Issue 3, 2017

Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67

Abstract

A novel Zn/Co zeolitic imidazolate framework (ZIF) has been constructed by an easy and straightforward room temperature technique. Several characterization techniques such as SEM, TEM-EDX, single-crystal XRD and ICP have been applied to confirm that the structure formed is a sodalite (SOD) cage type structure. The Zn/Co-ZIF possesses a high nano-crystallinity and porosity with a large surface area. By tuning the amount of Co and Zn in the Zn/Co zeolitic imidazolate framework, the physical and chemical properties have been improved compared with those of the single metal frameworks (ZIF-8 and ZIF-67). Consequently, the Zn/Co-ZIF was investigated for two different applications; gas adsorption (CO2, CH4 and N2) and catalysis (CO2 conversion to cyclic carbonates) and the obtained results were compared with the performance of previously reported single metal frameworks (ZIF-8 and ZIF-67). Additionally, hydrolytic stability tests under ambient conditions and immersed in water at 75 °C were performed and pointed out that Zn/Co-ZIF exhibits a higher stability. Moreover, based on these results, the Zn/Co-ZIF demonstrates better properties compared with ZIF-8 and ZIF-67.

Graphical abstract: Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67

Supplementary files

Article information

Article type
Paper
Submitted
11 Sep 2016
Accepted
28 Oct 2016
First published
29 Oct 2016

J. Mater. Chem. A, 2017,5, 952-957

Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67

K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen and F. Verpoort, J. Mater. Chem. A, 2017, 5, 952 DOI: 10.1039/C6TA07860E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements