Issue 42, 2022

Bio-orthogonally activated tetraphenylene-tetrazine aggregation-induced emission fluorogenic probes

Abstract

Tetrazine-based bio-orthogonally activated fluorogenic probes have drawn great attention due to their excellent performance in bioimaging; however, most of them suffer from aggregation-caused quenching (ACQ) problems. Herein, we developed a set of novel tetrazine-modified tetraphenylenes (TPEs) as bio-orthogonally activated aggregation-induced emission (AIE) fluorogenic probes. Both the fluorescence and AIE features are quenched by tetrazine, which is mediated by the through-bond energy-transfer (TBET) mechanism, and are activated upon converting tetrazine to pyridazine via the inverse electron-demand Diels–Alder (iEDDA) reaction. The activated cycloadducts displayed a notable fluorescence enhancement, a large Stokes shift, a high fluorescence quantum yield, and evident AIE-active features. Manipulating the length and position of the π-linker enables fine-tuning of the photophysical properties of the probes, while an overlong planar π-linker leads to AIE-to-ACQ transformation. We also designed bi-tetrazyl-substituted probes, which exhibited a higher turn-on ratio than the mono-tetrazyl analogs owing to the ‘double-quenched’ function. When they reacted with double-clickable linkers, fluorescent macrocycles were obtained because of the restriction of the free rotation of the phenyl rings of TPE. Using an organelle-pretargeting strategy, we succeeded in applying these probes for mitochondria-specific bio-orthogonal imaging in live cells under no-wash conditions, which is expected to provide a powerful tool for biomedical applications.

Graphical abstract: Bio-orthogonally activated tetraphenylene-tetrazine aggregation-induced emission fluorogenic probes

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2022
Accepted
29 Sep 2022
First published
30 Sep 2022

J. Mater. Chem. B, 2022,10, 8642-8649

Bio-orthogonally activated tetraphenylene-tetrazine aggregation-induced emission fluorogenic probes

Y. Teng, R. Zhang, B. Yang, H. Yang, X. Li, D. Yin, X. Feng and Y. Tian, J. Mater. Chem. B, 2022, 10, 8642 DOI: 10.1039/D2TB01893D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements