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Carbon capture, utilisation and storage (CCUS) will play a critical role in future decarbonisation efforts to

meet the Paris Agreement targets and mitigate the worst effects of climate change. Whilst there are many

well developed CCUS technologies there is the potential for improvement that can encourage CCUS

deployment. A time and cost-efficient way of advancing CCUS is through the application of machine learning

(ML). ML is a collective term for high-level statistical tools and algorithms that can be used to classify, predict,

optimise, and cluster data. Within this review we address the main steps of the CCUS value chain (CO2

capture, transport, utilisation, storage) and explore how ML is playing a leading role in expanding the

knowledge across all fields of CCUS. We finish with a set of recommendations for further work and research

that will develop the role that ML plays in CCUS and enable greater deployment of the technologies.

Broader context
Carbon capture, utilisation and storage (CCUS) is well recognised to play a critical role in future decarbonisation efforts to meet Paris Agreement goals and net
zero emissions targets. Machine learning (ML) is a collective term for high-level statistical tools and algorithms that can be used to classify, predict, optimise,
and cluster data. ML has been applied to CCUS technologies as a powerful tool to accelerate their development. This work presents a state-of-the-art review of
ML applications in CO2 capture, transport, storage, and utilisation, and provides perspectives for the field. In this manuscript, the authors provide a set of
recommendations for further work and research that will help develop the role that ML plays in CCUS and enable greater deployment of CCUS technologies.

1. Introduction

As atmospheric CO2 concentrations surpass yet another milestone
(4420 ppm in April 20211), climate change continues to be
described as the biggest threat to humanity and global security.2

It is for this reason that global efforts to decarbonise all sectors of

society through Nationally Determined Contributions (NDCs) have
begun to be strengthened and provides the backdrop for the
COP26 discussions.3

The recent COVID-19 pandemic has provided the oppor-
tunity to foresee a ‘new normal’ where lifestyles can be radically
different, and a sense of national contribution can be understood.
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Furthermore, the COVID-19 pandemic has led to governments
around the world utilising this change as an opportunity
to ‘‘Build Back Better’’ with ‘‘Green Growth’’ and a ‘‘Green
Industrial Revolution’’.4–8 Part of these recovery plans involve
the deployment of CCUS at significant scales in the coming
decades to meet net zero pledges and limit warming to 1.5 1C.
CCUS is absolutely crucial for the decarbonisation of many
sectors that cannot be decarbonised by other process changes
(e.g., cement, iron and steel). The roll out of Carbon Capture
and Storage (CCS) is planned to achieve 10 Mt CO2 captured
per year by 2030 in the UK, with other similar commitments
globally.9 In addition, all negative emissions technologies
(NET), such as direct air capture (DAC) and Biomass Energy
with Carbon Capture and Storage (BECCS) technologies require
the deployment of CCUS. These technologies allow otherwise

stranded fossil fuel in the power sector to continue to be used
at a much higher level and reduces the abatement require-
ments of fossil fuels (including natural gas) to a 28–33% level,
instead of a 46–57% level while staying below a 2 1C tempera-
ture target.10 Moreover, there is also a growing awareness in the
EU and countries like Canada that meeting net zero emissions
by 205011 and 2060 for China,12 unconventional methods such
as DAC will be required.13 A similar view is developing in the
USA, that negative emissions technologies are required to meet
current climate goals by 2050 and without them, the US net
zero initiative will fail.14 Moreover, the idea that a 100% wind,
water and solar scenarios are even achievable by 2050 has also
received challenges.15 In light of this, more affordable CCUS, is
not just desirable, but also essential. However, a general review
of CCUS technology and its roll out is available from others,
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so the authors will not go into details, explaining the basic
mechanics of CCUS processes.16

The use of machine learning (ML) has increased for a
multitude of applications due to the growth in computing
power in recent years, this is true for CCUS applications as
well. ML offers the potential to identify links between data/
results that aren’t readily identifiable, and it also provides
alternative lower computing cost pathways. Within the field
of CCUS, ML has begun to be utilised to evaluate new CO2

sorbents and oxygen carrier materials,17 simulate, control and
operate capture processes,18–23 simplify process economics,
predict CO2 solubilities in solvents and CO2 capture capacities
in adsorbents,24–26 improve the accuracy of multiphase flow-
meters used for CO2 pipelines,27 and predict leaks from CO2

wells;28 each with the aim of advancing the field of CCUS in a
cost and time effective manner. Meanwhile, it is also worth
noting that ML is data-driven technology, and its performance
usually depends on the size and quality of database. In some
areas of CCUS, the available data size can be limited to only
a few dozens of datapoints and some of the raw data may
not even be published openly, which will limit researchers in
applying ML in those areas. Moreover, ML is a powerful tool for
complex and nonlinear problems. It may not be suitable for
applications that can be easily solved by numerical methods.
Another big challenge for ML is it is difficult to extract the new
knowledge from ML models to form general conclusions and
scientific laws. Researchers in CCUS should consider what new
information they can extract from ML models before applying
ML in their research. Nevertheless, ML in CCUS is still relatively
new and there is much yet to be studied.

Past studies in ML in CCUS are scattered within the literature
and there has been no previous attempt to reconcile this infor-
mation, gathered along the entire CO2 supply chain, systemically
into a critical review and summary and set out a clear pathway

forward. A detailed and systematic critical analysis of previous
research will lead to an acceleration of CCUS commercialisation
and an expansion of ML in all areas of CCUS, this forms the main
motivation behind this review.

2. Machine learning algorithms

ML is a subset of artificial intelligence (AI) that involves the
study of computer algorithms that allow computer programs to
automatically improve through experience.29,30 Its advantages
include ease of trends and pattern identification, minimal
human intervention (automation), ability to improve continuously,
as well as high efficiency in the handling of multi-dimensional and
multi-variety data.29,31 Its application is however sometimes limi-
ted by factors such as ethics, lack of physical constraint, data
availability and quality, misapplication as well as interpretability.32

The dependence of ML modelling on data presents some
challenges in terms of availability, quantity as well as quality.
Given this dependence, if the sourced data contains human
biases and prejudices, then the decision of models developed
from such data may inherit such biases, consequently leading
to unfair and wrong decisions. Closely associated with the
aspect of data is the challenge of dimensionality (the curse of
dimensionality). This refers to all the problems that arise when
working with data in higher dimensions (large number of data
features) that did not exist in lower dimensions.33 This leads to
overfitting resulting in poor performance of the model. In order
to avoid this, dimensionality reduction, which is the transfor-
mation of high-dimensional data into a meaningful representa-
tion of reduced dimensionality is carried out.34 This data pre-
processing improves the performance of the data, reduces
training time and computational resources as well as noise
removal.35 Dimensionality reduction methods include: Principal
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Component Analysis (PCA), Factor Analysis, Linear Discriminant
Analysis (LDA), Multi-dimensional Scaling (MDS), Isometric
Feature Mapping (Isomap), t-distributed Stochastic Neighbour
Embedding (t-SNE) and auto-encoders.33,34

ML model interpretation is another major challenge of
deploying ML. This is as a result of the black-box nature of
many ML models in which humans are unable to explain the
decision-making logic of the ML model despite obtaining high
predictive accuracy. This crucial weakness impacts not only on
ethics but also on accountability, trust, transparency, safety
and industrial liability.36 To address this limitation and given
the importance of openness in scientific research, several
approaches have been reported with some even deployed at
the cost of sacrificing accuracy. Some of these methods and
techniques include; decision tree, feature importance, sensitivity
analysis, partial dependence plots, activation maximization,
explainable neural network (XNN), local interpretable model-
agnostic explanation (LIME), shapley additive exPlanations
(SHAP), Deep Learning Important FeaTures (DeepLIFT) expla-
nation method and Treeinterpreter.36,37 Key factors to consider
in building interpretable ML models have also been reported to
include but not be limited to the degree of white-box modelling,
data visualisation, usability, model visualisation, variable
importance, accuracy, fairness, and sensitivity residuality.36,38

In the application of ML to CCUS, it is recommended to aim for
the use and development of interpretable models with compe-
titive levels of predictive accuracy.

Fig. 1 presents the types of ML and respective areas of
application. There are three main types of ML: supervised,
unsupervised and reinforcement learning. The supervised ML,
which is the most commonly used of the three is usually applied
when the input–output data is known. It involves training the ML
models to learn the relationship between the given inputs and
associated output values.39 If the available dataset consists of only
input values (no labels), unsupervised ML can be used in an
attempt to identify trends, structure, patterns or clustering in the
input data.40 Reinforcement learning is a ML technique that
enables an agent to learn in an interactive environment by trial
and error using feedback from its actions and experiences.41 The
execution of any of the types of ML can be done through the
application of the appropriate algorithm. A brief description of
common ML algorithms is presented in Table 1.

Other ML algorithms include K-nearest neighbour, density-
based spatial clustering of applications with noise (DBSCAN),
recommender systems, genetic algorithm, gradient boosting
trees and particle swarm algorithms. Given the numerous types
of ML models, the choice of model to be deployed in a
particular application is very much dependent on factors such
as task type, type and structure of expected output, type and
size of data, accuracy-interpretability consideration, number
of data features, linearity, available computational time as well
as model complexity.39 It is important to note that in many
applications, multiple algorithms are usually combined
(referred to as ensemble algorithms) to improve model perfor-
mance accuracy and robustness. Information and learning
resources on ML are readily available and accessible on various
websites and online platforms. Table 2 presents some publicly
accessible tools and resources for general purpose ML and
CCUS related application.

3. Machine learning in CO2 capture
3.1 Machine learning in CO2 absorption

ML has wide application in modelling and analysis of different
separation units such as distillation, absorption, and regenera-
tion columns.43 This section will focus on the research that has
been done in the past decade to model and analyse different
aspects of CO2 absorption process using different solvents.
It includes process modelling, simulation, and optimisation;
thermodynamic analysis; and solvents selection and design.
These four main areas of application of ML in CO2 absorption
are discussed in this section. Selected studies and research
related to each part are also reviewed and discussed.

3.1.1 Process simulation and optimisation
3.1.1.1 Background and challenges of mathematical and opti-

misation models. Due to the complex governing phenomena in
absorption (especially chemical absorption, which includes
mass transfer and chemical reactions) modelling and simula-
tion of solvent-based carbon capture is a time consuming and
intensive job. Two common approaches to model CO2 absorp-
tion process are equilibrium-stage model and non-equilibrium
stage models. The set of equations that describe the equilibrium-
stage model for the separation processes are termed the MESH
equations (i.e., the mass balance equations, equilibrium relations,
summation relations and the enthalpy equations). In the case of
non-equilibrium stage models, the separation processes are
described by the MERQ equations (i.e., the material balance
equations, energy balance equations, rate (transfer rate) equations
and the equilibrium relations).44 In addition to MESH and
MERQ equations, numerous parameters related to physical
properties and transport properties such as density, viscosity,
thermal conductivity, heat capacity, diffusivity coefficient, and
mass and heat transfer coefficients must be considered in the
model. The mass and heat balances must be considered for
both liquid and gas phases and complex mathematic methods
must be applied to solve the obtained set of algebraic and
differential equations.Fig. 1 Types and applications of ML.42
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As many of the models used to predict the physical proper-
ties are experimental based models, there is considerable error
and deviation in the prediction of different parameters that
directly affect the results of the process model.45 It should be

noted that in the case of dynamic simulation which contains
partial differential equations (PDE), the initial points to solve
the problem is a critical aspect of the modelling job. Finding
these can be a very tedious and time-consuming process.

Table 1 Common ML algorithms42,54

Algorithm name Task type Description

Linear regression Regression By fitting a linear model with coefficients, this algorithm correlates each data feature to
the output, thus assisting in predicting future values

Logistic regression Classification A classification algorithm that predicts the likelihood of a dependent variable
(usually binary) belonging to a category

Decision tree Regression and classification This interpretable algorithm performs by splitting values of data features into branches at
decision nodes until a final decision output is established

Naı̈ve Bayes Regression and classification This algorithm is based on the Bayes’ theorem which updates the prior knowledge of an
event with the independent probability of each feature that can affect the event

Support Vector
Machines (SVMs)

Regression, classification,
and outlier detection

This algorithm operates by transforming the required data and determining the optimal
boundary (hyperplane) between the various outputs

Random forest Regression and classification The algorithm is an ensemble of decision trees characterised by improved accuracy.
It operates by generating a multitude of decision trees and uses either the modal vote or
average prediction for classification or regression tasks respectively

Artificial Neural
Network (ANN)

Regression, classification,
and clustering

This algorithm which is modelled after the biological neurons of the brain consists of
several layers with interconnected artificial neurons performing various data transfor-
mations to obtain the required output

K-means clustering Clustering This centroid-based algorithm clusters unlabelled data points by their similarity of
characteristics determined by the model without human interference

Hierarchical
clustering

Clustering This algorithm splits clusters along a hierarchical tree to form a classification system

Gaussian mixture
model

Clustering This unsupervised algorithm clusters data by estimating the density distribution of the
dataset

AdaBoost Regression and classification This is an ensemble algorithm that combines multiple weak algorithms to obtain an
improved output

Principal component
analysis (PCA)

Dimension reduction This algorithm is often used to reduce the dimensionality of large data sets without
distorting its characteristics (though it is not strictly a ML algorithm in its own right)

Table 2 Publicly accessible learning resources and tools related to ML

Name Description URL

General-purpose machine-learning frameworks40

Caret Package for ML in R https://topepo.github.io/
caret

Deeplearning4j Distributed deep learning for Java https://deeplearning4j.org
H2O.ai Machine-learning platform written in Java that can be imported as a Python or R library https://h2o.ai
Keras High-level neural-network API written in Python https://keras.io
Mlpack Scalable machine-learning library written in C++ https://mlpack.org
Scikit-learn Machine-learning and data-mining member of the scikit family of toolboxes built around the SciPy

Python library
https://scikit-learn.org

Weka Collection of machine-learning algorithms and tasks written in Java https://cs.waikato.ac.nz/
ml/weka

TensorFlow An open source for numerical and large-scale ML https://www.tensorflow.org

ML tools for CCUS
COMBO Python library with emphasis on scalability and efficiency https://github.com/tsuda

lab/combo
DeepChem Python library for deep learning of chemical systems https://deepchem.io
MatMiner Python library for assisting ML in materials science https://hackingmaterials.

github.io/matminer
NOMAD Collection of tools to explore correlations in materials datasets https://analytics-toolkit.

nomad-coe.eu
Silicone v1.0.0 An open-source Python package for inferring missing emissions data for climate change research https://github.com/Gran

thamImperial/silicone
Carboncalc Tools to calculate growth statistics for individual urban trees such as for estimating carbon storage https://github.com/adhol

lander/carboncalc
Fair Python package that takes emissions of greenhouse gases, aerosol and ozone precursors, and

converts these into greenhouse gas concentrations, radiative forcing and temperature change
https://pypi.org/project/fair

pyGAPS A Python framework for adsorption data analysis and isotherm fitting https://github.com/paulia
comi/pyGAPS
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Despite all these above-mentioned weaknesses and drawbacks,
applying ML to model and optimise the solvent-based carbon
capture is attracting increasing attention. Methods like ANN,
adaptive neuro-fuzzy inference system or adaptive network-
based fuzzy inference system (ANFIS), support vector regression
(SVR), radial basis function (RBF), and genetic programming
(GP) can examine complex interaction between inputs to the
model and predict the target (usually CO2 capture levels and
rate of absorption of CO2). It should be noted that as experi-
mental process data acquisition is frequently inadequate for
various types of solvents, the majority of the researchers first
developed a first principle mathematical model in a process
simulator (such as Aspen Pluss, Aspen HYSYSs, and gPROMSs)
and collected the data from that model. Then the collected data
are used to develop the ML-based model. The ML-based models
can predict the required targets with acceptable accuracy and be
used easily for future studies.46,47

3.1.1.2 Review of the ML-based process modelling and optimi-
sation studies. Sipöcz et al.46 used a multilayer feed-forward
neural network to capture and model the non-linear relation-
ship between inputs and outputs of the solvent-based CO2

capture process. The data used for training and validation of
the ANN were obtained using the process simulator CO2SIM.
The trained model was then used for finding the optimum
operation for the example plant with respect to the lowest
possible specific steam duty and maximum CO2 capture rate.
The authors reported that the average value of the errors for the
prediction of specific reboiler duty was less than 0.2% and the
maximum error was 3.1%. The prediction of solvent rich
loading and amount CO2 captured had a maximum error lower
than 2.8% and 0.17% respectively.

Nuchitprasittichai and Cremaschi48 used response surface
methodology (RSM) and ANN to minimise the capture cost of
CO2 using different amines. RSM uses local searches to esti-
mate an appropriate direction to reduce the objective function
while ANN uses simulation to build a global surrogate model of
the objective function over the entire decision space and solves
the optimization problem using a global solver.

The structure of the algorithm in this study is presented in
Fig. 2. The first step of the algorithm is the determination of the
appropriate sample size to construct the ANN, the second step
is optimization by using the constructed ANN with the sample

size obtained from the first step as the objective function. The
results showed that the number of simulations, the minimum
CO2 capture cost, and the percent error, for both methods
were close to each other. The data required for the study was
provided from an Aspen HYSYSs simulation.

Li et al.49 considered different parameters namely inlet flue
gas flow rate, CO2 concentration in inlet flue gas, the pressure
of the flue gas, the temperature of the flue gas, lean solvent
flow rate, monoethanolamine (MEA) concentration and the
temperature of lean solvent as input to predict the CO2 capture
rate and CO2 capture level using bootstrap aggregated neural
networks. The required data to develop ML models were
extracted from first principle steady-state and dynamic models
developed in gPROMSs. It should be noted that both absorber
and stripper were included in their model. Zhan et al.50 studied
the simultaneous absorption of CO2 and H2S in a mixture of
N-methyl diethanolamine (MDEA) and piperazine (PZ) in a
rotating packed bed (RPB) experimentally. The authors devel-
oped an ANN model to predict the absorption efficiencies of
H2S and CO2 and mass-transfer coefficient (KGa).

Shalaby et al.51 considered a fine tree, Matern Gaussian
Process Regression (GPR), rational quadratic GPR, squared
exponential GPR and feed-forward ANN models to predict the
different output from CO2 capture unit using MEA solution.
Reboiler duty, condenser duty, reboiler pressure, flow rate,
temperature, and the pressure of the flue gas were considered
as inputs to the models and the system energy requirements,
capture rate, and the purity of condenser outlet stream were the
output of the models. The required data were obtained from
the gPROMS process builder and the results of the models
indicated high prediction accuracy.

After the development of the models, the authors developed
a non-linear programming (NLP) problem and solved it using
sequential quadratic programming algorithm (SQP) and genetic
algorithm optimization on the surrogate model to determine the
optimal operating conditions. This study showed that ML-based
methods could be used to model and optimise the CO2 capture
unit appropriately. Wu et al.23 developed an intelligent predictive
controller (IPC) for a large-scale solvent-based post-combustion
CO2 capture process, and an ANN model was trained to predict
the dynamics of the CO2 capture process. The results indi-
cated that the IPC demonstrated fast control of the CO2 capture
level and reduced the fluctuations in re-boiler’s temperature
significantly.

3.1.2 Thermodynamic analysis
3.1.2.1 Background of mathematical thermodynamic analysis.

Thermodynamic analysis for solvent-based carbon capture can
be classified in terms of two main tasks. One of them is
chemical equilibrium calculation and the other is physical
equilibrium calculation. Chemical equilibrium (speciation
equilibrium) calculations provide the concentrations of different
species in a solution. The modelling of speciation equilibrium is
used in the calculation of enhancement factor, vapour–liquid
equilibrium (VLE) modelling, and calculation of the CO2 loading
value. Implementation of chemical equilibrium calculation
requires extensive knowledge about the chemical reactions inFig. 2 Structure of the algorithm to perform optimisation.48
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the system and all the related parameters and models for kinetic
reactions and equilibrium constants for equilibrium reactions in
the combination of mass transfer balances.52

On the other hand, VLE modelling for the CO2 capture
system is a challenging task because of the non-ideal nature
of the liquid phase (due to the existence of different types of
interactions between ions and molecules), lack of accurate
model parameters as well as the availability and quality of
solubility data. In addition, an equation of state (EOS) such as
Peng–Robinson, SAFT, and Soave–Redlich–Kwong is necessary.
Furthermore, an activity coefficient-based model for instance
Electrolyte NRTL, Wilson, and Extended UNIQUAC is also
required to do the VLE calculations. The programming and
implementation of these thermodynamic models, EOS and
activity coefficients models is a complex and time-consuming
job.44

3.1.2.2 Review of the ML-based thermodynamic modelling
studies. As mentioned, thermodynamic modelling and calcula-
tion of solvent-based carbon capture is a tedious task. There are
many studies in recent years where researchers used ML
methods to perform thermodynamic analysis of CO2 capture
in different types of solvents and these will be discussed below.

Baghban et al.53 compared the predictive capability of four
ML models to evaluate the CO2 solubility in 67 ionic liquids
(ILs). They used the Least Square Support Vector Machine
(LSSVM), ANFIS, Multi-Layer Perceptron Artificial Neural
Network (MLP-ANN), and Radial Basis Function Artificial
Neural Network (RBF-ANN). The solubility is considered as a func-
tion of different parameters such as operational temperature,
pressure accompanied with the properties of ILs including the
critical temperature, critical pressure and, acentric factor (o).
LSSVM model showed the best statistical performance in compar-
ison to other methods.

Ghiasi and Mohammadi55 used a Classification and Regres-
sion Tree (CART) method in modelling CO2 solubility in different
ILs as a function of system’s temperature and pressure and
properties of ILs including critical temperature, critical pressure,
and acentric factor. A tree-based model was developed using 5330
experimental data points of CO2 solubility in 66 different ILs.
Findings reveal that the proposed model’s outcomes are in
excellent agreement with the corresponding experimental values.
The presented model shows an average absolute relative deviation
equal to 0.04% and provides considerably better estimations than
the previously published ML based models.

Garg et al.56 studied the CO2 solubility in aqueous sodium
salt of L-phenylalanine (Na-Phe) for different concentrations,
temperatures and CO2 pressure range, experimentally. Kent–
Eisenberg and ANN models were used to model and correlate
the solubility data. ANN showed better results in comparison to
Kent–Eisenberg thermodynamic models.

Li et al.57 compared several thermodynamic models
(Kent–Eisenberg,52 Austgen,58 Hu–Chakma,59 Liu et al.60) with
two types of ANN models (back-propagation neural network
(BPNN) and (RBF-NN)) to predict the CO2 solubility in
3-dimethylamino-1-propanol (3DMA1P) solution for different

operating conditions. The authors reported that absolute average
deviation (ADD) of thermodynamic models were almost three
times more than the ADD of ANN models. Babamohammadi
et al.61 presented experimental data of VLE for CO2 absorption in
the mixture of MEA and glycerol and then used these data to
develop the ANN model to predict the VLE data. Yarveicy et al.62

presented an extra trees model to predict the CO2 loading in
different chemical solvents using solubility data from the literature.
The results of the extra trees model were compared to LSSVM, MLP-
ANN, ANFIS, and RBF-ANN models in the literature. The authors
reported a coefficient of determination (R2) of 0.9993 and an
average absolute relative deviation in percent (AARD%) of 0.15
for this model. Soroush et al.63 applied ANFIS to develop a precise
temperature-dependent ML model to correlate the CO2 loading of
amino acid salt solutions for different types of amino acids. This
model was used to perform sensitivity analysis as well.

3.1.3 Prediction of properties
3.1.3.1 Background and challenges of developing property

models. The models developed to predict the different types of
properties could be empirical, semi-empirical, and theoretical. The
objective is making a link between microscopic structural features
(well-known as descriptors) of materials and their macroscopic
properties (this can be any property such as density, viscosity,
toxicity, etc.). The following general form can be considered for the
property model:

Property = f (parameters/descriptors) (1)

In the case of empirical and semi-empirical models, parameters/
descriptors that are used to obtain the model are very important
and their selection is a crucial task. Depending on the approach
different types of descriptors can be considered. These descriptors
are obtained experimentally, theoretically, quantum-mechanically
(chemically) (QM) or molecular mechanically (MM) and a combi-
nation of all types of descriptors. Having access to high accuracy
experimental database is necessary. Some examples of these data
are experimental values reported in the literature, or famous
databases like Design Institute for Physical Properties (DIPPR),64

NIST,65 and DETHERM.66 Poling et al.67 notes there is a relation
between molecular structure and the bonds between atoms and
their macroscopic properties. This concept proposes that a macro-
scopic property could be estimated using group contribution (GC)
models. GC models include a wide range of models such as
activity coefficient GC models like UNIFAC to EOS GC models like
SAFT.68

Quantitative-structure property/activity relationship (QSPR/
QSAR) is a modelling method to predict different physical and
thermodynamic properties using the knowledge about the
chemical structure of the molecules.69 These physio-chemical
structure and properties are known as descriptors and provide
the basis for mathematically linking and explaining a mole-
cules/materials activity or property. A large family of models
have been developed to predict the properties for solvent-based
CO2 capture systems based QSPR approach. Different modelling
(regression) approaches are applicable in QSPR/QSAR studies
which are different from linear techniques like multivariate linear
regression (MLR), partial least-squares regression (PLSR), and
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principal component regression (PCR) to the nonlinear techni-
ques such as ANN, GP, SVMs, and ANFIS. In QSPR studies
especially when dealing with MLR method, different types of
algorithms from classic algorithms such as stepwise forward
selection or evolutionary or metaheuristic algorithms such as
genetic algorithm (GA), particle swarm optimization (PSO),
simulated annealing, and ant colony and so on, have been used
in descriptor selection step to reduce the number of descriptors
and keep the most influential ones in the prediction of property
under study.

3.1.3.2 Review of the ML-based property modelling studies.
Many of the descriptors that have been used in QSPR models
related to CO2 capture have physical meaning. Temperature,
pressure, partial pressure of CO2, the concentration of solution
are some examples of descriptors that are used by different
researchers. Golzar et al.70 developed ANN QSPR model to
predict the solubility of CO2 and N2 in common polymers.
The authors used genetic function approximation (GFA) to find
the best descriptors between 1600 molecular descriptors. They
found out that molecular weights of gas and monomer, spectral
moment 07 from edge adj. matrix weighted by edge degrees,
mean atomic Sanderson electronegativity (scaled on Carbon
atom), mean atomic polarizability (scaled on Carbon atom) can
predict the solubility of CO2 and N2 in common polymers.
Venkatraman and Alsberg71 extracted over 10 000 IL-CO2 solu-
bility data for 185 ILs measured at different operating tempera-
tures and pressures from the literature. The authors used a
single decision tree, PLSR, and the non-linear ensemble ran-
dom forest models. They also considered the COSMO-RS model
and predicted the results of regression models with this quan-
tum mechanical based thermodynamic model. They reported
that temperature and pressure and parameters relevant to
intermolecular interactions were selected as descriptors of the
models. In this regard, a number of HOMO, LUMO energy-
based descriptors such as the HLFRACTION (ratio of the
HOMO/LUMO energies), softness (inverse of the HOMO–LUMO
gap) is indicative of the cation–anion electrostatic (nucleophi-
lic–electrophilic) interactions that are key to the CO2 solvation
abilities to be selected. Other descriptors focus on important
geometrical parameters such as the ovality or its inverse, the
globularity factor that reflects the ability of the molecule to
adapt its shape with respect to the approaching reactant.
Kuenemann and Fourches72 collected and compiled experi-
mental absorption properties for more than 40 unique amines,
and developed several QSPR models demonstrating the influ-
ence of structural modifications for amines’ absorption proper-
ties. The authors used different MLs techniques namely
ensemble tree, partial least squares regression, random forest,
and ANN. They reported that the Random Forest and ANN
models gave the best results. The authors also mentioned that
they considered two types of descriptors in their study namely
RDKit descriptors and Functional Connectivity Fingerprints
(FCFP). A total of 117 RDKit and 1024 FCFP6 descriptors were
computed. After pre-treatment of data, their dataset of amines
reduces to 67 RDKit descriptors and 140 FCFP6 fingerprints

descriptors. Zhang et al.73 used ANN to predict CO2 solubility in
the solutions of potassium lysinate (PL) and its blended solu-
tions with MEA, with a total of 433 data groups extracted from
the literature. They use two different methods namely BPNN
and general regression neural network (GRNN). The authors
also predicted the aqueous solution density and viscosity using
the same method. Afkhamipour et al.74 selected concentration,
temperature, molecular weight and CO2 loading of the amine
as the inputs (descriptors) to the ANN model to predict the heat
capacity (CP). Here, 3947 experimental data points representing
heat capacity for 47 systems of amine-based solvents with a
broad range of concentration and temperature were collected
from published papers. The AARD% between model results and
experimental data of CP for amine-based solvents was 4.3%.
The obtained results from the ANN and thermodynamic
models showed that the models could accurately predict the
CP of conventional amines with an AARD% of 0.59%, and
0.57%, respectively. Cao et al.75 modelled the toxicity of ILs
towards a leukaemia rat cell line (ICP-81) using QSPR method.
The authors considered the structures of 57 cations and 21
anions that were optimised using quantum chemistry. The ML
methods used in this study were extreme learning machine
(ELM), MLR and SVM. The results show that the ELM method
had the best statistical parameters. In the aspect of used
descriptors in their model, Ss-C-0.016 stands for the charge
distribution area of the cation. SEP-A-69.25 and SEP-A-128.75
belong to the electrostatic potential surface area of anions. The
other selected descriptors in their model are related to the
electrostatic potential surface area of cations. The authors
emphasised that the parameters for the electrostatic potential
surface area are important and effective descriptors for predict-
ing the toxicity of ILs. Borhani et al.76 used GA-MLR method to
develop a model to predict the partial pressure of CO2, the heat
of absorption, and K-values for CO2 absorption in 30, 45, and
60 wt% MEA aqueous solutions. The GA was used for the
selection of the best parameters (feature selection) and func-
tional form, by optimising with respect to the RQK fitness
function. They used combination of CO2 loading and temperature
as descriptors to predict the partial pressure of CO2. Mazari et al.77

predicted CO2 solubility, density, viscosity and molar heat capacity
of an IL ([Bmim][PF6]) using three GPR family and SVM methods.
The range of temperature, pressure and water content of the data
used in the models are presented in Table 3.

The results showed that the least accurate model was SVM
with an AARD% of 15.13. The squared exponential GPR model
was the most accurate coefficient of determination of 0.992 and
AARD% of 0.14 for testing data. Wu et al.78 collected a total of
160 experimental data points for Henry’s law constant of CO2 in
32 imidazole ILs. Multi-Layer Perceptron (MLP), RF and MLR
were used to develop the models to predict Henry’s law constant.
The results of the modelling showed good statistical parameters
for all three models for the test set. The correlation coefficient
mean absolute error (MAE), and RMSE for the MLP model were
0.98, 0.4818 and 0.65 respectively. The authors considered tem-
perature, CO2 partial pressure and water wt% as input of the
model (descriptors) which all of them have physical meaning here.
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3.1.4 Solvents selection and design
3.1.4.1 Background and challenges of solvent selection and

design methods. Two important methods can be used to screen
the solvents to absorb the CO2-application of chemometric
models (QSPR, GC,. . .) and computer-aided molecular design
(CAMD).79 Since ML is utilised in both these types of methods,
it can therefore be said that the models developed using ML
and described in Section 3.1.3 can be used to screen and select
the best solvents.

3.1.4.2 Review of the ML-based models used to solvent selection
and design. ML has been used to perform solvent screening
for different applications.80,81 Some studies related to solvent
screening for CO2 absorption have been done using the
COSMO-RS thermodynamic model.82,83 However, it should be
noted that the number of studies related to the application of
ML in the solvent selection and design for CO2 absorption is
considerably less than the application of ML in other types
of studies related to CO2 absorption, which are reviewed in
previous sections. As ML is used to select and screen solvents
for different applications,81 it is promising to use it for CO2

absorption solvents as well. Venkatraman et al.84 have
employed a multi-property, high-throughput pipeline to facil-
itate task-specific IL discovery. In Fig. 3, one of the main steps
is the application of ML. ML models (RF, cubist and gradient
boosted regression (GBR) were developed using experimental
data for 10 different IL properties of interest. The models were
applied to a large library of eight million cation–anion pairs
that span diverse chemical scaffolds.

Wang et al.85 presented a strategy to select the best ionic
liquids and apply them in the process simulator to absorb CO2.
Their strategy contains four main steps. The first part is related
to the target system, in the second part absorption, selectivity
and desorption for each IL are calculated using the COSMO-RS
model. In the next step, a prediction model is applied to predict
viscosity and another one for predicting melting point to find
the optimal ILs which these models are developed using the
SVM method. In the final step, the applicability and effectivity
of optimal ILs reported in the literature are evaluated by Aspen
Pluss (Fig. 4).

3.1.5 Perspectives and prospects. In comparison to the first
principle models developed for different studies on CO2

absorption, the ML models are more accurate as they provide
a complex and non-linear relationship between the inputs and
predict the targets. As noted in this section, many ML-based
models are developed for different applications of CO2 absorp-
tion. However, the models that were developed for the prediction
of physical and thermodynamic properties were not applied in
any process modelling study. An important future goal is to
integrate MATLAB or Python or other similar ML programmes to
Aspen Pluss or gPROMSs or similar simulators to use these ML-
based models in first principle process modelling studies. As
ML-based models are more accurate than the traditional models,
they can result in better predictions and results in thermody-
namic and process modelling studies. Hence, the connection of
these models to process simulators should be considered in
future studies.

3.2 Machine learning in CO2 adsorption

Adsorbents are micro-porous structures with a characteristi-
cally large surface area and the ability to capture large amounts
of gases on their surface.86 They generally have a selective
affinity for specific gases in a mixture of gases, making them
ideal for gas separation applications such as CO2 capture.86,87

One of the primary considerations when designing an
adsorbent-based CO2 capture process is the choice of the
adsorbent media.16 This field has gone through a renaissance
in recent years with the advent of the use of organometallic
chemistry.24,88,89 There are several new classes of adsorbents
such as Metal–Organic Frameworks (MOFs),88–90 Covalent

Table 3 The range of experimental data extracted from the literature to
predict different thermodynamic properties of ionic liquids77

Dataset T/K P/MPa Water/wt%

CO2 solubility (mass fraction
of CO2)

293–395 0.015–9.685 0–1.6

Density (g cm�3) 278–391 0.1–173 0–2.68
Viscosity (mPa s) 273–388 0.1–175 0
Heat capacity (J K�1 mol�1) 283–353 0.1–100 0

Fig. 3 The concept of the approach presented by Venkatraman et al.:84

(a) data collection, (b) ML calibration, (c) combinatorial library design and
enumeration, (d) prediction of properties by ML, (e) experimental validation
of selected candidates, (f) property-based filtering, (g) theoretical evalua-
tion, (h) potential applications.

Fig. 4 Strategy considered to select and evaluate the best candidates
of ILs.85
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Organic Frameworks (COFs),91 Zeolitic Imidazolate Frameworks
(ZIFs),92 Porous Organic Cages (POCs)93 along with the classical
zeolites86,94 and activated carbons. Many of these porous struc-
tures are chemically and physically tuneable and can be reverse
engineered to provide the process designer with tailor-made
options.95–97 This means an effectively infinite number of possible
structures can be theorised.24,98 Exploring the entire adsorbent
material design space is computationally restrictive, and tradi-
tional adsorbent characterisation techniques are time-consuming,
adding to the complexity.98,99 Large databases with over one
million of such real and in silico hypothetical porous structures
are available to process designers that are already partially char-
acterised for the application of CO2 capture.24,100–106

3.2.1 Adsorbent synthesis and characterisation. The ability
to build adsorbent structures by using a different set of building
blocks has been well documented in the literature.107,108 This has
provided a realistic opportunity to tailor-make an adsorbent for
CO2 capture with targeted features such as high CO2 affinity over
other gases in the flue gas mixture.16 However, with an almost
infinite set of possible structures, correctly identifying the best
adsorbent is extremely challenging. To make matters more com-
plicated, the required adsorbent properties for an effective CO2

separation process are not fully understood.24,25,109–112 The dis-
covery and synthesis of new adsorbents using traditional experi-
mental techniques alone are expensive and time-consuming.113

Computational methods have been used to create frameworks to
develop, characterise, and tune the properties of the porous
structures.97,100,114 ML via supervised and unsupervised algo-
rithms can help explore the complex and highly multivariate
material design space.24,98 Researchers have already applied many
ML and other statistical techniques to explore adsorbent synthesis
pathways.99 Other aspects for adsorbent selection for applications
such as CO2 capture are the synthesizability, stability to moisture,
and overall life cycle costs, among other things, which can be
aided by the application of ML.

Adsorbent discovery and screening for CO2 capture using
supervised ML models have been extensively reported in the
literature.99 There have been many instances in the literature
where the adsorbent properties are also tuned for specific
applications. Collins et al.115 showed that a genetic algorithm
could efficiently optimise for desired physical or functional
property in MOFs by evolving the functional groups within the
pores. The authors optimised the CO2 uptake capacity of
141 experimentally characterised MOFs under post-combustion
CO2 capture conditions and were able to increase the CO2

adsorption on MOF MIL-47 by 400%. ML models have also been
used to identify novel adsorbent properties such as hydrophobic
adsorbaphore. This could be a very interesting phenomenon
to exploit since the presence of moisture always hindered
adsorptive CO2 capture. Boyd et al.116 screened an adsorbent
library of E300 000 structures to identify adsorbents with this
adsorbaphore property and demonstrated a synthesis pathway
for two such adsorbents. These demonstrations of ML in the
discovery, synthesis and exploration of the adsorbent design
space show the possible pathways for identifying and imple-
menting an effective adsorbent-based CO2 capture process.116

ML techniques have also been applied to speed up the
characterization of the adsorbents. The Grand Canonical Monte
Carlo (GCMC) is generally used to predict the adsorption, and
Molecular Dynamics simulations (MD) are used to describe
diffusion and other transport properties.117,118 These techniques
have been used to generate adsorbent property data for large
databases of adsorbents at enormous computational costs.105,119

To tackle this problem, researchers have applied supervised ML
techniques to build predictive data-driven models. Extensive
work has been carried out by computational materials chemists
to identify the underlying QSPR using ML.120 There are four
general classes of descriptors that are generally used to describe
the adsorption equilibria, geometric, topological, chemical and
energy-based.121 Dureckova et al.122 developed ML models to
predict CO2 working capacity and CO2/H2 selectivity using a
diverse set of MOF structures using gradient boosted trees
regression method. The authors also showed that both geo-
metric descriptors, such as surface area, and chemical descrip-
tors, constructed using atomic property weighted radial
distribution functions, can be used to predict with reasonable
accuracy the working capacity and mixture gas selectivity.122

Burner et al.123 presented a similar framework to predict the
working capacity and CO2/N2 selectivity using a deep neural
network (DNN). The best predictions were obtained with the
AP-RDF, chemical motif, and geometric descriptors, all as
inputs, with an Radj

2 4 0.95. Pardakhti et al.124 reported that
a framework for the prediction of methane uptakes using ML
algorithms. They evaluated multiple ML algorithms, such as
SVR and RF, and reported a high prediction accuracy compared
to the GCMC predictions.124 Bucior et al.125 presented a data-
driven surrogate trained ML model to predict H2 loading on
MOFs using a new type of descriptors as model inputs. The
descriptors were derived using the binned histograms of the
energies of adsorbent–adsorbate interaction and used as inputs
to the predictive model. The sparse regression model trained
with this and geometric descriptors to predict gas uptake in
multiple MOF databases to a high degree of accuracy.125 These
studies show us that both the adsorbent structure and the
chemical interactions are needed to be taken into account for
accuracy in predictions. ML frameworks have been successfully
shown to speed up single adsorbent–adsorbate interactions.
Still, their real application is in the prediction of multiple gases
and mixture gas adsorption on adsorbents. Techniques such as
transfer learning, dimension reduction, feature identification
can improve the model predictions for such cases.126 Anderson
et al.127 presented a new framework to predict the adsorption of
multiple adsorbate gases for a given range of conditions using a
MLP. The model was trained using the variables that describe
the force-field parameters of ‘‘alchemical’’ species and the
MOFs as simple descriptors such as geometric and chemical
moieties. The resulting models could then predict the adsorp-
tion of six different gases in a diverse set of adsorbents.127

While understanding the separation potential of an adsor-
bent is critical, quantification of the mechanical stability and
synthesizability of the in silico predicted adsorbent structures is
an important aspect for the final deployment of the technology.
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Evans et al.128 showed that ML models predicted bulk and
shear moduli of zeolites using only geometric features and that
the accuracy of these predictions is better than the traditional
force field approaches. Moghadam et al.113 demonstrated that
ML techniques and multi-level simulations predict MOF pro-
perties. The ML models developed in this work can predict the
mechanical properties of MOFs in a matter of seconds. They
were also shown to predict the mechanical stability for the in
silico predicted structures.113

The recent explosion of ML-related applications means that
a large amount of new information, through publicly shared
models and data, open up the possibility of transfer learning.
Here, models taught to learn patterns for a specific application
or purpose can help retrain new models for different applica-
tions. This has been demonstrated for applications such as the
characterisation of adsorbent isotherms, where ML models
used to predict equilibrium measurements of one gas can help
the prediction of other gases on the same adsorbent. Thus,
saving precious computational time.

3.2.2 Process modelling and optimisation. Cyclic adsorp-
tion processes are typically operated in fixed beds that undergo
several steps to achieve the desired separations. Depending on
the bed regeneration strategies, several processes operational
modes such as pressure swing adsorption (PSA), vacuum
swing adsorption (VSA), temperature swing adsorption (TSA),
temperature-vacuum swing adsorption (TVSA), concentration
swing adsorption (CSA), electric swing adsorption (ESA), micro-
wave swing adsorption (MSA), etc. can be realised. Such systems
are inherently characterised by a system of coupled nonlinear
PDEs obtained from the underlying mass, momentum and
energy balances. In the context of modelling and simulating
cyclic adsorption processes, the system of nonlinear PDEs is
repeatedly solved in time and space for each step in a cycle
sequence. Owing to its transient and cyclic nature, adsorption
processes must be simulated until the system reaches a cyclic-
steady state (CSS). The key performance indicators are then
calculated based on the transient profiles of state variables
(composition, pressure and temperature). Often, solving the
system of PDEs cyclically several times until CSS is computa-
tionally demanding. Further, the modular nature of cyclic
adsorption processes allows for flexibility in controlling several
operating conditions and design parameters. Hence, in the
context of process optimisation, several decision (or design)
variables can arise. Therefore, the high-dimensionality and
effort to determine process performance at CSS make optimisa-
tion of cyclic adsorption processes complex and challenging.

To tackle problems mentioned above, ML techniques have
been applied to design and optimise cyclic adsorption pro-
cesses for CO2 capture applications. The studies employing ML
to model and optimise cyclic adsorption processes can be
classified into three categories. The first category corresponds
to studies that used ML for supervised learning (regression) to
know the structural mapping between the decision variables
and process outputs in the process optimisation in order to
avoid the computational burdens of running high-fidelity
simulations for functional evaluations. To this end, an initial

design of experiments (DOE) is performed on the decision
variables that typically cover the entire design space. The
high-fidelity models are then used to calculate the desired
process outputs (typically key performance indicators used in
the optimisation) based on the sample set of decision variables
from the DOE. Finally, surrogate models using ML algorithms
are constructed based on those samples and subsequently used
in the optimisation. Single or multiple surrogate models can be
constructed for process outputs. For example, Pai et al.129

tested the ability of a variety of surrogate models constructed
based on different supervised ML algorithms to predict the
performance indicators of a 4-step VSA process for post-combustion
CO2 capture. Algorithms such as decision trees, RFs, SVMs,
GPR and ANNs were trained for each performance indicator
using a sample set of operating conditions generated via Latin
hypercube sampling. Among these, GPR was shown to perform
well using an adjusted coefficient of determination (greater than
0.98) as the metric. Upon employing these surrogate models in
the process optimisation, they showed that the relative error of
the optimal performance indicators from the surrogate and
high-fidelity simulations was within 3%. Subraveti et al.130 devel-
oped a neural network-based optimisation approach to deter-
mine the Pareto solutions of multi-objective maximisation of
CO2 purity and CO2 recovery for a complex 8-step PSA process
designed for pre-combustion CO2 capture. Herein, the multi-
objective NSGA-II (Non-Dominated Sorting Genetic Algorithm
version II) algorithm’s initial generations were carried out using
high-fidelity simulations for evaluating objectives. This also
served as the training data generation step for the neural net-
work models, which learned the underlying input–output map-
ping structures between decision variables and objectives, CO2

purity – CO2 recovery. Such training data that was already biased
towards the optimal region of the decision variable space helps
improve the prediction accuracy of the neural network models in
the desired optimal region. A three-layer feed-forward neural
network with one input layer, one hidden layer with ten neurons
and one output layer were used for each objective to demonstrate
this approach, with results indicating that the relative error
in both the objectives was found to be around 1%. The PSA
optimisation using neural networks was ten times faster as
compared to using high-fidelity simulations for functional eva-
luations. Instead of constructing a surrogate model for each
performance indicator, Xiao et al.131 used a multi-output feed-
forward neural network architecture to predict purity, recovery
and productivity in the PSA optimisations. Vo et al.132 formu-
lated an integrated process model based on the combination of
different feed-forward neural networks, which represent the
input–output mapping structure of cryogenic, membrane and
PSA units for hydrogen recovery and CO2 capture from the tail
gas of SMR-based hydrogen plants. The neural network models
for each unit were shown to have less than 2% error and were
subsequently used to minimise the production cost of the
integrated process. The neural network models were also shown
to have low computational costs.

Often, uncertainty arises in ML-based optimisations during
the ML model selection and/or training the model parameters.
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Uncertainties in model predictions even lead to potentially
different optimal solutions. To address the issue of uncertain-
ties in ML-based optimisations, Hüllen et al.133 proposed three
different strategies, i.e., robust optimisation, stochastic pro-
gramming and discrepancy modelling, integrated with ML
models for handling uncertainty. These approaches have been
applied to a case of temperature swing adsorption process for
DAC where the productivity of the process was maximised
subject to purity, recovery and energy constraints. Sparse Grid
polynomials and ANNs were used as data-based models to
approximate decision variable-processes output mapping. The
authors stress the importance of incorporating uncertainty into
ML-based optimisations.

The second category of studies involves developing super-
vised ML models to predict the axial or temporal profiles of the
cyclic adsorption process. Pai et al.129 also developed neural
network models to predict the bed profiles of the intensive
variables of a 4-step VSA process at CSS. Using these neural
networks, they demonstrated a rapid convergence to CSS.
Further, the neural network predictions were also matched
with the experiments. Leperi et al.134 used neural networks to
construct basic steps in typical PSA processes for post-
combustion CO2 capture. For each step, twelve neural network
models were constructed. To elaborate, each neural network
model for predicting five state variables (absolute pressure, CO2

gas phase mole fraction, CO2 molar loading, N2 molar loading
and column temperature) were measured at ten measured
locations along the column. Further, one neural network at
each end of the column predicts the total gas flowing in and out
of the column. This approach allowed them to synthesise
different PSA cycles for post-combustion CO2 capture and
calculate their performances based on the neural network
models underpinning each step. Oliveira et al.135 proposed a
real-time soft sensor for a PSA unit based on deep learning
networks. Three different types of ANNs, namely, feed-forward,
recurrent and long short-term memory (LSTM) models based
on multi-input and a single output, were developed to predict
the PSA model dynamics. It was shown that LSTM-based DNNs
outperformed feed-forward and recurrent neural networks in
terms of predicting the dynamics of PSA. The authors also
suggested that the LSTM-based DNNs can be reliable for
optimisation, control and on-line measurements of PSA units.

In the third category, supervised ML algorithms such as
PLSR were used for reducing the dimensionality of the cyclic
adsorption process optimisation. For example, Subraveti
et al.130 employed PLSR to identify each decision variable’s
relative importance in the optimisation, which impacts the
process objectives. The most relevant decision variables were
identified using the PLS weights, and other variables are
discarded. For the case study considered, the original eight
decision variables were reduced to three using this approach.
This improved the optimisation speeds by almost 50% without
compromising the accuracy of the Pareto solutions.

3.2.3 Integrated material-process screening studies. The
choice of the porous adsorbent media is dependent on the
product requirements and constraints. Traditional adsorbent

selection metrics such as selectivity, and working capacity, fall
short of this and thus do not provide the complete representa-
tion of separation efficiency/performance.136 Additionally,
many such simplified metrics do not fully consider the process
requirement or the complex multiscale phenomenon during
scale-up. Although relevant and valuable work has been carried
out in relation to the underlying QSPR in most of cases, there
needs to be a consensus over the integration of the real-world
process that will be used to separate and capture the CO2.137

Often, simplified descriptors such as CO2 working capacity or
selectivity are used as optimisation targets.

ML-based techniques such as DNNs are well-suited for
applications that require large amounts of repetitive computa-
tion. ANN-based surrogate models have been applied as cheap
computational emulators of complex process models to aid in
the fast screening of material. Khurana and Farooq111 developed
regression models to directly predict minimum energy and
maximum productivity for CO2 capture from a flue gas stream
containing 15% CO2 using a VSA process. Khurana and
Farooq111 also screened around 80 adsorbents using the ML
model and validated the optimised results with a detailed
mathematical model. Burns et al.25 and Leperi et al.110 also
screened the CoRE MOF database to identify high-performance
adsorbents for post-combustion CO2 capture using a detailed
model. Burns et al.25 developed a decision tree-based ML
model, and Leperi et al.110 developed a generalised separation
metric using the data from a detailed model to screen new
adsorbents in the same process with a high degree of accuracy.
These papers also showed the clear computational advantage of
the application of ML-based surrogate models for screening
due to their inherent speed and accuracy. Pai et al.26 developed
a generalised framework called machine-assisted adsorption
process learner and emulator (MAPLE) for modelling and
screening any Langmuir (Type I) adsorption isotherm by
including the isotherm parameters as model inputs along with
the process parameters. The authors demonstrated that the
framework accurately modelled process performance and were
able to validate the ML-based optimisation framework from the
external literature. The study showed the computation required
to train the generalised ML model was similar to the computa-
tion required to screen rten adsorbents using the traditional
modelling and optimisation approach. It should be noted that
these ML models are robust only in the training data range.
One must be careful not to overtrain and to thoroughly validate
the performance with independently generated testing data.

3.2.4 Process inversion and performance limits. In recent
years, multiscale models have shown that it is necessary to carry
out the integrated process and material screening.25,110–112

However, the full consideration of all the multiscale phenomenon
makes the computational evaluation restrictive. For this reason,
most scale-up studies in the literature evaluate only a small
subsection of the available adsorbents. This makes effective
and accurate screening of adsorbents a non-trivial problem.
Alternatively, reverse engineering the hypothetical best per-
forming adsorbent for a fixed process cycle, where the opera-
tion of the process cycle is optimised, is a route to identify the
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best possible choice, with the final goal being the synergistic
design of both the adsorbent media and separation process
cycle. In each of these cases, vast amounts of simulation
experiments need to be carried out.

