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Importance of two-dimensional cation clusters
induced by protein folding in intrinsic intracellular
membrane permeability†
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We investigated the cell penetration of Sp1 zinc finger proteins (Sp1 ZF) and the mechanism via which

the total cationic charge and distribution of cationic residues on the protein surface affect intracellular

trafficking. Sp1 ZFs showed intrinsic cell membrane permeability. The intracellular transfer of Sp1 ZFs

other than 1F3 was dependent on the total cationic charge. Investigation of the effect of cationic

residue distribution on intracellular membrane permeability revealed that the cellular uptake of unfolded

Zn2+-non-coordinating Ala mutants was lower than that of the wild type. Therefore, the total cationic

charge and distribution of cationic residues on the protein played crucial roles in intracellular

translocation. Mutational studies revealed that the two-dimensional cation cluster on the protein surface

significantly improved their cellular uptake. This study will contribute to the design of artificial cargoes

that can efficiently transport target substances into cells.

Introduction
Biopolymers play important roles as materials for biomedicines
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exposed on the protein surface of GFP and examined its
membrane permeability and ability to introduce other proteins
into cells.43,44 GFP variants have a high theoretical net charge of
�30 to +48. Positively supercharged GFPs can bind to cell
surface proteoglycans, undergo endocytosis in an energy- and
clathrin-independent manner, and efficiently invade multiple
mammalian cells. Furthermore, super-positive GFP can be used
to introduce siRNAs or plasmid DNA into cell lines without
eliciting any cytotoxic effect, thereby allowing for genome
editing and making this GFP variant a powerful and versatile
biopharmaceutical platform.45,46 Moreover, the supercharged
proteins have been found to possess better cell membrane
permeability than conventional CPPs because of their high
positive charge.43,44 Thus, the total cationic charge could be
significantly increased for more efficient intracellular delivery.
Similarly, Schepartz et al. introduced a cationic amino acid into
the helical structure of type II polyproline to create an artificial
peptide with a high total cationic charge while maintaining the
structure. The authors showed that peptides with enhanced
cationic charge exhibited higher cell membrane permeability
than conventional CPPs and that an increase in the total
amount of positive charge enhanced cellular uptake.47,48

In addition, some naturally occurring proteins with extre-
mely high positive charges can deliver proteins into cells in a
functional manner.49 One example is the DNA binding zinc
finger (ZF) transcription factor, which is the target of this study.
Schepartz et al. were the first to investigate cell membrane
permeability using the ZF motif, ZF5.3, and the underlying
mechanism by varying the number of Arg residues in the
primary sequence.50 Several groups have also studied the cell
membrane-specific permeability of ZFs and their application
for the intracellular delivery of functional molecules.51–57 Thus,
the ability to permeate the cell membrane may be a part of
the intrinsic biological function of some naturally occurring
proteins, which may contribute to hitherto unknown biological
roles in vivo.

Therefore, the efficient intracellular delivery of proteins can
be achieved using natural proteins as templates and redesign-
ing them for a higher total cationic charge on the surface while
retaining their folding structure. In short, we speculated that
the efficient formation of two-dimensional cation clusters on
the protein surface platform due to folding, rather than simply
increasing the overall cationic charge of the peptide or protein,
would be a crucial factor for efficient protein transport into
the cell. We thus investigate the mechanism via which two-
dimensional cation clusters on a protein surface affect cellular
uptake by controlling the folding of a protein with a fixed total
charge instead of changing the total positive charge of the
protein via mutations. ZFs are one of the best model proteins
for this purpose. ZF induces the formation of a bba structure,
which is essential for DNA binding ability, by coordinating with
Zn2+.58,59 The mutation of Cys and His, which are involved
in coordination, can control Zn2+ binding and consequently
the formation of the bba structure. The regulation of the ZF
structure by Zn2+ coordination, combined with its inherent
membrane permeability, can be used to investigate the effect

of the two-dimensional cation clusters formed on the protein
surface on cell membrane permeability.

Previously, we have examined the membrane permeability of
full-length and deficient mutants of the GAGA ZF derived from
Drosophila melanogaster in HeLa cells and found that both the
wild type and its deficient mutant were capable of translocating
into the cytoplasm of HeLa cells without CPP.56 In this study,
we used Sp1 ZF, a human transcription factor-derived protein
consisting of three-finger units, as a new target protein.58,59 The
Sp1 ZF consists of three Cys2His2-type ZF domains (1F1, 1F2,
and 1F3) that link to form a tandem structure (Fig. 1). Further-
more, the protein can bind to a highly homologous DNA
sequence (GGGCGGGG). Here, full-length Sp1 ZF (3F123) and
ZFs with different numbers of finger domains (1F1, 1F2, 1F3,
2F12, and 2F23) were created (Fig. 1) to investigate the effects of
the number of finger units, total cationic charge, and two-
dimensional cation cluster structure formed via folding on the
protein surface on the cell membrane permeability of ZFs.

