New thiophene-based conjugated macrocycles for optoelectronic applications†

John Marques dos Santos, a Lethy Krishnan Jagadamma, a, b Joseph Cameron, a Alan A. Wiles, a, b Claire Wilson, a Peter J. Skabara, a *, b Ifor D. W. Samuel a, b * and Graeme Cooke a *

Thiophene-based semiconductors are amongst the most successful materials in organic electronics. In this contribution, we present the synthesis and characterisation of two thiophene-based macrocycles as well as their evaluation in organic-electronic devices. McT-1 is composed of ten thiophene moieties, whereas in McT-2, four additional electron-deficient benzothiadiazole moieties are incorporated to form a donor–acceptor (D–A) π-system. Red-shifted and broadened absorption spectra as well as more positive redox potentials are observed in McT-2, whereas McT-1 displays a sharper absorption band with a higher extinction coefficient. Macrocycle McT-1 shows emission in the yellow region whereas McT-2 displays emission in the red wavelength region. DFT calculations predict the macrocycles to comprise of mainly the E,E isomers with a near-planar structure, which is further supported by the single crystal X-ray structure for McT-1. Their charge transporting properties are determined by fabricating thin-film OFETs. The photovoltaic properties of McT-1 and McT-2 are also investigated by fabricating bulk heterojunction (BHJ) devices and their potential as photodetectors has been evaluated.

Introduction

Small molecules and polymers used as active components of organic electronics have received a very high level of attention in recent decades owing to their wide range of attractive features including solution processability, tunable absorption and energy levels, high carrier mobility, and photochemical and thermal stability.1-9 Several devices have evolved through the use of these materials, such as field-effect transistors (FETs) for microelectronics,10,11 light-emitting diodes (LEDs) for lighting and displays,12-15 sensors,16-18 lasers,19-21 molecular switches22-24 and photovoltaics.25-31 Despite the tremendous achievements in recent years that have led to the commercialisation of these devices, significant efforts are still devoted to enhance their performance, improve their processability and stability and understand their functionality. Hence, it is of great interest to investigate different or novel molecular systems to allow the development of newer materials with enhanced processability and performance.32-37

In both polymer and small molecule based bulk-heterojunction (BHJ) organic photovoltaics (OPVs), the self-assembly of photoactive materials is crucial to generate efficient devices.38,39 Efficient interaction between donor and acceptor materials is needed to facilitate charge separation,40 and appropriate inter-molecular organisation favours charge transport.41 Fibre-like domains of active materials with desirable phase-separation or nanowires are often described as efficient morphologies for BHJ OPVs.36,42 Molecular organisation and orientation are also important for other technologies such as organic light-emitting diodes (OLEDs)43,44 and organic field-effect transistors (OFETs).45-49 However, despite being an important and effective concept, the control of the construction of such assemblies is challenging.50,51 In this regard, molecular recognition is promising to manipulate molecular organisation for effective self-assembly of photoactive materials.52

Conjugated macrocycles appear in this scenario as an emerging family of materials with great potential for optoelectronic applications.53-56 These materials possess unique features including their controlled structure that can facilitate inter-molecular arrangement,57 and their defined cavity that can be used to host electronically active molecules such as fullerene derivatives.58,59 Furthermore, by virtue of their cyclic structure, they do not feature end-group functionalisation, which often result in charge traps in linear molecules.60 In addition, their
extended conjugation with highly aligned molecular frontier orbitals often leads to desirable electronic properties such as high intramolecular charge transfer (ICT).60–62 These positive features can be exploited to deliver optimum morphologies in optoelectronic devices and pave the way to more efficient charge transfer/transport.

A great number of reports have made available protocols for the synthesis of macrocycles composed of a wide variety of aromatic moieties such as: benzene, carbazole, thiophene, perylene, porphyrin, BODIPY, furan, acetylene and so forth.35,54,56,63–73 Previous work reports the synthesis of cycles of different molecular lengths and cavity sizes.74,75 Some also report the formation of stable supramolecular complexes with different substrates.76–81 However, in spite of such interesting discoveries, examples of direct application of these interesting molecules in optoelectronic devices are still limited.82–89 Some of the pioneering reports include, for instance, a triphenylamine-based compound (namely 3B2A) reported by Zhang et al.86 and a perylene diimide (PDI)-based compound (namely cPBPB) reported by Ball et al. (see Fig. S1 in ESI†).55,58 The former was applied as a donor material in a BHJ device showing a power conversion efficiency (PCE) of 2.66% in a blend with a fullerene derivative (PC71BM), whereas the latter was built to mimic fullerenes and take advantage of their useful properties such as three dimensional shape and fully delocalised π-space with a low lying LUMO. Interestingly, the BHJ cell incorporating cPBPB as the acceptor (with PTB7-Th as the donor) reached a PCE of 3.5% that outperformed an unfolded oligomer and a polymer of the same kind. These recent results emphasise the potential of conjugated macrocycles for optoelectronic applications.