Khurana and Farooq111 developed an inverse design framework
to predict the hypothetical best isotherm for post-combustion
CO2 capture in a VSA-based process. In this work, the authors
considered five input parameters to describe the adsorption
equilibria and trained a neural network model. The resulting
optimisation of the idealised isotherms provided insight
into the effect of the isotherm on the process performance.
Pai et al.137 used a ML surrogate, MAPLE, for a wide range of
operational conditions and used the inverse adsorbent design
approach to study the limits of PVSA-based CO2 capture for a
wide range of CO2 feed compositions. Yao et al.138 proposed an
automated adsorbent discovery framework using an auto-
encoder to generate MOF structures with desired functions.
The results showed that the model accurately captured struc-
tural features and was able to reconstruct MOF structures. The
framework showed the automated design of MOFs for CO2

capture from natural gas and flue gas streams.138 These studies
highlight the advantage of ML in synergistic processes and
adsorbent. Due to their computational speed and accuracy,
such ML models allow designers to explore previously compu-
tationally restrictive engineering problems.

3.2.5 Perspectives and prospects
Material design and discovery. The material databases

include more than 500 000 structures (both experimental and
hypothetical) that can be evaluated for CO2 capture. Such large
databases can be screened for best performers using ML.
Unsupervised/semi-supervised learning methods can be applied
to classify the materials in databases into different clusters and
know the underlying patterns/distributions within the databases.
In addition, supervised learning techniques can be used to
identify the mapping between the structures and material proper-
ties without the associated computational burdens of solving
physical models.

Process modelling and optimization. The major barrier for
exploring different adsorption process cycles for CO2 capture
has been the significant computational demands in process
modelling and optimisation. Existing studies in the literature
showed that supervised learning algorithms could be efficiently
incorporated into the optimisation routines. With the advances
in ML, more efforts must be directed towards the dynamic
modelling of adsorption processes. For instance, Leperi et al.134

used ANNs to model the dynamics of some basic constituent steps
in PSA processes. Such approaches are useful, especially when
designing and evaluating different adsorption processes for CO2

capture. Increasing the generalisation capability of such ML
models is also important for accurate predictions. These models
can also gain more insights in understanding the interplay among
different intensive variables such as gas composition, pressure,
temperature, and solid compositions affecting the process. The
high dimensionality of the adsorption process optimisations can
be tackled using ML. Semi-supervised/unsupervised algorithms

can be utilised to know the effect/causal relationships between the
decision variables and the performance indicators. This will
help understand the underlying relationships between process
inputs-outputs and identify significant decision variables for the
optimisation. While most ML studies are focused on the pro-
cesses designed for the pilot-scale, some of these ML approaches
can also be extended to industrial applications. For example,
these models can be effectively used in the process monitoring
and control to overcome inherent process control challenges,
especially since several sequences of steps occur in cyclic adsorp-
tion processes. Reinforcement learning (RL) can also be applied to
monitor and control the cyclic adsorption processes. RL algo-
rithms can be trained to learn adaptability when the process is
subjected to external disturbances.

Integrated material-process screening. For CO2 capture, inte-
grated material-process studies have recently become common.
Given that a large number of materials have to be screened
using the process for reliable material evaluations, conducting
a multiscale computational campaign for integrated material-
process performance evaluation is computationally very expensive.
However, ML has transformed this potentially computationally
impossible exercise into a possibility. For example, Pai et al.26

developed a material agnostic ML framework where both
material and process decision variables are considered for
screening and evaluating the performance of different materials.
Such approaches will enable a deeper understanding of the under-
lying patterns in the material feature space. Algorithms like
manifold learning can be utilised to identify such patterns in the
material feature space, which will help in accelerating the material
discovery for CO2 capture.

3.3 Machine learning in oxy-fuel and chemical-looping
combustion for CO2 capture

3.3.1 Machine learning in oxy-fuel and chemical-looping
combustion. Oxyfuel combustion burns fuels in a mixture of
pure O2 and recirculated CO2 instead of air, and then the CO2

can be easily separated from the flue gases. To reduce the
energy penalty and costs from the air separation unit in the oxy-
fuel combustion process, the next generation of carbon capture
technology, chemical-looping combustion (CLC), that can
transfer the oxygen from the air reactor to the fuel reactor by
means of oxygen carriers, has been proposed. The current
technology readiness level (TRL) for oxy-fuel combustion and
CLC is estimated at 7–8 and 6, respectively. The applications of
ML in these technologies are mainly focused on predicting the
thermodynamic characteristics of oxy-fuel combustion, moni-
toring the oxy-fuel combustion process, estimating the reactivity of
oxygen carriers and process control of CLC.

To reduce the complexity and improve the accuracy of
numerical models to predict the coal/char combustion rates,
Zhu et al.139 investigated the application of an ANN approach
for estimating the coal/char combustion rates with their charac-
teristics as inputs of the neural networks. The results indicated
that ANNs can provide a new approach to the development
of models for predictions of reactivity/combustion rate of coal

Energy & Environmental Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
9:

07
:2

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ee02395k


This journal is © The Royal Society of Chemistry 2021 Energy Environ. Sci., 2021, 14, 6122–6157 |  6135

combustion with reasonably good accuracy and robustness.139

Later on, several researchers employed ANN to predict the values
from thermogravimetric analysis (TGA) of oxy-fuel combustion of
different fuels. Chen et al.140 applied ANN models to predict the
thermogravimetric curves of co-combustion of sewage sludge
and coffee grounds under O2/CO2 atmospheres, with O2/CO2

mixing ratios, heating rates, and temperature as the inputs. After
training using the experimental data from the TGA, the optimal
ANN model provided a good agreement between the experi-
mental and predicted values. Xie et al.141 compared the perfor-
mance of RBF and BPNNs on the prediction of TG curves of
oxy-co-combustion of textile dyeing sludge and pomelo peel, with
the mixing ratio, heating rates, combustion atmosphere and
temperature as the inputs and mass loss percent as the output.
The results indicated that BPNNs gave a better prediction than
that of RBF neural networks.141 Govindan et al.142 used trained
ANNs, using TGA to predict the sample mass loss percentage of
oxy-fuel combustion of calcined pet coke, with the predictions
obtained from the model showing a high degree of accuracy,
with a coefficient of determination (R2) of 0.99. Qiao and Zeng143

also applied the ANN framework to predict the gas products of
heavy oil gasification under oxy-fuel conditions but the authors
have not clarified how they trained and validated their ANN
models. Debiagi et al.144 developed a reduced-order model based
on ML, which can accurately predict different phases of coal
particle combustion at a reduced computation cost. They used a
High Dimensional Model Representation (HDMR) method to
develop the supervised ML models (see Fig. 5). Unlike the case
with the previous work, the training and test datasets were
generated from an accurate, detailed solid fuel kinetic model
that considered a wide range of operation conditions obtained
from a novel gas-assisted coal combustor.144

Krzywanski et al.145 developed a generalised ANN model to
predict the SO2 emissions from large- and small-scale circulating
fluidised bed (CFB) boilers under air-firing, oxygen-enriched and
oxy-fired combustion conditions with the dimension and opera-
ting parameters of the CFB boilers as the inputs. The authors145

also conducted a sensitivity analysis to investigate the effects of
changing operating parameters on the SO2 emissions using the
trained ANN models. The results indicated that the ANN model

can serve as a fast tool to provide the accurate prediction of SO2

emissions for coal combustion in the CFB boilers under the
different combustion environments with less complexity and
costs.145

Besides predicting the useful parameters of oxy-fuel combus-
tion, ML can also be applied to monitor air/oxy-fuel combustion
processes for combustion control and optimisation under
variable conditions. Bai et al.146 proposed a novel method by
combining flame imaging, principal component analysis and
random weight network (PCA–RWN) techniques for multi-
mode process monitoring for air and oxy-fuel combustion of
coal (see Fig. 6). Flame image database collected from a
250 kW air/oxy-fuel combustion Test Facility were used to
validate the PCA–RWN models and the performance was
evaluated by the Hotelling’s T2 and squared prediction error
(SPE). Compared to the performance of the proposed PCA–
RWN model with other ML classifiers (Kernel Support Vector
Machine, Neural Network, and k-Nearest Neighbour classifier)
for pattern recognition, the proposed PCA–RWN model gives
the best prediction of the average recognition success rate and
the least training time.146 The authors147 also followed a similar
methodology to apply the PCA with kernel support vector
machine (KSVM) model for the multimode monitoring of
combustion stability under different oxy-gas fired conditions.
Liu et al.148 used a supervised multilayer deep belief network
(DBN) to evaluate the nonlinear relationship between the flame
images and the outlet oxygen content, and the results indicated
that the proposed method was a reliable and efficient way for
predicting the real-time oxygen content. Later on, Han et al.149

applied flame imaging and stacked sparse autoencoder based
DNN to monitor the combustion stability. The results showed
that the proposed model could quantitatively and qualitatively
evaluate the combustion stability with good generalisation and
robustness.149

Yan et al.17 used the experimental data of nineteen manga-
nese ores to train the ANN models to predict the reactivity
of manganese ores as oxygen carriers in CLC. The results
indicated the optimal ANN models can provide very good
performance predictions for both training and new dataset
and the authors proposed a general workflow in applying ML
model to predict the performance and aid the design of the
oxygen carriers as shown in Fig. 7.

Fig. 5 Diagram of a generic multilayer perceptron of the HDMR
method.144

Fig. 6 Diagram of PCA–RWN model for multi-mode combustion process
monitoring.149

Review Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
9:

07
:2

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ee02395k


6136 |  Energy Environ. Sci., 2021, 14, 6122–6157 This journal is © The Royal Society of Chemistry 2021

Singstock et al.150 proposed a statistical ML descriptor-based
method to predict the reaction free energies and classify the
thermodynamically viable active materials for chemical-looping
processes, and the authors applied it to evaluate materials for a
novel chemical looping process for pure SO2 production. This
approach is envisioned to link the process design with high-
throughput material discovery to promote the development of a
wide range of chemical-looping technologies.150 Wilson and
Sahinidis151 proposed a mixed-integer nonlinear programming
(MNLP) formulation to estimate and identify kinetic rate para-
meters from a postulated superset of reactions, and they
validated that this approach can automatically generate accu-
rate kinetic models from dynamic CLC process.

The assurance of smooth and long-term operational stability
of the CLC system is one of the key requirements for CLC
technology to be deployed on a commercial scale. Pan et al.
applied the LSTM based recurrent neural network (RNN) for
early detecting of fault caused by fines accumulation, which is
represented as bubbles in the packed bed standpipe of a
chemical looping systems. The results revealed that the model
trained by the cold-flow model of sub-pilot scale chemical
looping system can provide a recall value of at least 86.7% with
the application of ensemble decision strategy, and the authors
pointed out the proposed model can easily be extended and
generalised with further training using the data obtained from
multiple operation conditions.152

3.3.2 Machine learning in calcium looping. A similar pro-
cess to chemical looping, is calcium looping, which is a CO2

capture process, that uses calcium oxide-based sorbents to
separate and remove CO2 from flue gases. The process is based
on the reversible reaction of lime with CO2 and is considered as
an emerging CO2 capture technology. This process has been
well researched with findings focusing on optimal CaO based
sorbents to achieve the best capture efficiency, however the
application of ML to this field is relatively new, with very few
studies on this aspect.

Chen et al.153 proposed the use of BPNN to predict the
performance of Ca-based sorbents in the calcination/carbona-
tion cycles, based on TGA experimental data. This study
observed the factors that affected the sorbent performance,
namely sample particle diameter, calcination temperature,
calcination duration, calcination atmosphere and carbonation
duration. The feed-forward multilayer ANN, which had the
architecture of 5-34-1, had the five aforementioned factors as
inputs, and the carbonation conversion degree as the output
parameter, calculated with the assumption that the decomposi-
tion of calcium carbonation was the only reason for sample
weight change. Here, 75% of the data was used for training
while the remaining 25% was accounted as the test data. The
model proposed showed a strong correlation with TGA results
and proved the validity for the approximation of Ca-based
sorbent in the carbonation process even when conducted at
extreme reaction condition.

A recent application of ML to the calcium looping process
was developed by Nkulikiyinka et al.154 Here, the authors
developed an ANN and random forest (RF) model to act as soft
sensor models, for the prediction of gas concentrations for the
reaction of steam methane reforming coupled with calcium
looping, also known as sorption enhanced steam methane
reforming (SE-SMR). In this study, the data was obtained using
the Aspen Plus software, where input parameters, regenerator
and reformer temperatures, pressure, steam-to-carbon ratio
and sorbent-to-carbon ratio, were varied to obtain a wide range
of data for the process. The Aspen Plus data was validated
against literature data, and was then split into training, validation
and test data. Various gas concentrations in the reformer and
regenerator, as well as methane conversion were used as the
output parameters. The models developed showed high accuracy
prediction for the reactor gas concentrations and confirmed that
ANN and RF algorithms can successfully model a nonlinear
process such as SE-SMR, and therefore act as a suitable data-
driven soft sensor for the process.

Krzywanski et al.155 explored a method of predicting the NOx

emissions produced from the regenerator of a calcium looping
system, coupled with oxyfuel combustion of coal to provide
heat of decomposition, using a regression analysis-based
modelling technique. The authors conducted the experiment
in a dual-fluidised bed (DFB), with the effects of fuel type,
oxygen feed, and NO addition to primary or secondary feed gas,
being evaluated. The authors provided limited detail on the
regression model, however Fig. 8 shows the flowchart of the
model application, and the only input necessary are the fixed
carbon, the ratio of molar nitrogen to carbon content in fuel
N/C, and the O2, concentration in the flue gas from the
regenerator, leading to the NOx emission as the output para-
meter. The results obtained from the model were in good
agreement with experimental results, with a correlation coeffi-
cient equal to 0.925.

An alternate purpose that ML has been applied to in the
calcium looping field, is on the study of the economic feasibility
of the post-combustion calcium looping process on a 580 MW
coal fired power plant, by Hanak and Manovic.156 In this study,

Fig. 7 Workflow of developing a machine-learning model for oxygen
carriers in chemical-looping processes.17
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an ANN was developed using data from Aspen Plus simulations,
and this model was then combined with results from an
economic model developed from a Monte Carlo (MC) simula-
tion. The ANN model was used to connect the process inputs of
the process model with the process inputs of the economic
model. A two-layer feedforward ANN with ten sigmoid hidden
neurons and linear output neurons was developed, with 70% of
the data obtained from the Aspen Plus model, used for training,
15% used for validation and 15% used for testing. Fig. 9 shows
that the ANN used in this study can depict the thermodynamic
performance of the calcium looping retrofit accurately, despite
its nonlinear characteristic. The study concluded that the
stochastic approach, and incorporation of the ANN model, in
the economic feasibility assessment enables a more accurate
and reliable comparison of different calcium looping retrofit
configurations.

3.3.3 Perspectives and prospects. ML has been successfully
applied in oxy-fuel combustion for the combustion charac-
teristics prediction and process monitoring. It should be
pointed out that most researchers use TGA data to train,
validate and test the ML models to predict combustion char-
acteristics, but these also can be easily measured by the TGA
without using the training data to develop the optimal ML
model that requires higher computing costs and longer time.
In addition, the extracted TGA data cannot represent the
combustion characteristics in the real combustor due to their
low heating rates and mass-heat transfer considerations. Thus,
it is suggested that the researchers could use the data from the
pilot-scale or large-scale combustors to develop their ML
models, and the trained ML models could provide more useful
information to develop oxyfuel combustion technology. ML can

also be applied for using the flame images to monitor oxyfuel
combustion process.

For calcium and chemical looping technologies, it is
expected that ML will play an important role in materials
development, process control, and techno-economical assess-
ment. However, only a few researchers have attempted to utilise
ML for these goals. We encourage researchers working in this
area to consider applying ML in their research to maximise
their research outputs. For instance, CLC is a novel carbon
capture technology, and the selection of suitable oxygen carriers
is a key barrier to chemical looping technologies development.
Over the last 20 years, over 1000 materials have been investigated
experimentally. This could serve as an ideal database for utilising
ML to screen and identify useful information to guide the oxygen-
carrier materials development. Also, ML can be combined with
density functional theory (DFT) to screen the thermodynamic
feasible metal oxides as the oxygen carriers.157 It is also foreseen
that ML will accelerate the discovery, design, and synthesis of
sorbents for calcium looping process by using the historical
research data on sorbents development.