Results and discussion
Observation of subcellular distribution of Sp1 ZFs using living
HeLa cells

Membrane permeabilization experiments for each Cy5-labeled
Sp1ZF were performed using living HeLa cells, and the localiza-
tion of the peptides in cells was observed using confocal
microscopy (Fig. 2). Since serum has previously been shown
to significantly inhibit protein uptake into cells, cellular uptake
experiments were performed using serum-free Opti-MEM to
avoid non-specific interactions between ZF and serum proteins.
In addition, cell fixation significantly impacts the observation
of the subcellular localization of peptides using confocal
microscopy.60 Therefore, living cells were used in our experiments.
Hoechst 33342 was used to stain the nuclei, which presented a
blue fluorescence (Fig. 2). Punctate red fluorescent signals were
observed around the nucleus for all peptides, indicating that
Sp1 ZFs had permeated the cell membrane and entered cyto-
plasm without the external CPP. Based on our previous obser-
vations regarding cell membrane permeabilization using GAGA
ZF, we speculate that the punctate fluorescence signals may be
due to the uptake of peptides via endocytosis during intra-
cellular transfer and internalization into endosomes in the
cytoplasm.56 To understand the mechanism of the intracellular
delivery of Sp1 ZFs, we performed intracellular permeabiliza-
tion experiments in Sp1-1F3 at 4 1C, as ATP-dependent endo-
cytic processes halt at this temperature (Fig. S1, ESI†). The
punctate fluorescence signals around the nucleus observed at
37 1C were not observed at 4 1C, indicating that the cell
membrane permeation of Sp1 ZF did not occur directly through
the cell membrane, but through an energy-dependent process
such as endocytosis. Gaj et al. have examined endocytic path-
ways involved in the cellular uptake of ZFs, using Dynasore and
Nystatin, which inhibit clathrin- and caveolin-dependent endo-
cytosis, and Amiloride and Cytochalasin D, which inhibit
macropinocytosis.53 Their results indicate that ZFs are mainly
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taken up into cells by macropinocytosis and less frequently by
caveolin-dependent endocytosis. It is likely that Sp1 ZFs are
taken up by a similar endocytosis pathway.

In addition, the cytotoxicity of ZF treatment for 2 and
12 hours was examined by WST-8 assays (Fig. S2, ESI†). As a
result, no significant difference between ZF-treated and non-
treated cells was observed at both time points, indicating no
significant cytotoxicity of ZF treatment.

Comparison of intracellular trafficking of Sp1 ZFs with various
fingers

We quantified the intracellular transport of each Sp1 ZF by
determining the geometric mean of their fluorescence intensity
in the intracellular membrane permeability experiment using
flow cytometry and compared their cell permeabilities (Fig. 3).
The extent of the cellular uptake of Sp1 ZFs increased in the
order of 3F123 4 2F23 4 1F3 4 2F13 4 2F12 4 1F1 4 1F2,
based on the number of finger domains, except for 1F3.
Gaj et al. created tandem ZFs consisting of one to four identical
single finger domains linked via a linker and examined their
membrane permeability. The authors found that up to three
finger domains had increased cellular uptake as the number of
finger domains increased, suggesting that the effect of
increased positive charge, rather than steric hindrance, due
to the increased number of finger domains facilitated cellular
uptake.53 We have previously shown that cellular uptake effi-
ciency mainly depends on the magnitude of the net positive
charge of the peptide.56 The theoretical value of the total charge
of each Sp1 ZF was determined from the equation (NArg + NLys) �
(NGlu + NAsp) (Table 1), where Na.a. is the total number of amino
acids present in the primary sequence (Arg and Lys are positively
charged, while Glu and Asp are negatively charged). As a result,
the total cationic charge of each Sp1 ZF was as follows: 3F123 4
2F13 4 2F23 = 2F12 4 1F3 4 1F1 4 1F2. A comparison of the
charge and cellular uptake revealed that the extent of intracellular
translocation tended to increase with the total cationic charge of

Fig. 2 Cy5-labeled Sp1 ZFs (Sp1-3F123, 2F12, 2F23, 1F1, 1F2, and 1F3)
transduced into HeLa cells. Peptide localization in the cells was observed
using confocal microscopy: scale bar, 10 mm.

Fig. 1 (A) Amino acid sequences of Sp1 ZFs. Cys and His residues involved in Zn2+ coordination are marked with asterisks. Mutation sites in the 1F1-Ala,
1F2-Ala, and 1F3-Ala sequences are shown in red. The Ala substitution sites in the 1F3-N-AA, KR-AA, and C-AA sequences are represented in green,
light blue, and pink, respectively. (B) Representation of Cy5-labeled ZF peptide based on Sp1 ZF.
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the positive charge in 1F2 were located in an inner cleft (Fig. 8b
and Movie S2, ESI†). On the contrary, compared to that
observed in other finger domains, a positive charge accumula-
tion region (blue region) was detected on one side of the 1F3
surface, which may be responsible for the high intracellular
membrane permeability of 1F3 (Fig. 8C and Movie S3, ESI†).

The mechanism underlying the high mobility of 1F3 was
further investigated using the superimposed image of the
positively charged part of the cation cluster shown in the left
panel of Fig. 8c and the basic amino acid residues involved in
its formation (Fig. 9). The results clearly showed that the cation
clusters efficiently are formed by the proper arrangement of
several basic amino acids on one side of the 1F3 surface.
Furthermore, the cation cluster regions can be broadly classi-
fied into three types: the two terminal portions consisting of
N-KK and C-KK sequences, the interior of the finger domain
consisting of the KR sequence, and the Lys, His, and Arg
residues located on the opposite side. In all mutants of N-AA,
C-AA, and KR-AA, the amount of intracellular transfer was lower
than that of the wild type. This may be because the substitution
of a basic amino acid with an Ala residue disrupted a part of the
well-formed two-dimensional cation cluster, in addition to
reducing the positive charge. Furthermore, among the three
mutants, the most striking decrease in cell membrane perme-
ability was observed for the KR-AA mutant.

We hypothesized that one reason for the difference in
membrane permeability for the three mutants may be due to
differences in the structural fluctuations in the three regions
of the cation cluster described above. The cationic portions
of both the N-terminal and C-terminal KK sequences were
exposed on the surface, which may be advantageous for cell
entry. However, an NMR analysis of 1F3 revealed that these
areas fluctuate substantially in aqueous solutions,62 which may
prevent their close interaction with the cell membrane surface.
In contrast, the KR sequence, together with other basic amino
acids, forms a two-dimensional surface-exposed cation cluster
at the center of the finger domain surface; furthermore, the
NMR results indicated that the fluctuations in this area are
small and that it forms a relatively rigid structure. These results

suggest that the two-dimensional cation clusters, which form
over a wide area on the surface of the protein and have few
fluctuations, play an important role in the permeation of
proteins and peptides through the cell membrane. Moreover,
a comparison between the cell membrane permeability of
oligopeptides with equal numbers of Arg and Lys residues
has shown that the former often exhibit a several times higher
intracellular translocation than the latter, suggesting that the
Arg residue is more important for cellular uptake.64 Thus, it
may also be necessary to consider that the large reduction in
cellular uptake observed in the KR-AA mutant is due to Ala
substitution of Arg residues in the KR sequence, unlike for the
other two mutants. Although the present results are interesting,
it is necessary to study other proteins, including ZFs, to show
more generality.

Conclusions
In this study, we investigated the effects of the number of finger
domains of the Sp1 ZF target protein and the two-dimensional
cation cluster structure consisting of basic amino acids on
membrane permeability using confocal microscopy and flow
cytometry measurements. We observed that all Sp1 ZFs used in
this study were taken up by the cell via endocytosis and were
distributed around the cell nucleus in the endosomal state.
Furthermore, the amount of intracellular trafficking increased
with the number of finger domains, i.e., the total positive charge
of ZFs. However, the intracellular translocation of 1F3 and finger
domains containing 1F3 deviated from this observation, sug-
gesting that factors other than total cation charge affected
intracellular translocation. We also examined the membrane
permeability of the 1F3 mutant. The two Cys residues involved
in Zn2+ coordination were mutated to Ala residues, which did
not change the total cationic charge. The amount of intra-
cellular translocation markedly decreased compared to that of
the wild type, indicating that a folded structure is important for
intracellular translocation efficiency. The spatial modeling of
1F3 indicated that the less fluctuating, surface-exposed, and
two-dimensional cation cluster structures formed on the sur-
face of the finger domain portion of 1F3 played an important
role in the intracellular translocation ability of 1F3. The inter-
action of basic peptides enriched in Arg and Lys residues with
proteoglycans on the cell surface was important for the perme-
ability of the cell membrane. Therefore, it is expected that the
formation of a two-dimensional cation cluster structure with an
appropriate spatial arrangement and less fluctuation on the
surface of the peptide/protein during folding can lead to more
efficient interaction with proteoglycans, which are also present
on the surface of the cell membrane, activating the signal for
endocytosis and increasing the efficiency of the intracellular
transfer of peptides and proteins. Therefore, GFP with its rigid
backbone, which has been used for preparing supercharged
proteins, is considered to be one of the best templates for the
formation of two-dimensional cation clusters on protein sur-
faces. In the future, natural proteins that can act as templates

Fig. 9 Superimposed structure of basic amino acid residues involved in
the formation of cation clusters on the charge distribution diagram of 1F3
shown in the left panel of Fig. 8C. The N-terminal KK sequence, C-terminal
KK sequence, and KR sequence of 1F3 are represented in green, pink, and
blue, respectively.
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