of glycosylation than
PLSR. This is possible since SVR adjusts the error within a par-
ticular threshold (±ε) with a maximum number of calibration
samples. Thereby, the possibly nonlinear problem is trans-
formed into a linear problem based on the mapping kernel

Fig. 1 FT-IR spectra recorded after the removal of residual salts and excipients present in the formulations of therapeutic proteins, using size exclu-
sion spin columns for the analysis of the global rate of glycosylation. FT-IR spectra are measured over the 4000 and 600 cm−1 spectral range and
are coloured according to the global rate of glycosylation.

Fig. 2 Regression models with all glycoproteins in the spectral range between 1179 and 965 cm−1 for the analysed global rate of glycosylation. (A)
PLS regression model. (B) SVR regression model. ◆ test set ● training set.

Table 2 Figures of merit of the PLSR and SVR models to predict the
global rate of glycosylation

Model PLSR SVR

Calibration Number of latent variables 7
Number of support vectors 113
R2
Cal 0.98 1.00

R2
CV 0.96 0.99

RMSEC (% (w/w)) 1.70 0.17
RMSECV (% (w/w)) 2.20 0.38

Validation R2
Pred 0.84 0.99

RMSEP (% (w/w) 4.05 0.64
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function, particularly the Gaussian kernel with radial basis
function (RBF). RBF has the particularity of being applied in
the case of a strong nonlinear regularization of a complex
system or when there is no prior knowledge of the data set.
Finally, with a RPD ratio of 10.26 for the SVR model compared
to 1.62 for the PLSR model (SD = 6.57), this confirms that the
model of the global rate of glycosylation built with the SVR
model presents good accuracy.

Comparison of the performances of PLSR and SVR to
determine the composition of monosaccharides

The reference data were obtained via UPLC-FLR-MS with the
mass spectrometry data to identify N-glycans and fluorescence
data used for the glycan quantification. The Glycoworks
RapiFluor MS method used in this study can only analyse
N-glycans. As a result, in this study, all proteins containing
O-glycans were excluded from the database used to build
monosaccharide prediction models. This study was carried out
on thirty-two therapeutic proteins among which: twenty-three
monoclonal antibodies (mAbs), three mAbs biosimilars, one
fusion protein (Fc) and five other glycoproteins of which three
specific glycoproteins (alpha1-acid glycoprotein, avidin, ribo-
nuclease B). Table S1† groups the composition of the main
N-glycans for each glycoprotein. The composition is expressed
in mass percentages and was obtained by relative peak areas –
%RPA. Table S2† presents the overall mass percentage of the
5 monosaccharides present in each glycoprotein. Overall mass
percentage of the monosaccharides was calculated from the
mass percentages of glycans based on the structural combi-
nation between glycans and monosaccharides (Fig. S3†). We
can deduce, as presented in Tables S3 and S4,† that ribonu-
clease B and avidin have elevated proportions of mannose
monosaccharide, thus corresponding to high-mannose

Fig. 3 FT-IR spectra recorded after removal of residual salts and excipi-
ents present in the formulations of therapeutic proteins using size exclu-
sion spin columns for analysis of the composition of monosaccharides.
FT-IR spectra were recorded over the 4000 and 600 cm−1 spectral
range. T
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glycans. In contrast, alpha1-acid glycoprotein and aflibercept
have elevated ratios of sialic acid, which corresponds to sialy-
lated glycans. Cetuximab has the highest overall galactose
content, which corresponds to N-glycans containing alpha-
linked galactose. It also has the lowest mannose content. As
for aflibercept, it contains the highest sialic acid and fucose
levels.18

Fig. 3 illustrates the measured spectra. The quantitative
models predicting the amount of the monosaccharides
(mannose, N-acetylglucosamine, galactose, fucose, sialic acid)
were built based on the FT-IR spectra of these compounds. In
addition, a signal-to-noise filter, as described previously, was
applied to improve the performance of the models. Therefore,
the methodology followed allowed us to overcome a possible
spectral variability (Fig. S5†). As a result, 233 spectra were
removed, and 613 spectra were retained to build the regression
models in the spectral range between 1200 and 900 cm−1.
These spectra are shown in Fig. S4.† 354 spectra (58%) were
used as calibration set and 259 spectra (42%) were used as test
set. The distribution of the samples for calibration and vali-
dation of this model is illustrated in Table S4.† Table 3 demon-
strate the performances of both PLSR and SVR models in pre-
dicting the amount of each monosaccharide. Fig. 4 and 5 show
the results of data modelling by the PLSR model and the SVR
model, respectively. These results show that SVR models have
a low value in terms of calibration (RMSEC), cross-validation
performance (RMSECV) and of external validation perform-

ance (RMSEP). Also, these results show that SVR models have
high R2

CV and R2
Pred values indicating that the models captured

most of the correlation between the spectral data and the
quantitative values.