In the Section 3, we have reviewed and discussed the
research of applying ML in CO2 capture, which includes CO2

absorption, CO2 adsorption, oxyfuel combustion, calcium
looping and chemical looping combustion. There is also work
on ML in membrane for CO2 separation which is detailed
elsewhere.158–160

4. Machine learning in CO2

transportation, utilisation, and storage
4.1 Machine learning in CO2 transportation

4.1.1 The role of machine learning in the mass flow
metering of CO2. The captured CO2 needs to be transported
from the capture points to the storage sites. Pipeline trans-
portation of CO2 in the dense phase is regarded as the most
cost-efficient and safest solution over a long distance.161 Accurate
flow metering of CO2 in CCUS pipe networks is crucial to the
optimised design and economical operation of CCUS processes.
For instance, it is reported that each percent of accuracy improve-
ment will save h200k per year for a CCUS project in Norway.162

As expected, larger-scale CCUS systems, a higher number of
accurate flowmeters need to be deployed. In addition, the
European Union Emission Trading Scheme (EU-ETS) requires
the flowmeters to operate within an uncertainty of �1.5%.161

However, it is difficult for traditional flowmeters to meet the
accuracy requirements due to the complex properties of CO2

fluid. Unlike water, oil and natural gas, CO2 is expected to be
transported near the critical point, which is very close to the
expected operational condition of transportation pipelines.
A small change in line temperature and pressure may lead to
a significant change in the phase of CO2, resulting in gas–liquid
two-phase CO2 flow. Impurities produced using different cap-
ture methods may also affect the phase behaviours of CO2 flow.
In addition, some impurities, such as water, H2S, NO and SO2,
produce corrosive products which may influence the choice of

Fig. 8 Application of the model for the evaluation of NOx concentration if
flue gas.155

Fig. 9 Structure of the artificial neural network used to map the thermo-
dynamic performance of the calcium looping process retrofit.156
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flowmeter material.163,164 For some volumetric flowmeters, the
density data calculated from the equation of state (EoS) is
required to obtain the mass flowrate. However, the accuracy
of EoS of CO2 flow with impurities is insufficient.165 Moreover,
flexible operations of CCUS systems on smart fossil fuel fired
power plants, such as frequent load changes and rapid start-
ups and shutdowns, may lead to rapid changes in the proper-
ties of CO2 flow. Transient behaviours that occur in pipelines
may result in the phase transition of CO2 and flow instability,
making the accurate measurement of CO2 flowrate more
challenging.

Over the past few decades, some techniques have been
developed to achieve the accurate measurement of multiphase
flow, especially gas–liquid two-phase flow. Some of these tech-
niques, such as radiation attenuation and nuclear magnetic
resonance, exhibit satisfactory performance in terms of
measurement range and accuracy, and can directly provide mass
flowrate, density and composition of multiphase flow.166,167

Nevertheless, the high cost and system complexity restrict their
applicability in the CCUS sector. Other economical techniques
such as differential pressure-based flowmeters are not able to
achieve satisfactory accuracy in the mass flow measurement. In
order to improve the accuracy of flowmeters, low-cost sensing
techniques incorporating ML algorithms have been proposed in
recent years.168,169 ML algorithms are capable of handing the
hidden relationships in large, complex and multivariate datasets
and have been used in the measurement of gas–liquid two-phase
CO2 flow.

4.1.2 Measurement of the mass flowrate of two-phase CO2

flow. Mass flowrate measurement of CO2 flow is essential for
the fiscal purpose in CCUS projects. Coriolis mass flowmeters,
as the most accurate single-phase mass flowmeters, have the
ability of directly measuring mass flowrate, but the errors in
measuring two-phase flow are still large. Thus, ML algorithms
are employed to improve the accuracy of Coriolis mass flow-
meters in multiphase flow measurement, based entirely on
internally observed parameters. Fig. 10 shows the common
solution based on Coriolis mass flowmeter and ML algo-
rithms. The ML algorithms use input variables reading from
Coriolis flowmeters and give the measured mass flowrate,
density, and gas volume fraction (GVF). When CO2 flow is

single-phase liquid or gas, the output of GVF is 0% and 100%,
respectively.

Henry et al.171 reported a case study which achieved the
errors of mass flowrate within 1–5% in the measurement of
gas–oil two-phase flow based on a Coriolis mass flowmeter and
an ANN under the condition of 1 kg s�1 to 10 kg s�1 in flowrate
and less than 60% in GVF. The same measurement system was
also employed to measure slugging two-phase CO2 flow at the
pressure of 5.52–7.03 MPa and the temperature of 4–32 1C.172

Results show that the reading difference between the Coriolis
flowmeter and other sales meters over several weeks is usually
within �5%. Comparative investigations into the performance
of ML algorithms for gas–water two-phase flow metering were
conducted by Wang et al.173 Several algorithms, such as ANNs,
SVM and GP, were developed to estimate the liquid mass
flowrate and GVF. The inputs of the ML algorithms were
obtained from a Coriolis flowmeter and a differential pressure
(DP) transducer. For the mass flowrate measurement, the input
variables are apparent mass flowrate, apparent density, damp-
ing and DP, while for the GVF measurement, the apparent mass
flowrate, density and DP are taken as inputs. Results show that
the relative errors are within �1% in mass flowrate measure-
ment over the range of 250 to 3200 kg h�1 and within �10% in
GVF prediction. Wang et al.170 also applied a Coriolis mass
flowmeter incorporating LS-SVM models to measure the mass
flowrate of gas–liquid two-phase CO2 flow in both horizontal
and vertical pipelines. Fig. 11 illustrates the principle of the
flow measurement of gas–liquid two-phase CO2 flow. A classi-
fication model is developed and incorporated in the system to
recognise the flow pattern and independent LS-SVM models for
the mass flowrate metering of gas–liquid two-phase CO2 flow.
Results suggest that most of the relative errors under steady-
state flow conditions are within �2% in horizontal test pipeline
and �1.5% in vertical test pipeline. However, the performance
of the models is affected by the lack of verification under
dynamic flow conditions. It should be noted that the afore-
mentioned models can also be trained to measure the GVF of
two-phase CO2 flow (Section 4.1.3).

4.1.3 Measurement of the gas volume fraction of two-
phase CO2 flow. Accurate GVF measurement of gas–liquid
two-phase CO2 flow in a pipeline network is crucial to the safe
and economic operation of the CCUS process. In recent years,
some accessible sensing solutions such as capacitive sensors

Fig. 10 A typical CO2 flow measurement system based on low-cost
sensors and ML algorithms.170

Fig. 11 Principle of the mass flowrate and GVF measurements of two-
phase CO2 flow.170
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and Coriolis flowmeters in conjunction with ML algorithms
have been proposed to measure the GVF of CO2 flow.

As shown in Fig. 12, a flow-pattern-based LS-SVM model
developed by Wang et al.173 was utilised to measure the GVF of
gas–liquid two-phase CO2 flow. Experimental results suggest
that errors of the measured GVF are mostly within �10%. Shao
et al.27 achieved the GVF measurement in a horizontal CO2

pipeline based on a 12-electrode capacitive sensor and data-
driven models, as shown in Fig. 12. Three data-driven models,
BPNN, RBFNN and LS-SVM, were established. Unlike the flow
pattern recognition approach, reconstructed images are usually
not required for GVF measurement. The GVF measurement of
two-phase CO2 flow is achieved without the time-consuming
image reconstruction of the flow pattern. Experiments were
conducted under both steady-state and dynamic flow conditions.
For steady-state flow conditions, the mass flowrate was set from
200 to 3100 kg h�1 while the GVF was from 0–84%. Under
dynamic flow conditions the gas phase CO2 was rapidly increased
from 120 kg h�1 to 400 kg h�1 and then decreased while the
liquid CO2 was fixed at 1500 kg h�1. Measurement results show
that the RBFNN outperforms the other two models. Errors are
mostly within �7% and �16% under steady-state and dynamic
flow conditions, respectively.

4.1.4 Input variable selection for CO2 flow metering
Significance of variable selection in ML. Input variable selec-

tion is an essential step in the development of ML models. It is
intended to eliminate the irrelevant or redundant variables
from the available data, which is directly obtained from sensors
or in a transformed manner and identify a suitable subset
which is significant to estimation of the desired output. Due to
the inherent complexity of multiphase flow and the limited
theoretical knowledge of complex physical phenomena, input
variable selection becomes more important. Input variable
selection is helpful to analyse parametric dependency between
input variables and their significance and sensitivity to the
desired model output. Meanwhile, it is beneficial to reduce the
complexity of the model structure and improve the computa-
tional efficiency of the model. Therefore, input variable selec-
tion should be considered before developing ML models.

It must be pointed out that dimension reduction algorithms
such as Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) are easily confused with input
variable selection. Dimension reduction aims to transform data
from a high-dimensional space into a low-dimensional space,
resulting in a reduced number of variables.

Methods that may be used to select variables. Input variable
selection techniques can be classified into three main categories:
wrapper, embedded and filter algorithms. Wrapper algorithms,
such as Single Variable Regression and Genetic Algorithm-
Artificial Neural Network (GA-ANN), and embedded algorithms,
including Recursive Feature Elimination and Evolutionary ANNs,
are model-based, i.e., a model has to be constructed and trained
in advance. Filter algorithms such as Rank Correlation, Partial
Correlation and Partial Mutual Information (PMI) are model-free.
May et al.174 considered several key factors in determining the
most appropriate approach to input variable selection for a given
application. The model-based approach aims to select the vari-
able set which makes the model perform well through establish-
ing and evaluating the model through potential variable
combinations. The main drawback of this approach is the high
computational requirement due to a large number of calibration
and validation processes required. Moreover, the selection results
depend on the predefined model in terms of architecture and
parameters. By contrast, the model-free approach is directly
based on the information (interclass distance, statistical depen-
dence, or information theory, etc.) between the available dataset,
so the computational efficiency is not an issue. However, a trade-
off criterion should be defined to balance the significance
measurement and the number of selected variables.

For air–water two-phase flow measurement, Wang et al.173

applied PMI, GA-ANN and tree-based iterative input selection
(IIS) methods to investigate the parametric dependence, sig-
nificance and sensitivity of the input variables to the desired
outputs, i.e., mass flowrate and GVF. Results suggested that the
selected variables using the PMI algorithm, observed density,
apparent mass flowrate, DP and damping provide more effec-
tive information for the models to measure liquid mass flow-
rate. The variables selected using the tree-based IIS algorithm,
included observed density, apparent mass flowrate and DP,
which were more significant to predict GVF. Subsequently,
Wang et al.170 investigated the measurement of gas–liquid
two-phase CO2 flow and developed LS-SVM models for flow
pattern recognition, mass flow measurement and GVF predic-
tion (Section 4.1.3), with the selected input variables including
apparent mass flowrate, observed density, damping and DP.

Although variable selection approaches can provide some
valuable information to determine the input variables of an ML
model, the accuracy of the methods also depend on the
observational dataset, such as data size and their distributions.
A dataset with less data or low-quality may result in under-
estimation or overestimation of the candidate variables for an
ML model. Consequently, in order to ensure the selection
accuracy with a limited size of a dataset, it is necessary to
determine the input subset by combining variable selection
methods with engineering judgement based on the relevant
knowledge of the target application. The results of input
variable selection will help enhance engineering judgement
whilst the latter will interpret the variable selection results.

4.1.5 Perspectives and prospects
CO2 flow metering under steady and dynamic conditions.

Although CO2 flow metering has achieved higher accuracies

Fig. 12 Principle of CO2 GVF measurement using capacitive sensors.27
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under steady flow conditions, the online implementation and
in-situ calibration of a data driven model should be incorpo-
rated. In addition, smart power plants with CCUS facilities are
required to balance the power grid by compensating for the
intermittent electricity supply from renewable energy resources
such as wind farms and solar stations. As a result, smart CCUS
plants will need to be operated flexibly.175,176 Load change,
frequent start-up and shutdown will occur during flexible CCUS
operations, which will generate constantly occurring transient
flow conditions. Recent experimental investigations revealed
significant discrepancies in the mass flow rate of two-phase
CO2 between the measured value from a Coriolis flowmeter and
the reference value during the load change in a CO2 transporta-
tion pipeline, which could lead to significant errors in the fiscal
metering of CO2.177 Therefore, CO2 flow metering with a ML
model that considers dynamic nature of the flow, such as a
dynamic neural network should be investigated.

Deep learning algorithms of Long Short-Term Memory
(LSTM) and Gate Recurrent Unit (GRU) may also offer possible
solutions. Meanwhile, a data driven model is usually a black-
box which is highly dependent on the available dataset and it
may result in poor generalization capability when used on
practical CCUS facilities. ML by combining a physical based
model and a data driven model may improve the model
interpretability, measurement accuracy and generalization cap-
ability, but further research is required in this direction.
In addition, the data driven models that have been proposed
and developed to date have some drawbacks, such as heavy
computational workload caused by the feature engineering or
inefficiency when dealing with a high volume of data. There-
fore, the necessity and significance of developing new deep
learning models, which can deal with the above problems,
should be investigated.

Mass flowrate metering of CO2 with impurities. There are a
range of impurities such as N2, Ar and O2 in a CO2 stream from
fossil fuel power plants and large-scale industrial emitters.
Such impurities have a potentially significant influence on
the thermophysical properties of CO2 and hence large errors
in the mass flow metering of CO2. In addition, the range and
level of impurities in a CO2 stream vary under different carbon
capture sources.178 As a result, the flow measurement system
should combine the information from the mass flowrate and
the GVF to obtain the actual mass flowrate of CO2 component
in the presence of impurities.

A reliable CO2 test rig is essential for R&D in CO2 mass flow
metering of single-phase and two-phase CO2 with impurities
under both static and dynamic CCUS conditions. A dedicated
CO2 two-phase flow rig with an inner pipe diameter of 25 mm is
available at the North China Electric Power University. The
liquid flowrate of CO2 ranges from 200 to 3600 kg h�1 with
uncertainty of 0.16%, while the gas flowrate range is from 15 to
400 kg h�1 with uncertainty of 0.3%. The line pressure of the rig
can be varied from 57 to 72 bar with a temperature between
20 and 30 1C. However, new features, including a wider range of
flow conditions, injection of impurities, different pipe orientations

for meters under test, and variations in the pipe diameter of the
test sections should be developed in future.

Leakage detection of CO2 from transportation pipelines and
from storage sites. Potential CO2 leakages from high-pressure
CO2 transportation pipelines and from storage sites pose a
significant threat to the safety and health of those living in the
vicinity of CCUS pipe networks and storage sites. The possibi-
lity that CO2 may migrate from storage sites is a primary
concern for the safety and effectiveness of the CCUS techno-
logies. Permanent, automated monitoring techniques for the
continuous leakage detection of CO2 from transportation pipe-
lines and storage sites are necessary. For the CO2 leakage
detection in transportation pipelines, although acoustic emis-
sion (AE) sensors have been applied to locate the position of the
leakage source,179 the flowrate of the CO2 leakage needs to be
estimated. By combining the information from the AE sensors
and relevant temperature and pressure data, a leakage location
and estimation model based on ML algorithms should be
developed for the safe operation of the CCUS pipe networks.
Moreover, for the large-area monitoring of a CO2 storage site,
remote sensing techniques, such as hyperspectral imaging, aerial
imaging and satellite imaging, should be considered.180–182

Meanwhile, in-field pressure and seismic transducers may also
be applied for the local-area monitoring of a CO2 storage site.183

An integrated monitoring system by fusing the information from
the remote imaging systems and from the in-field transducers
is a promising solution, which should facilitate the practical
deployment of CCUS technologies.

4.2 Machine learning in CO2 storage and utilisation

4.2.1 CO2 storage. Ideal CO2 storage places include saline
aquifers and depleted oil reservoirs because of their high
storage capacity with available infrastructure184 (i.e. caprocks that
prevent the migration of CO2 plume) in place. More importantly;
the injection and production wells in those mature fields can
serve as the injection path for CO2 storage.185–187

Four types of trappings could occur when CO2 is injected
into depleted oil reservoirs: structural-stratigraphic trapping,
solubility trapping, residual trapping, and mineral trappings.188–190

Structural-stratigraphic trapping is the process that CO2 is stored
in the underground structure as a supercritical state.191 CO2 can
often be trapped under low permeable formations such as shale
or mudstone, which can prevent CO2 from migrating upward
due to the buoyancy force. Besides, impermeable zones such as
cap rocks and sealed faults can also provide a good condition for
the entrapment of CO2.192,193 Thus, the investigation of the
caprock integrity for a long-term sealing capability is important
before a CO2 sequestration project is carried on.194 Solubility
trapping refers to the dissolution of CO2 in the formation of
aqueous and oleic phases.195 The solubility of CO2 in formation
water depends on underground conditions including pressure,
temperature and water salinity. Numerous studies have been
performed to construct the relations between the CO2 solubility
with those parameters that would impact solubility trapping
(i.e. diffusivity,196 oil/gas–brine interfacial tension (IFT),197 etc.).
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The solubility of CO2 in the oil phase is generally higher than
that of brine in mature oil reservoirs.191 Residual trapping
involves the process that trapping CO2 as an immobile phase
within the porous media due to capillary forces. It is an impor-
tant phenomenon in the CO2 sequestration process especially
when there are no reliable sealing formations or caprock. The
gas hysteresis effect plays a vital role in the residual trapping.198

The bypass of a wetting phase fluid will render the non-wetting
phase immobile, thus leading to the entrapment of the non-
wetting phase. The effect of residual trapping can be enhanced
when the hysteresis effect is considered. Ampomah et al.191 in a
detailed numerical simulation study, pointed out that there
would be an apparent increase in the predicted amount of CO2

trapped as a residual phase after the gas hysteresis effect was
implemented. The predicted residual trapped CO2 surged from
1% to 14% after the hysteresis effect was considered. In the
mineral trapping, CO2 will react with formation mineralogy and
be trapped in the precipitation or dissolution of extant or new
carbonate minerals. Compared with other mechanisms, CO2

reactions often take years to occur thus its impact on the
transportation of the CO2 plume would be observed on a longer
time scale. When CO2 is in contact with formation brine,
aqueous species such as soluble CO2, HCO3

�, CO3
� are gener-

ated, and then reacted with formation minerals. Some common
reactions between CO2 and formation mineralogy are sum-
marised in Table 4.

