Journal of Materials Chemistry C

CORRECTION

View Article Online

Cite this: J. Mater. Chem. C, 2021, 9.12426

Correction: Electrochemical gating enhances nearfield trapping of single metalloprotein junctions

Albert C. Aragonès* and Katrin F. Domke*

DOI: 10.1039/d1tc90190g

Correction for 'Electrochemical gating enhances nearfield trapping of single metalloprotein junctions' by Albert C. Aragonès et al., J. Mater. Chem. C, 2021, DOI: 10.1039/d1tc01535d.

rsc.li/materials-c

The authors regret an error in the x-axis scale of Fig. 2c in the published article (the value of 400 cm^{-1} should be replaced with 800 cm⁻¹). The corrected version of Fig. 2 is shown below (the caption remains unchanged). Please note that this error does not affect any of the discussions and conclusions reported in the article.

Fig. 2 (a) EC-STM image (200 nm \times 200 nm, z-scale = 1 nm) of an Azu-functionalized Au(111) surface in 50 mM NH₄Ac buffer at pH 4.55 with U_{sample} = 1000 mV, $U_{\text{bias}} = 300$ mV, $I_{\text{t}} = 1$ nA. (b) CV of Azu under the conditions of (a) with a scan rate of 50 mV s⁻¹. (c) Raw TER spectra obtained with *ca*. 9.49 mW μm^{-2} farfield power density at 1.96 eV excitation energy and 120 s integration time of oxidized Cu(ii) (U_{sample} = 1000 mV, red) and reduced Cu(i) (U_{sample} = 500 mV, blue) Azu, respectively. LSPR mode energies as extracted from Lorentzian fits to the TER spectral background are indicated with dotted vertical lines. (d and e) Examples of EC-PBJ captures of Azu junctions at (d) $U_{sample} = 500$ mV (blue, τ_{red}) and (e) $U_{sample} = 1000$ mV (red, τ_{ox}) with maximum (τ_{m}) and minimum (τ_{m}) laser power conditions of 9.49 mW μm^{-2} and 6.72 \times 10⁻² mW μm^{-2} , respectively.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.