Optimized SVR parameters are presented in Table S5.†
Also, the Ratio of Performance to Deviation (RPD) of each
model PLSR and SVR was calculated and presented in Table 3.
As expected, it appears that the good values of RPD (ratio
greater than two) were obtained by the SVR model indicating
the good performances of this model. Moreover, for both PLSR
and SVR models, the influence of the test and training set on
the models was evaluated through the construction of two
different models. These models were built by varying the dis-
tribution of proteins between the test and training set as
shown in Tables S6 and S7.† The results of the
analytical performances of each respective model are shown in
Tables S8 and S9.† It emerged that the SVR models have a low
value in terms of calibration (RMSEC), cross-validation per-
formance (RMSECV) and external validation performance
(RMSEP). In addition, the SVR models have high R2

CV and R2
Pred

values.
Table S10† shows the results of the calculation of Ratio

Performance to Deviation RPD1 for a first distribution of
samples in the test and training set, and RPD2 for a second
distribution. As expected, it appears in both variations, the
models exhibit good values of RPD (ratio greater than 2) and
these were obtained by the SVR model, which confirms a good

Fig. 4 Measured versus predicted amounts of monosaccharides obtained by PLS regression between 1200 and 950 cm−1 for the analysis of the
amount of each monosaccharide. ◆ Test set ● Training set.
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robustness of these models. It emerges from this study that it
is possible to measure the relative amounts of monosacchar-
ides in protein glycosylation by FT-IR using SVR.

Hypothesis of the cause of non-linearity

During this study, the SVR models systematically outper-
formed PLSR models to capture the relationship between the
amount of monosaccharides in glycoproteins calculated based
on reference UPLC-FLR-MS analysis and the FT-IR data. This

result seems to indicate that a complex relationship exists
between these two parameters and that PLSR cannot model
correctly.

The theory underlying the application of PLSR assumes
that spectra follow the Beer–Lambert law = εcl, where the
absorbance A follows a linear model depending on the molar
extinction coefficient ε of the analyte of concentration c, and
on the optical path traveled by the optical beam l. Thereby, a
system is considered linear if a simple dependency ratio is

Fig. 6 (A) Illustrates the reference FT-IR spectrum of glycans FA2 recorded in ATR at 1 g L−1. (B) Illustrates the calculated theoretical FT-IR spectrum
of glycans FA2 recorded at 10 g L−1 with DFA2 = (4sN-acetylglucosamine + 3smannose + 1sfucose)/10.

Fig. 5 Measured versus predicted amounts of monosaccharides obtained by SVR regression between 1200 and 950 cm−1 to analyse the quantity of
each monosaccharide. ◆ Test set ● Training set.
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established. In the case where we have K constituents,
the equation becomes: D = c1s1 + c2s2 + … + cisi. Where ci rep-
resent the concentration for sample i and si the spectra for
sample i.

Therefore, it has been attempted to show that a more
complex relationship exists by comparing theoretical (weighted
sum of the spectra of each monosaccharide) and experi-
mentally measured glycans spectra. In this context, the spectra
of glycans (FA2, FA2G1, as well as the high mannose: Man-1,
Man-3, Man-5, Man-6, Man-8) were studied.

For example, the theoretical spectrum of glycan FA2 is com-
puted as:

DFA2 ¼ ð4sN-acetylglucosamine þ 3smannose þ 1sfucoseÞ
Since it is known that FA2 is a combination of 4

N-acetylglucosamine, 3 mannose and 1 fucose. By comparing
this DFA2 weighted spectrum with the reference spectrum of
glycans FA2. Fig. 6 clearly shows that the calculated spectrum
of glycans FA2 differs from the reference spectrum FA2 in
terms of intensity and positions of the IR bands. In addition,
similar results are observed for other glycans as illustrated in
Fig. S6–S9.†

As expected, the measured FT-IR spectrum of a glycan is
not the simple sum of the different monosaccharide spectra.
This reinforces the fact that a more complex relationship exists
between the spectral data and the amount of monosacchar-
ides. This might be explained by the existence of different
environments surrounding the chemical bonds (different
protein sequences implying different conformations) implying
minor differences in the vibrational. Glycans contain the same
monosaccharides but with different complex structures
(Fig. S3†). Thus, the modes of vibration of the monosaccharide
molecule can be influenced by the non-covalent interaction
effects that may occur; also the vibration of molecules affects
the vibration of other molecules.

Conclusions

Glycosylation is one of the critical attributes of biopharmaceu-
ticals to be monitored from development to production.
However, the conventional liquid chromatography and mass
spectrometry analysis are complex with long sample prepa-
ration protocols. To overcome these limitations, we suggest
using FT-IR spectroscopy in ATR mode to monitor the global
glycosylation rate and the composition in monosaccharides of
proteins. This approach has many advantages: reduced sample
preparation since the analysis is carried out on the whole
protein (no cleavage, labelling or separation step) and concise
measurement time (approximately 5 minutes).

First, the global rate of glycosylation on the intact proteins
was modelled. To increase the range of application of the
model, a wide variety of proteins was included in the cali-
bration. To build the model, SVR regression was used in the
spectral range between 1179 and 965 cm−1. The model pre-

sents good predictive performances in terms of RMSEP with
0.64% (w/w) and of RMSECV with 0.38% (w/w).

The second part of the study is specifically related to anti-
bodies and their biosimilars, representing a large part of the
biotherapeutic market. This study demonstrated the capacity
of FT-IR spectroscopy to quantify the relative amount of each
monosaccharide. In this context, the regression models were
established on the spectral region of glycans, between 1200
and 950 cm−1. It was shown that the SVR models outper-
formed the PLSR ones exhibiting good performances in terms
of RMSEP, RMSECV, underlining high robustness and high
predictive accuracy of the models. Finally, the Ratio of
Performance to Deviation (RPD) was evaluated for the different
models. The RPD for SVR models value were more than
doubled compared to PLS. Thus it confirms the accuracy of the
SVR models.

This approach based on FT-IR spectroscopy combined with
the SVR models, paves the way to three potential applications:
comparing the glycosylation of a biosimilar and the original
molecule, monitoring batch-to-batch homogeneity, and for in-
process control.
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