Several studies using ML-based methodologies have been
performed regarding how those trapping mechanisms influ-
ence the dispersal and migration of the CO2 plume. Sun et al.188

studied the CO2 trapping mechanisms in the Morrow B Sand-
stone in the Farnsworth Units. A neural network-based approach
was used to match the reservoir model with historical data.
The history matched model was then employed to evaluate the
impacts of residual, structural-stratigraphic, solubility, and
mineral trapping mechanisms on CO2 sequestration and hydro-
carbon production. The ML-based history match process was
able to provide reliable pressure, fluid saturation and composi-
tion distributions that help the numerical model effectively
investigate trapping mechanisms with a reduced computational
overhead. The conclusion was that more CO2 is dissolved in the

oleic phase than the aqueous phase, which is due to the high
salinity of the formation water. Moreover, mineral trapping plays
a less significant role in the CO2 sequestration process compared
with other trapping mechanisms.

Ni and Benson199 studied the effect of mesoscale hetero-
geneity on larger-scale multiphase fluid flow properties and
trapping behaviours using a ML clustering method. The CO2

saturation maps, the voxel-level porosity and the permeability
maps were used as the inputs for the model. Each voxel was
treated as one data point, and the time series properties at each
voxel were treated as individual attributes (i.e., CO2 saturation
time series). The CO2 saturation and the porosity maps were
obtained through CT image manipulation, and the voxel-level
permeability map was obtained using the extended Krause’s
method.199 This study tested two clustering methods and found
that K-means clustering was more suitable for characterizing
flow behaviours and hierarchical clustering was more desirable
for identifying the capillary heterogeneity trapping behaviours.
Five different sets of coreflooding data were used to examine
the feasibility of the proposed approach. They concluded this
method was able to assess how the mesoscale petrophysical
properties influence capillary-dominated flow and residual
trapping behaviours. Moreover, the differences in time series
behaviours among the different clusters would be diminished
in viscous-dominated flow regimes.

CO2 storage of solubility trapping involves the process where
the injected CO2 contacts in situ brines and dissolves into the
water through molecular diffusion. Research was carried out to
study the CO2/oil/brine interactions under subsurface conditions.
Amar and Ghahfarokhi196 established the correlation between
diffusivity coefficients of the CO2 in brine water with pressure,
temperature and the viscosity of the solvent using the group
method of data handling (GMDH) and gene expression program-
ming (GEP). GMDH is one type of ANN that can generate an
explicit expression for the correlation between inputs and output.
The correlation generated using GMDH takes the advantage of
polynomial models. GEP is one evolutionary technique to mimic
systems with accurate explicit expressions, which is an improved
version of genetic programming. Besides the common genetic
operators, including selection, crossover, elitism and mutation,
GEP also introduces new actions such as insertion and transposi-
tion to find a reliable correlation. The conclusion was that both
GEP and GMDH correlations were able to make predictions that
were very close to experimental values, and the GEP correlation
yielded higher accuracy than the GMDH correlation. The GEP
model was also compared with decision trees (DTs), RF, mixed
Kernel-based SVM coupled with GA and other pre-existing
models, the GEP model was superior to all these models.

Menad et al.200 proposed to use MLP and RBFNN to predict
the CO2 solubility in brine at different temperatures, pressures
and molalities of NaCl. Additionally, several evolutionary algo-
rithms were employed to optimise the control parameters of
the neural networks, namely the Levenberg–Marquardt (LM)
algorithm, GA, particle swarm optimization (PSO) and artificial
bee colony (ABC). Combinations of those methods were com-
pared to determine the best one. They found that RBFNN-ABC

Table 4 Summary of some common reactions between CO2 and for-
mation mineralogy188–190

Reactions

1 CO2(aq) + H2O = H+ + HCO3
�

2 CO3
2� + H+ = HCO3

�

3 OH� + H+ = H2O
4 Quartz = SiO2(aq)

5 Albite + 4H+ = 2H2O + Na+ + Al3
+ + 3SiO2(aq)

6 Calcite + H+ = Ca2+ + HCO3
�

7 Dolomite + 2H+ = Ca2+ + Mg2+ + 2HCO3
�

8 Siderite + H+ = HCO3� + Fe2+

9 Illite + 8H+ = 5H2O + 0.6K+ + 0.25Mg2+ + 2.3Al3+ + 3.5SiO2(aq)
10 Kaolinite + 6H+ = 5H2O + 2Al3+ + 2SiO2(aq)
11 Smectite-low-Fe–Mg + 7H+ = 0.29Fe2+ + 3.75SiO2(aq) + 0.16Fe3+ +

4.5H2O + 1.25Al3+ + 0.15Na+ + 0.02Ca2+ + 0.2K+ + 0.9Mg2+

12 Chamosite-7A + 10H+ = 2Fe2+ + SiO2(aq) + 2Al3+ + 7H2O
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would yield to the most accurate prediction in the tests among
all combinations.

Zhang et al.201 proposed a work to model the CO2–brine IFT
using extreme gradient boosting (XGBoost) trees. The gene-
rated model was then employed to determine the optimal CO2

sequestration depth in saline aquifers. The brines used to
synthesise the database consider one or more of the following
salts: NaCl, KCl, Na2SO4, MgCl2, and CaCl2. Thus, the total
molalities of the monovalent cations (Na+ and K+) and bivalent
cations (Ca2+ and Mg2+) were considered as two independent
input variables. CH4 or N2 were two impurities accounted for in
the CO2 stream, so the mole fractions of these two impure
components were categorised into other two individual input
variables. Pressure and temperature were also utilised as the
other two variables due to their important impacts on the CO2–
brine IFT. After inconsistent data points were removed, a total
of 2346 data points were used to train the IFT prediction model.
The XGBoost trees model combined a cluster of classification
and regression trees (CARTs) to fit the training data samples.
The basic components contained in CART are a root node,
a set of internal nodes, and a set of leaf nodes, which is
depicted in Fig. 13.

The hyperparameters of the XGBoost trees were optimised
using the K-fold cross-validation integrated with the exhaustive
grid search approach. In the grid search approach, the search
range of each parameter is divided into different grids and this
approach will test the values of all grids to determine the best
result. Based on the model, the permutation importance (PI)
was employed to ascertain the importance of each input vari-
able to the IFT. Results showed that pressure had the highest
impact on IFT, followed by temperature, bivalent cation mol-
ality and monovalent cation molality, while the mole fractions
of CH4 or N2 were the least important factors. The capacity of
structural trapping CO2 in aquifers varies with the CO2–brine
IFT that would be affected with different temperatures and
pressures. It was claimed that with the help of the generated
model, reservoirs with different pressure and geothermal gra-
dients can be used to study the capacity of structural trapping
CO2. An increase in the maximal structural trapping capacities

for shallower formations was observed when the pressure was
higher and/or the geothermal gradient was lower.

CO2 leakage detection. After the CO2 is injected into the
subsurface complex, it is necessary to use monitoring and
verification approaches to ensure the safe and long-term sto-
rage of injected CO2.202 The common method includes building
a numerical model to simulate how the CO2 plume moves in
the underground structure and to predict the feasibility of
the long-term storage of the sequestered CO2.203 Direct or
non-direct monitor data is always utilised in collaboration with
numerical models to assess risk of CO2 plume leaks from faults,
legacy well, or fracture systems.204

Wang et al.205 studied how to interpret the CO2 saturation
using seismic and downhole monitoring data. This study used
ML approaches to infer the CO2 saturation at different depths
from the combination of synthetic seismic data and monitored
downhole pressure and total dissolved solids (TDS) information.
The framework was built upon a candidate geologic carbon
storage site near Kimberlina, CA, USA. A hypothetical well
leakage was included in the numerical model, which was
focused on simulating the three geological layers overlying
the CO2 storage reservoir. All three layers were aquifer layers
with a sand fraction of approximately 0.8. There were 6000
numerical simulations implemented by varying the distribu-
tions for the permeability of the three geologic layers. Each
simulation had a 20 years’ prediction with a timestep of one
year. At each time step, rock physics modelling was performed
to estimate changes in seismic velocity due to the simulated
CO2 and brine leakage from the flow simulation outputs.
Therefore, a total of 120 000 forward seismic velocity models
were obtained from those 6000 simulations. Each velocity
model was further used to generate synthetic shot gathers
using 2D finite-difference acoustic wave modelling, along a
sparse 2D seismic line with only five shots and 40 receivers.
For each velocity model, five seismic features were calculated
thus 1200 (= 6 � 40 � 5) seismic features could be used to train
the prediction model. Besides the seismic features, measured
downhole pressure and TDS at three depths were also included
in the training inputs, leading to a total of 1206 involved in each
input-output pair. The output was the category of CO2 saturation
at three depths that have been labelled as five different integers
to discretize the range of CO2 saturation from zero to very high
level. The SVM with a linear kernel (linear SVM), support vector
machine with a radial basis kernel (SVMr), DNN with two
hidden layers and recurrent neural network (RNN) with a LSTM
layer were used to train the CO2 saturation prediction model
respectively. The performance of the models was estimated
using the Kappa statistic, meaning the prediction accuracy was
calculated and ranked between 0 to 1, with 0 representing
a random prediction and 1 standing for perfect prediction.
It was concluded that compared with using seismic monitoring
alone, adding downhole pressure and TDS measurements as
input features could improve the accuracy of the CO2 saturation
inversion.

Fig. 13 Illustration of a CART. L denotes the leaf node (modified from
Zhang et al.201).
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Sinha et al.28,183 demonstrated how to detect the CO2

leakage using pressure data. The injection of CO2 would cause
pressure perturbation across the reservoir field. Harmonic
pulse testing (HPT) is one approach to cause this kind of
perturbation hence it can be used to differentiate CO2 leakage.
In a typical HPT job, the perturbation was induced by the
harmonic injection of a fluid into the reservoir at the injection
well, and the responses were recorded at the observation well.
The pressure HPT can be used to differentiate the pressure
response of a leak versus the non-leak in a field test. In a CCUS
project across multiple depleted oil fields, many injection wells
and abandoned wells could act as the path for CO2 leakage,
making the interpretation of the voluminous HPT data a
challenging task for human brains. However, the ML techni-
ques can be a good alternative. In this work, the author used
different neural networks to build the anomaly detectors to
interpret CO2 leakage, including multi-layer neural network
(MFNN), LSTM, convolutional, neural networks (CNN), and a
combination of CNN and LSTM (CONV-LSTM). The actual
measured pressure signal was compared with the predicted
response for the non-leak situation, and then the error was
calculated as an indicator of the CO2 leakage (anomaly). The
conclusion was that LSTM outperformed the others in the
pressure anomaly detection tests and the proposed approach
could provide early warnings to the CO2 leakage in a CCUS
project.

Lima and Lin206 integrated geological data and ML techniques
to predict the CO2 and brine leakage in a 200 years’ duration in
geological carbon sequestration (GCS) project. The database used
for the employed machine-learning approaches was acquired
from 500 simulations that were generated to model underground
water flow and understanding effects at GCS sites attributed to
CO2 injection. Those models contain an injection well, a legacy
well and three geological layers. The seismic data and legacy well
pressure was used as inputs for function predicting CO2 and
brine leakage amount. The Inception model was used to train the
seismic data and CNN model was used to handle pressure data.
Here, 50 out of 500 simulations were utilised as test sets, and
models’ performance was compared between the model only
using seismic data and other using both seismic data and well
pressure. It was found that including pressure data would
provide small improvements in the prediction of CO2 and brine
leakage. Moreover, employing this developed approach was able
to provide an accurate prediction of the CO2 and brine leakage on
GCS sites.

Zhong et al.207 used a combined CNN and LSTM model,
designated as ConvLSTM, to detect the CO2 leakage in a CCUS
project. The CNN model was used to handle the spatial features
and the LSTM was used for temporal features. The spatial
features considered porosity and permeability and the temporal
features included the CO2 injection rate and the bottomhole
pressures of a production well and a leak well. The temporal
features were transferred into 2D images and the pixel value at
the injection well location was the injection rate and the pixel
values at the production and monitor wells were corresponding
bottomhole pressures. Thus, the total inputs for the ConvLSTM

model were three 2D images including one image containing
the injection rate and bottomhole pressure at the production
well, and the other two are areal distributions of the porosity
and permeability. The output from the model was the predicted
bottomhole pressure at the monitoring well, which was com-
pared with a real monitored pressure to determine whether
there is an anomaly in the CO2 injection. The database used to
train the ConvLSTM model was from a pulse testing experiment
where the CO2 is injected cyclically with an injection duration
of 90 minutes. The injected CO2 was artificially produced at
a constant production rate of 60 kg min�1 to mimic a CO2

leakage at the production well. A detection function was
defined to calculate the probability of the test data point being
in a user-defined normal data range given a user-defined
threshold. They also pointed out that insufficient datasets
or existing noises in the raw data may lead to inaccurate
prediction.

Singh208 introduced a workflow to monitor and detect CO2

leakage from a reservoir using injection rates and bottomhole
pressures. A deconvolution response was defined as the func-
tion of time-dependent well bottomhole pressure and injection
rates to measure the fluid leakage, which could be simulated
using MLR of all the wells present in the reservoir. The model
training process followed a strategy that field history without
any leakage was used to train and validate the model. Then the
model prediction was the simulated scenarios where no leakage
took place. The deviation between the predictions and real
monitoring deconvolution responses was employed to deter-
mine the leakage. The capability of the proposed workflow was
demonstrated by applying it to three case studies: (1) a naturally
fractured tight reservoir with five injectors and four monitoring
wells; (2) a reservoir with a barrier and the same well pattern as
case 1; (3) a real deep offshore saline aquifer with thick shale
layer above and below the reservoir. It was concluded that the
proposed method was able to detect leakage of both incom-
pressible and compressible fluids from a simple reservoir to a
fully heterogeneous and structurally complex field. The author
also pointed that this method could provide preliminary
insights into the location of the leakage, but still required the
help of expensive surveys (such as seismic, etc.) to identify the
actual location of a leak and the severity of the leak.

4.2.2 CO2 utilisation
4.2.2.1 CO2-Enhanced oil recovery. The utilisation of CO2 as

an injecting phase for enhanced oil recovery (EOR) has decades’
of history.209–211 CO2-EOR is a widely used technique that
injecting CO2 into a reservoir after waterflooding to lower the
residual oil saturation and hence improving hydrocarbon
production.212–215 When the injection CO2 enters the sub-
surface, a large volume of the injected CO2 will be trapped
underground due to the effects of the aforementioned trapping
mechanisms.216 Thus, the applications of CO2-EOR with CCS
would have dual benefits that both extracting more oil and
injecting and sequestering anthropogenic CO2.217,218

The applications of ML-based approaches mostly seek to
reduce the computational overhead required by calling for the
original high-fidelity numerical model,219,220 hence shortening
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the time needed by running the numerical model and further
enabling some complicated jobs such as optimisation,221,222

and uncertainty assessment.214 This type of application is often
considered as generating a proxy model or surrogate model
using various ML-based approaches.

Vida et al.223 introduced a work that couples grid-based
surrogate reservoir model (SRM_G) and well-based surrogate
reservoir model (SRM_W) to simulate a CO2-EOR project at the
Scurry Area Canyon Reef Operators Committee (SACROC) oil-
field. The SRM_W models were used to investigate the flooding
front and simulate the changes in properties along with time
in each grid block in the reservoir. The properties that were
handled by SRM_G included pressure, phase saturation, or
composition of reservoir fluid components at any desired time
step. The SRM_Ws were used to deal with simulation related to
well production data, such as oil rate, water rate and water oil
ratio, etc. SRM_Ws could be used to estimate response of the
reservoir at the well level (rate) to various reservoir parameters
or operational constraints. An ANN model with one hidden
layer was used to train the SRMs. The values of each property at
each timestep were predicted using one trained SRM. For the
SRM_G, a total of 60 neural networks were generated to predict
the interested properties at each timestep (15 models per
property). The integration of the SRM_Gs and SRM_Ws con-
tained the following steps: at the initial timestep, SRM_Gs ran
first and the calculated pressure, phase saturation, and CO2

mole fraction for all grids were processed to obtain the well
productivity index and tiering computations pertaining to grid-
based and well-based systems. The information along with well-
based initial information was then fed to SRM_Ws to calculate
water, oil and CO2 production at each well and entire field at
first timestep. This process then proceeded to next timestep
and information of each grid was updated until final timestep
was reached. It was reported that total time for running
60 neural network models to deploy the SRMs’ calculation
was around 800 seconds. The original numerical model took
more than 48 hours to run one realization that was used for opti-
mization design on a machine with 24 GB RAM and a 3.47 GHz
processor. By using coupled SRM models, one simulation job was
finished in 15 seconds on the same computer.

Artun224 studied single-well cyclic gas (N2, CO2 and CH4)
injection in fractured and depleted reservoirs. Various simula-
tion scenarios were conducted based upon compositional reser-
voir model with hydraulically fractured well and low-permeable
formations. This study focused on assessing impacts of design
parameters on both volumetric and economic utilisation effi-
ciency factors. Factors considered included the injection rate,
duration (and volume), soaking duration, economic rate limit,
and injected gas composition. A fast economic efficiency indicator
was also constructed using neural networks based on the
prepared simulating data. It was concluded that N2 was better
than other gases for short-term (5 or 10 years) benefits. Amini
et al.225,226 used SRM_G to replace the numerical reservoir
model of a field located in Otway Basin in Australia with a
CO2 sequestration pilot project. The SRM model was trained
through neural networks that used well data, static data and

dynamic data as training inputs. It was concluded that the
developed SRM model could generate outputs of complex
reservoir models with high accuracy in a short time.

Amini and Mohaghegh227 proposed work to develop proxy
fluid flow model for the reservoir responses (pressure, saturation,
and CO2 mole fraction) undergoing a CO2 sequestration process.
The proposed approach was applied to a heterogeneous reservoir
with 100 000 active grid blocks to verify its capability. During the
reservoir simulation, properties at a certain grid block would
depend on its interactions with the surrounding grids. For
instance, the CO2 movement and gas saturation at one grid
would be affected by the pore volumes and degree of tightness
of the grids in the vicinity of this grid. To account for this kind
of dependence, tier systems were introduced to express the
relationship between one specific grid to its surrounding grids.
An ANN-based SRM model was generated using the data
gathered from a CO2 injection reservoir with one injector and
one producer. Five different simulating scenarios were pre-
pared by varying the CO2 injection rates and cumulative injec-
tion volume. The training inputs included static data (grid
location, grid top, porosity, permeability), calculated static data
(distance to the injection well, distance to the sealing and
non-sealing boundaries, user-defined parameters), well data
(injection rate, cumulative injection) and the average porosities
and permeabilities of the tier system; the training outputs were
the dynamic data (pressure, gas saturation and CO2 mole
fraction at any timestep). An ANN model with one hidden layer
was used to train the proxy. It was concluded that the computa-
tional speed was increased by about 20 times for this specific
simulation case with an acceptable error margin.

Besides boosting computational speed, another reason for
the employment of ML techniques is to ease the complexity of
solving a problem, figuring out the unclear input–output
patterns and structures that exist in the obtained experimental/
simulated database. This mostly occurs when traditional
methods fail to work properly due to missing information.
As one of the critical parameters considered in the CO2 flooding
process, the precise prediction of minimum miscibility pres-
sure (MMP) of oil in the CO2-EOR process are widely studied.
Sinha et al.28 used ML techniques to predict MMP. The
proposed method included using an analytical correlation that
employed the SVM to tune the coefficients and a hybrid method
that combined RF regression and generated correlation.
A correlation was used to predict the MMP and linear SVM
was used to tune the coefficients included in this correlation.
It was reported the proposed correlation would work for
spectrum of MMP from 6 to 34 MPa.

Xiong et al.228 used two different methods to forecast
unconventional reservoir well production, namely ANN and
Time Series Analysis. Traditional methods such as decline
curve analysis may not be as powerful as they normally would
be when dealing with conventional reservoir well production
due to limitations with shale oil production such as boundary
dominated flow and constant operation condition. Peak pro-
duction rate and hydraulic fracture parameters were considered
as factors influencing oil production. DNN and autoregressive
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integrated moving average (ARIMA) models were employed for
the study. The ARIMA models updated their training data as
function of time, thus a smaller time step will lead to more
accurate predictions compared with real data. Moosavi et al.229

tested the capability of four different hybrid-RBF networks in
predicting oil recovery factor and oil rate in a foam-CO2 flood-
ing reservoir. The RBF network was combined with various
evolutionary algorithms, namely particle swarm, imperialist
competitive, genetic and teaching–learning based algorithm,
to build the prediction model. These algorithms were employed
to optimise the values for the weights and biases applied to the
network nodes. It was claimed that teaching–learning-based
optimization hybrid model (TLBO-RBF) achieved the greatest
accuracy in predicting based on the datasets used in this study.

Chen et al.230 developed a work to characterise the CO2-EOR
in residual oil zones (ROZ). ROZs are aquifers (or parts of
aquifers) in which oil has migrated from source rock but is
subsequently swept by the natural movement of aquifer waters
over geologic time and remains at residual saturation. The
main distinction between CO2 storage in ROZs and conven-
tional oil reservoir and brine was also assessed. Here, a ML
models to predict potential of hydrocarbon production and
CO2 sequestration amount in ROZs were developed. Three ML
models, namely Multivariate Adaptive Regression Splines
(MARS), SVR and RF, were used and compared in terms of
predictive capability in this work. It was concluded that when
crude oil was present, more CO2 would be dissolved in oil than
brine water; while when there was no oil within the system,
more gas would be trapped in the pore structure than be
dissolved in the aquifer.

4.2.2.2 Optimising CO2-CCS-EOR and uncertainty assessment.
The utilization of ML algorithms in CO2-CCS-EOR is often
accompanied by optimization and uncertainty assessment
work, in which a large volume of computations is needed.
The ML model can be applied to generate proxy models as
alternative to numerical model and reducing total computa-
tional time. Sun231 employed a deep reinforcement learning
method, namely the deep Q-learning (DQL) algorithm, to
handle optimization of carbon storage reservoir management.
The problem was treated as a Markov Decision Process (MDP),
which was to model the intelligent agent’s sequential interac-
tions with an environment to obtain maximal returns. The key
procedure of solving a MDP was to find the optimal value of the
state-action function (Q-function) to have the best reward at
each state without concerns about future states.231 In DQL, the
deep Q network (DQN) was used to approximate Q-function for
quick investigation and response. Another target network was
used to calculate the rewards at future states. To speed up the
evaluation of a large number of system transitions by using
DQL, a DL-based surrogate model was built up to accelerate the
policy search process. The deep multi-task learning (deepMTL)
was utilised to reflect correlations between pressure/saturation
and selected inputs. A U-shaped architecture employing CNN as
the building block was adopted to facilitate prediction of
saturation and pressure simultaneously.

Menad and Noureddine232 introduced a methodology to
optimise CO2 water-alternating-gas (CO2-WAG) processes using
NSGA-II (Non-Dominated Sorting Genetic Algorithm version II)
coupled with a hybrid model based on MLP. LM, Bayesian
Regularization (BR) and scaled conjugate gradient (SCG) algo-
rithms were utilised in training proxy model. The objectives of
this work were to optimise total oil recovery and total field
water production. A total of 75 simulation realizations were
generated using Latin Hyper Cube method and then fed to train
a proxy model. The author concluded that the MLP-LMA model
was the most accurate proxy. Zhang and Sahinidis233 employed
polynomial chaos expansion (PCE) to generate a proxy model
used in uncertainty quantification in CO2 sequestration.
A mixed-integer programming (MIP) formulation was introduced
to identify the best subset of basic terms to lower the degree of
expansion and to assist in deriving PCE models. Then, Monte
Carlo (MC) simulation was subsequently performed by substitu-
ting values of uncertain parameters into closed-form polynomial
functions to determine uncertainties of injecting CO2 under-
ground into a saline aquifer. For each grid at a specific timestep,
a PCE model was built to estimate two outcomes: pressure and
gas saturation. Uncertain parameters considered included per-
meability and porosity. Here, 100 numerical simulations were
prepared using LHS method to construct many PCEs. This
approach was also used to find optimal injection rates with
uncertain porosity and permeability.

You et al.234 studied the multi-objective optimisation of
a CCUS project located at Andarko Basin, USA. Their work used
both weighted sum method222,234 and Pareto-theory-based opti-
misation algorithm235,236 to optimise hydrocarbon production,
CO2 sequestration volume and project economic outcomes
simultaneously. The constructed workflow employed ANNs to
build robust proxy models and then coupling the proxies with
the particle swarm algorithm to carry out the optimisation
process. The work emphasised the importance of computation-
ally effective training of ANN proxies and how hyperparameters
of trained proxies impact prediction performance. Almasov
et al.237 proposed to optimise the design parameters of a
single-well CO2 huff-n-puff process in unconventional oil reser-
voirs. The optimised objective was to obtain the net present
value (NPV) of the process that is estimated using either LS-SVR
or GPR. The parameters were optimised using the SQP method.
Amar et al.238 introduced a method to optimise the parameters
of the CO2-WAG process to maximise oil production. SVR was
used to build the proxy model and then the proxy was used with
the GA to find the combinations of parameters that led to the
optimal oil production. GA was also utilised as the approach
to optimise the hyperparameters of SVR for better proxy
performance.

Nwachukwu et al.239 coupled the XGBoost model with a
modified version of Mesh Adaptive Direct Search (MADS) to
deal with well placement and control optimization in a CO2-
WAG project to obtain maximal NPV. MADS is a pattern search-
based method. In the modified MADS, a multidirectional
pooling scheme was employed within every iteration to increase
the search efficiency. More importantly, the author introduced
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a method to reduce the uncertainty existing in the optimised
solutions. Since the proxy model will have prediction errors
compared with the numerical model, an error model was
constructed as a function of control parameters and objective
functions (i.e., well placement, water/gas injection rates and
NPV) based on the training information. In the optimisation
process, if the difference between two candidate optimal solu-
tions was smaller than the estimated proxy errors using the
error model, then the original numerical model would be
invoked to determine the ‘‘true value’’ of the candidate optimal
solutions. This method increased the accuracy of the optimisa-
tion and lowered the simulator calls. The optimisation results
were compared with the results of joint and sequential schemes
using MADS with a full reservoir simulator, it showed that the
proposed approach could yield a median error of 0.6% and an
R2 of 0.99.

Ampomah et al.186 introduced a method to handle the
co-optimization of the cumulative oil production and CO2

storage within the Farnsworth Unit (FWU). This work combined
these two objectives into a single objective function and
assigned a unit weight to each one to reduce computational
overhead and accelerating optimisation convergence. The com-
bined objective function was used to find the optimal solution
incorporating a quadratic response surface that was generated
as the proxy model. The proposed method proves computa-
tionally efficient in dealing with the co-optimisation problem.
Ampomah et al.240 presented an optimisation under uncer-
tainty workflow to ascertain optimum solution in the presence
of geological heterogeneity. A neural network optimisation
algorithm was utilised to optimise the multi-objective function
both with and without geological uncertainty. This work selected
vertical permeability anisotropy (Kv/Kh) as the geological uncer-
tain parameter. A developed risk aversion factor was used to
quantify and/or represent the confidence levels to assist in
decision making. Ampomah et al.241 presented a performance
assessment of storage and corresponding oil recovery utilising
a Latin hypercube sampling technique to access sensitivity
of uncertain parameters towards the pre-defined objective
function. A response surface model was constructed using
Box–Behnken (BB) deterministic sampling algorithm. A total
of 49 simulations were required for training data using this BB
design. Forty-nine additional simulations were required to
validate the constructed polynomial response surface method
(PRSM) model using the BB sampling algorithm. This work
elaborated a comprehensive reservoir characterisation frame-
work to quantify heterogeneity uncertainty that led to robust
prediction of long-term fate of CO2 stored within a subject
reservoir. Bromhal et al.242 introduced a work to summarise
how the National Risk Assessment Partnership (NRAP) handles
the long-term quantitative risk assessment for carbon storage.
NRAP’s method was to divide the carbon storage system into
components—reservoir, wells, seals, groundwater, atmosphere.
And reduced-order models (ROM) were developed for each
component using different approaches, such as look up table
(LUT), ANNs and PCEs, Polynomial Regression, RBFs,188 or
Response Surface techniques. The ROMs were mostly used to

study concentration and pressure information within the reservoir,
especially at the reservoir-seal interface during CO2 injection and
for up to 1000 years post-injection period. These pressures and
saturations could then be used as input parameters of wellbore or
seal leakage models to predict rates and volumes of leakage of
CO2. Different components could be assembled to simulate the
entire system within fractions of seconds. The integrated model
could also be used to estimate the probability of failure of a carbon
storage system with the help of the MC method.

Nwachukwu et al.243 used XGBoost to teach a proxy model
learning the structure of inputs-reservoir responses. They also
proposed a method to use physical well locations and well-to-
well connectivity as the input variables, which increased the
prediction accuracy. The Fast-Marching Method (FMM) intro-
duced by Sethian (1996) was used to calculate the propagation
of the pressure front and could be expressed as eqn (2):

ffiffiffiffiffiffiffiffiffi
a ~xð Þ

p
rt ~xð Þj j ¼ 1 (2)

where the a = k/+mct is the diffusivity, and t is the diffusive
time of flight in the Fourier domain. The diffusive time of flight
can be computed given the location of a well to indicate the
peak of pressure front to reach any point in the reservoir.
It could be obtained by solving the Eikonal equation and used
to represent the connectivity between any two points in the
reservoir; a higher t means lower connectivity. The proposed
approach was applied on five different scenarios to demon-
strate its feasibility, including (i) a homogeneous waterflooding
reservoir model with one injection well, (ii) a waterflooding
reservoir with channels and two injection wells, (iii) an ensemble
of 20 waterflooding reservoirs with two injection wells, (iv) a CO2-
flooding heterogeneous reservoir with two injection wells, and
(v) a CO2-flooding heterogeneous reservoir with spatially-varying
initial fluid saturation and three injectors. It was concluded that
the proposed method was able to build a suitable alternative
to numerical simulations with reasonable accuracy and this
method could be used to deal with problems concerning well-
placement optimisation.

4.2.2.3 CO2-Enhanced coalbed methane. CO2-Enhanced coalbed
methane (CO2-ECBM) takes the dual benefits of sequestering
CO2 in coal seams and displacing the coalbed methane to be
produced. The injection of CO2 in coal seams will induce
significant changes in the physical and chemical properties of
coal (such as pore structure, strength, elastic modulus, etc.),
which in turn affects the CO2 sequestration performance in coal
seams.244 There are few studies relate CO2-ECBM with ML
techniques, but most of those studies apply ML techniques to
predict properties of coal and gas, such as coal strength,244

CO2/CH4 adsorption isotherm,245,246 crack initiation pressure
of coal,247 coal identification,248 permeability,249,250 methane
production.251 Yan et al.244 proposed a hybrid artificial intelli-
gence model integrating back propagation neural network
(BPNN), GA and adaptive boosting algorithm (AdaBoost) to
predict the unconfined compressive strength of coal according
to coal rank, CO2 interaction time, CO2 interaction temperature
and CO2 saturation pressure. The adsorption behaviour of CO2
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and methane in coal seams plays a pivotal role in determining
the storage amount of the injected greenhouse gas. Feng
et al.245 employed seven ML algorithms in the prediction of
methane adsorption isotherm on coals. Meng et al.246 used the
ANN to predict the excess adsorption amount of supercritical
CO2 on coal from the fundamental physicochemical para-
meters of coal. The ML model was compared with other seven
traditional isotherm models. It was concluded the proposed ML
model is not limited to the isothermal conditions and does
not require excessive tedious experimental. Yan et al.247 used
several ML approaches to estimate the crack initiation pressure
(CIP) of supercritical CO2 fracturing (SCDF) in coal samples.
BPNN, extreme learning machine (ELM), and SVM were used to
construct the relation from inputs (vertical principal stress,
horizontal maximum principal stress, horizontal minimum
principal stress, fracturing fluid injection rate, fracturing fluid
temperature, tensile strength, elastic modulus, and Poisson’s
ratio) to the output (e.g., CIP). They pointed out that ground
stress, fracturing fluid injection rate, and fracturing fluid
temperature would have the highest impacts on the CIP of
SCDF. Coal permeability is controlled by various parameters
such as confining pressures, temperature, gas pressure, effec-
tive stresses, and cleat anisotropy. Sharma et al.249 predicted
the CO2 permeability of India coal at varied injection pressure
and effective stress using ANFIS. Yan et al.250 compared differ-
ent SVM-based approaches in the prediction of the change of
coal permeability in the CO2-ECBM process. The inputs consider
CO2 injection pressure, effective stress, temperature, buried depth
and coal rank. The model output is CO2 permeability.

Injecting CO2 into shale gas reservoirs is also known as one
type of CCUS. When the pressure and temperature is high, CO2

will have a higher adsorption capacity than methane, especially
in the micropore volume fraction, thus enhance gas recovery.
Researches regarding CO2 sequestration and shale gas recovery
with ML applications focus on the prediction of kerogen com-
ponents and types,252 methane/CO2 adsorption capacity,253–256

and process optimisation.237 The types, molecular components,
and structures of shale kerogen directly influence its adsorp-
tion and hydrocarbon generation. Kang et al.9 proposed a
method to combine ML with nuclear magnetic resonance
(NMR) spectra to predict the kerogen components and types
in shale. NMR spectrum was used as the inputs since the
kerogen molecule’s carbon skeleton information was mainly
concerned.256 The 2D spectrum was firstly converted into a 1D
matrix where the values representing the NMR spectrum’s
normalized values, and then was fed into fully connected
neural networks (FCNNs). The outputs of the FCNNs were
molecular structure labels corresponding to different NMR
spectrums. They concluded this method gives excellent perfor-
mance in the prediction of kerogen skeleton components and
types. Meng et al.253 utilised classical approaches and ML
approaches in the forecasting of the methane adsorption in
shale. Amar et al.254 applied gene expression programming
(GEP) and group method of data handling (GMDH) to predict
methane adsorption in shale gas formations. The pressure,
temperature, total organic carbon, and moisture were considered

as input parameters, while gas content (expressed in SCF per ton)
was the models’ single output. Bemani et al.255 estimated the
adsorption capacity of CO2, CH4 and CO2/CH4 mixture in shale
through an ML-based approach. They utilised the LS-SVM to
mimic the relationship between four inputs (pressure, tem-
perature, gas composition and TOC) to the gas adsorption
capacity. Wang et al.256 utilised different ML algorithms to
predict the adsorbed shale gas content using reservoir tem-
perature, TOC, vitrinite reflectance, Langmuir pressure, and
Langmuir volume. The methods used include MLR, SVM, RF
and ANN. Almasov et al.237 optimized the CO2 Huff-N-Puff
Process in a shale oil reservoir. The NPV was calculated using
proxies trained through LS-SVR and GPR. The well control
parameters were then optimized to have the optimal NPV.

4.2.2.4 Chemicals, fuels and building materials. CO2 can be
converted into valuable products (chemicals,257 fuels258 and
building materials259) through various physical, chemical or
biological pathways.260 One popular field is CO2 electrochemical
reduction to chemical feedstocks (such as carbon monoxide,
formic acid, methanol, methane, ethanol and ethylene) that
utilises both CO2 and hydrogen from renewable energy, to
achieve a circular economy.261 Catalyst development is one of
the key steps to realise selective, fast, and efficient reduction
processes of CO2 into valuable products.262 The ML algorithms
showed great advances in efficiently screening the huge number
of catalysts for the CO2 catalytic or electro-catalytic conversion.
Ulissi et al.263 proposed to use a neural-network-based surrogate
model together with DFT calculations to enable exhaustive
searches for active bimetallic facets and reveal active site motifs
for CO2 reduction. Recently, Zhong et al.264 claimed that Cu–Al
electrocatalysts can efficiently convert CO2 to ethylene with the
highest faradaic efficiency reported so far through ML and DFT
calculations. A ML-augmented chemisorption model has also
been proven to be an effective way for CO2 electroreduction to
valuable C2 species.265,266 Wu et al.267 found that the computa-
tional time and prediction errors could be reduced significantly by
employing an extreme GBR. Herein, 80 adsorbate–pair combina-
tions were identified to simultaneously enhance CH4 and C2

production on copper after screening 289 combinations. Wan
et al.268 also proved that GBR model exhibited the best prediction
performance to select the superior electrocatalysts for CO2

reduction. Moreover, Chen et al.269 developed a ML model based
on an extreme gradient boosting regression algorithm and simple
features, which can successfully and rapidly predict the Gibbs free
energy change of CO adsorption of 1060 atomically dispersed
metal–nonmetal co-doped graphene systems, and significantly
decrease time and costs. The ML methods show a great potential
in accelerating the catalyst development based on the existing
experimental results.270 Li et al.271 evaluated five ML algorithms
(SVM, KNN, DT, SGD and ANN) trained by experimental data to
classify the characteristics and performance of MOFs for fixing
carbon dioxide into cyclic carbonate. The results indicated the six
best metal ions (Mn, V, Cu, Ni, Zr and Y) and four best ligands
(tactmb, tdcbpp, TCPP, H3L) for new MOFs catalysts for carbon
dioxide fixation. In addition, biological fixation is also an

Review Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
9:

07
:2

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ee02395k


6148 |  Energy Environ. Sci., 2021, 14, 6122–6157 This journal is © The Royal Society of Chemistry 2021

attractive method to convert CO2 into organic compounds by
using organisms such as microalgae. Most of the work are focused
on experimental investigations of the CO2 conversion or utilisa-
tion efficiency.272 Recently, Cos-gun et al.273 studied the effect of
CO2 content on the lipid production performance by ML. They
indicates that ML is helpful to determine the optimum cultivation
conditions and guide for the future scale-up. Thus, the ML
approaches should be further applied in the biofixation processes
to identify the best CO2 fixation rate and provide the most
beneficial products.

CO2 can also be utilised to produce the building materials
through CO2 mineralisation. Machine learning is a powerful
tool to predict the durability and performance of concrete.
Taffese et al.274 applied ANN, DT and ensemble methods to
predict the carbonation depth with rationally low error, and the
ML models indicated that the CaPrM model can help designers
to optimise the concrete mix or structural design as well as to
define proactive maintenance plan. Song et al.275 developed a
machine-learning-aided platform (ANNs) to enable the rapid,
accurate, and high-throughput screening of fly ashes by pre-
dicting a structure-based proxy for their reactivity solely on the
basis of bulk chemical composition, which has potential to
maximise the beneficial utilisation of fly ashes such as CO2

adsorbents and construction materials.
4.2.3 Perspectives and prospects. ML has been widely

applied in CO2 storage and CO2-EOR projects. ML was utilised
accompanied with numerical simulation to assess the effects of
trapping mechanisms on how CO2 plume spreads and migrates
in the underground structure. Several researches focused on
CO2 solubility in oleic and aqueous phases. Various ML algo-
rithms has been employed to investigate relation between CO2

solubility and factors such as diffusivity, oil/gas–brine IFT,
temperature, pressure and brine salinity.

One critical reason for the employment of ML technologies
is to construct input–output relations when some critical
information is missed or fundamental theory is unclear, which
is challenging through traditional approaches. Studies have
been performed on how to monitor and detect CO2 leakage in
CCS projects using ML techniques with direct or in-direct
monitoring data. The data used include seismic data, downhole
monitoring information (such as pressure or TDS), porosity and
permeability maps, and injection/production rate, etc. Some
studies focused on employing ML to predict MMP that is a
critical parameter for CO2-EOR. When coupling CO2-EOR and
CCS, ML-based surrogate models (proxies) have been developed
to mimic the original high-fidelity numerical models and to
realise part of their functions. This can reduce computational
overhead and accelerate exponentially those time-consuming
jobs, such as running tens or hundreds of simulations to
optimise development schedules or performing uncertainty
analysis.

It is important to recognise that ML has been utilised in
numerous studies regarding CO2 storage, utilisation and CO2-
EOR, however, there are still expectations that a more universal
workflow will be generated to handle the whole process of
a CO2-EOR-CCS project including data interpretation, storage

effect modelling, leakage detection and optimisation jobs, etc.
Researchers and scientists are also encouraged to study increasing
the computational accuracy when building ML-based surrogate
models to substitute the original model. Effective use of databases
when applying ML warrants further studies.

5. Conclusions

In this work, we have reviewed and discussed the applications
of ML in CO2 capture, transport, storage and utilisation. Firstly,
we summarised ML algorithms and suitable platforms that
researchers can utilise to accelerate their CCUS research. ML
has been extensively applied in both absorbent- and adsorbent-
based CO2 capture processes. For ML in CO2 absorption, the
research is focused on process simulation and optimisation,
thermodynamic analysis, and solvent selections and design.
As for ML in CO2 adsorption, the research is focused on
applying ML in adsorbent synthesis and characterisation,
process modelling and optimisation, and process inversion.
It is clear that ML is a powerful tool for screening solvents and
adsorbents as well as process modelling and optimisation,
which can reduce the development time, capital and operating
costs for CO2 capture. ML is also utilised in oxyfuel combustion
for CO2 capture, in applications such as predictions of combus-
tion characteristics and pollutants emissions and monitoring
the combustion process via flame images. There are also some
studies available that utilise ML models for calcium looping
and/or chemical looping combustion for CO2 capture and this
is an area that requires more work. Some researchers have
started to apply ML to predict the performance of oxygen
carriers and Ca-based sorbents, process control and techno-
economic assessment. The experience so far for ML in CO2

absorption and adsorption, is that it can be adapted to the
calcium looping and chemical looping combustion for CO2

capture. For instance, using QSPR to find the optimal proper-
ties of oxygen carriers and Ca-based sorbents for CO2 separa-
tion. ML is also expected to play a vital role in the development
of CO2 utilisation technologies, such as screening catalysts for
CO2 catalytic or electro-catalytic conversion, combined with the
DFT calculations, and predicting suitable microalgae types and
optimal cultivation conditions for carbon fixation.

ML is also widely applied in CO2 transportation and storage.
It can be incorporated through low-cost sensing techniques to
find the hidden relationships in large, complex, and multi-
variate datasets, to measure the gas–liquid two-phase CO2 flow
with high accuracy and detect leakages during CO2 transporta-
tion. For ML in CO2 storage, several ML algorithms have been
used to investigate the effects of trapping mechanisms on the
dispersal and migration of the CO2 plume, to predict and
monitor CO2 leaking to ensure the safe and long-term storage
of injected CO2 and create the surrogate models for the
optimisation of CO2 CCS-EOR process and uncertainty analysis.

The distinct advantages of applying ML in CCS are that it
provides the potential to identify links between data/results
that aren’t readily identifiable, and it also provides alternative
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lower computing cost pathways. Researchers in CCS can apply
ML to accelerate the design and development of materials for
CO2 separation and conversion, measure the multiphase CO2

flow, evaluate the trapping mechanisms for CO2 storage, and
develop the surrogate model for process optimisation and
uncertainty analysis. It is important to mention that ML is a
data-driven method, which always requires a large quantity of
data to develop a generalised and robust model. The quality
of training dataset, the selections of input–output features
and the type of ML algorithms play a vital role to develop a
comprehensive model. As mentioned before, researchers have
illustrated suitable methods for feature selection, avoiding the
overfitting, and issues with small datasets, when applying ML
in CCUS. With the development of ML in CCUS, it is expected
that ML will be an efficient and vital tool to accelerate the
development of cost-effective CCUS systems to tackle the climate
change.

5.1 Overarching perspectives

The authors make the following recommendations to the
community for future work and research to increase the take
up of CCUS and encourage the development of ML in this field:

(1) Education of ML and CCUS. The education of future
generations in ML techniques and CCUS at undergraduate and
graduate levels is important and something that is not always
part of mainstream curriculums in engineering courses.
We therefore recommend ML and CCUS take a greater role in
Higher Education practices.

(2) Models should be generalised. Greater emphasis
should be placed on transferable learning-focused methods,
so that models do not need to be retrained for each material
and/or process. Generalised models, which can infer functional
information should be explored in CCUS.

(3) Models should offer a combined approach. The devel-
opment of combined models for materials and process and
systems optimisation (performed simultaneously) would prove
useful for deployment of CCUS technologies at commercial
scale. Most applications of ML so far have been limited to
evaluating the technical performance of various processes.
Efforts should be made to extend these to incorporate economic,
safety and reliability aspects, particularly through techno-
economic and life-cycle assessments.

(4) Models need to be tested at scale. More detailed
investigations on the effect of process scale (in capture/utilisation)
need to be performed. We need to know whether models/designs/
optimisation conducted at lab/pilot scales hold at industrial
scales, or will models need to be retrained and optimisation
redone during scaling up? Can ML models be truly multi-scale
(accounting for chemical properties of materials to overall
reactor performance) in their CCUS applications? This infor-
mation will be needed to increase collaboration with industrial
partners.

(5) Models need to compensate for lack of data. Further
develop hybrid ML methods that find ways to incorporate
intuition/domain knowledge to compensate for a lack of data.

(6) Models should go beyond black-boxes. Develop models
that are interpretable and explainable, otherwise there is a risk
of a lack of trust and acceptability in their take up.

(7) Process control models need developing. Process
control is challenging in many CCUS (and other chemical)
processes, more work needs to be conducted to understand if
ML can be applied to improve process control.

(8) Data and models should be open. We recommend that
when ML research is conducted in CCUS, then the training data
and ML models should be made publicly accessible in the open
domain to enable greater take up and deployment.

(9) Scale up CCUS and use ML where possible. As a final
statement, the Paris Agreement and the latest IPCC 6th working
group report provide the impetus for both CCUS deployment at
scale and harnessing ML to optimise and improve the perfor-
mance of CCUS technologies. We do not have much time to
mitigate the worst effects of climate change, and therefore we
must move from CCUS concepts to full scale plants as soon as
possible, and ML will be a key enabler of this goal.
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Nomenclature

KGa Mass-transfer coefficient
o Acentric factor
Na-Phe Sodium salt of L-phenylalanine
3DMA1P 3-Dimethylamino-1-propanol
R2 Coefficient of determination
CP Heat capacity
a Diffusivity
t Diffusive time of flight in the Fourier domain

Abbreviations

AAD Average absolute deviation
AARD% Average absolute relative deviation in percent
ANFIS Adaptive network-based fuzzy inference system
ABC Artificial bee colony
AE Acoustic emission
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AI Artificial intelligence
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
BPNN Back-propagation neural network
BR Bayesian regularization
BECCS Biomass energy with carbon capture and storage
BB Box–Behnken
CCS Carbon capture and storage
CCUS Carbon capture, utilisation and storage
CLC Chemical-looping combustion
CFB Circulating fluidised bed
CART Classification and regression tree
CAMD Computer-aided molecular design
CSA Concentration swing adsorption
CNN Convolutional neural networks
COFs Covalent organic frameworks
CSS Cyclic-steady state
DFT Density functional theory
DTs Decision trees
DBN Deep belief network
DNN Deep neural network
DQN Deep Q network
DQL Deep Q-learning
DBSCAN Density-based spatial clustering of applications

with noise
DOE Design of experiments
DAC Direct air capture
DFB Dual-fluidised bed
ESA Electric swing adsorption
EOR Enhanced oil recovery
EOS Equation of state
EU-ETS European Union Emission Trading Scheme
ELM Extreme learning machine
FMM Fast-marching method
FWU Farnsworth unit
GRU Gate recurrent unit
GPR Gaussian process regression
GRNN General regression neural network
GA Genetic algorithm
GA-ANN Genetic algorithm-artificial neural network
GP Genetic programming
GCS Geological carbon sequestration
GBR Gradient boosted regression
GCMC Grand Canonical Monte Carlo
SRM_G Grid-based surrogate reservoir model
GC Group contribution
GMDH Group method of data handling
GRU Gate recurrent unit
GVF Gas volume fraction
HPT Harmonic pulse testing
HDMR High dimensional model representation
IPC Intelligent predictive controller
IFT Interfacial tension
ILs Ionic liquids
KSVM Kernel support vector machine
LHS Latin hypercube sampling

LS-SVM Least square support vector machine
LSTM Long short-term memory
LMA Levenberg–Marquardt algorithm
LUT Look up table
ML Machine learning
MAPLE Machine-assisted adsorption process learner and

emulator
MDP Markov decision process
MAE Mean absolute error
MERQ Material, energy, rate and equilibrium
MADS Mesh adaptive direct search
MESH Mass, equilibrium summation and enthalpy
MOFs Metal–organic frameworks
MSA Microwave swing adsorption
MMP Minimum miscibility pressure
MIP Mixed-integer programming
MD Molecular dynamics simulations
MM Molecular mechanically
MEA Monoethanolamine
MC Monte Carlo
MLP Multi-layer perceptron
MLP-ANN Multi-layer perceptron artificial neural network
MLP-LMA Multi-layer perceptron Levenberg–Marquardt

algorithm
MARS Multivariate adaptive regression splines
MLR Multivariate linear regression
NRAP National risk assessment partnership
NDCs Nationally determined contributions
NET Negative emissions technologies
MDEA N-Methyl diethanolamine
NLP Non-linear programming
PDE Partial differential equations
PLS Partial least-squares
PLSR Partial least squares regression
PMI Partial mutual information
PSO Particle swarm optimization
PI Permutation importance
PZ Piperazine
PCE Polynomial chaos expansion
PRSM Polynomial response surface method
POCs Porous organic cages
PSA Pressure swing adsorption
PCA Principal component analysis
PCA–RWN Principal component analysis and random

weight network
PCR Principal component regression
QSPR/QSAR Quantitative-structure property/activity

relationship
QM Quantum-mechanically
RBF Radial basis function
RBFNN Radial basis function neural network
RF Random forest
RNN Recurrent neural network
ROM Reduced-order models
RL Reinforcement learning
ROZ Residual oil zones
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RSM Response surface methodology
RMSE Root mean square error
RPB Rotating packed bed
SCG Scaled conjugate gradient
SQP Sequential quadratic programming algorithm
SMR Steam methane reforming
SE-SMR Sorption enhanced steam methane reforming
SVM Support vector machine
SVMr SVM with a radial basis kernel
SVR Support vector regression
TLBO-RBF Teaching–learning-based optimization hybrid

model
TRL Technology readiness level
TSA Temperature swing adsorption
TVSA Temperature-vacuum swing adsorption
TGA Thermogravimetric analysis
TDS Total dissolved solids
VSA Vacuum swing adsorption
VLE Vapour–liquid equilibrium
WAG Water alternating gas
SRM_W Well-based surrogate reservoir model
ZIFs Zeolitic imidazolate frameworks
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