In this contribution, we report two new thiophene-based conjugated macrocycles. Compound McT-1 possesses a conjugated π-system composed of only thiophene units, whereas the formation of a donor–acceptor [D–A] system is explored in compound McT-2 with the insertion of two benzo[b]thiophen (BT) moieties in each semicircular unit (Fig. 1). Thiophene moieties are found in many of the high efficiency small molecule and polymer-based OPVs27,91–96 and OFET materials10,11,46 due to their excellent charge transport, high stability and polarisability, fluorescence properties and ability to form highly electron-conductive composites. Also, in comparison with benzene, thiophene shows weaker aromaticity and lower steric hindrance between neighbouring units; which leads to smaller band-gaps due to increased quinoidal character upon π-electron delocalisation and improved planarity.25,75,97–101 Therefore, it is of great importance to investigate macrocyclic systems of this kind. Utilising the well-established McMurry reaction, alkyne-spaced building blocks were used in order to suppress steric hindrance and facilitate the cyclisation step, as is common when constructing such molecular systems.57,74 However, considering results discussed in our previous report which pointed that alkyne spacers are detrimental to charge transfer, charge generation and ultimate photovoltaic performance in thiophene-based molecules,102 the macrocycles were designed to minimise the number of alkyne groups compared to other reported systems, with only four present in each macrocycle. The synthesis of the new macrocycles was accomplished via dimerisation of two oligothiophene units, in which the concentration of the reacting species was key to yield the desired products. The UV-vis absorption and emission profiles are compared, while DFT calculations are used to investigate the nature of the electronic transitions and probe both their frontier molecular orbitals and molecular conformation.

A single crystal X-ray structure was obtained for McT-1, from which it was possible to confirm its molecular structure and arrangement. Their potential as semiconductors is unlocked by fabricating bottom-contact OFETs and BHJ photovoltaic devices (with the macrocycles as the donor and PC71BM as the acceptor). Their relatively narrow spectral bandwidth allowed us to investigate their use in photodetectors without using filters in colour image sensing.

Results and discussion

Synthesis and molecular design

The synthetic pathway for the target molecules involved the use of Sonogashira reactions to produce the oligothiophene building blocks (see ESI†) and a McMurry coupling for the cyclisation steps (see Scheme 1). The Sonogashira cross-coupling reaction has been used extensively in the construction of these systems, providing the appropriate spacing of adjacent thiophene moieties and suppressing twisted dihedral angles.103,104 However, in this work the number of alkyne were minimised, contrasting with the most common thiophene-based macrocycles reported.57,74 This leads to a challenging molecular arrangement of the parallel thiophenes since they usually tend to arrange in an anti-conformation when in a linear system.93,101

In order to achieve an optimal yield by facilitating the cyclisation and suppressing polymerisation, the total concentration of

Fig. 1 Scheme showing the thiophene-based macrocycles synthesised and investigated in this study.
the reacting species (compounds 1 and 2) was optimised as summarised in Tables S1 and S2 (provided in the ESI†). For McT-1, the yield improved significantly on going from a 1.8 mM (2%) to a 3.6 mM (22%) concentration of compound 1. For McT-2, only 7% yield was achieved using a 1.0 mM concentration of compound 2, while at a 1.3 mM concentration the yield improved to 17%. In both cases, further increasing the concentration of the starting material decreased the yield considerably, possibly due to polymerisation now being more favoured.

Thermal properties

The thermal properties of McT-1 and McT-2 were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA was studied to compare the thermal stability of the two macrocycles with the plots shown in Fig. S12 (ESI†). The temperature of 5% mass loss for McT-1 was 401 °C, showing that this macrocycle has good thermal stability. However McT-2 showed a much-reduced temperature of 5% mass loss at 228 °C and suggests that the increased strain caused by increasing the size of the macrocycle leads to a reduction in its thermal stability.

DSC plots are shown in Fig. S13 (ESI†). The heating and cooling scans for McT-1 show no obvious phase transitions between 25 °C and 300 °C, which is an advantage for device processing as the material can be annealed without crystallisation and subsequent formation of grain boundaries. On heating McT-2, there is a melt peak at 50.1 °C and in the reverse scan the peak at 45.5 °C indicates crystallisation upon cooling. This phase change at relatively low temperature may be detrimental to device performance.

Optical and electrochemical properties

The absorption spectra of both macrocycles (5 × 10⁻⁶ M in CH₂Cl₂) are shown in Fig. 2. McT-1 showed a weak absorbance band in a shorter wavelength region, ca. 300 nm, and a sharp, strong absorbance band at 438 nm (maximum absorbance, λmax) (Fig. 2(a)). McT-2, however, presented two strong absorbance peaks at shorter wavelengths (ca. 325 nm and 375 nm) and a λmax at 476 nm (Fig. 2(b)). The bands at maximum absorbance are often a result of S0–S1 and S0–S2 type transitions. Notably, this band red-shifts for the BT-containing macrocycle McT-2 (ca. 30 nm) with respect to McT-1, with the former also showing a broader spectrum and a high absorbance throughout most of the region covered. This phenomenon is ascribed to a pronounced ICT effect since the electron-withdrawing BT moieties induce a push–pull effect in this D–A system. Furthermore, new bands observed at around 320–400 nm are likely originating from the BT unit's

Scheme 1 Synthesis of compounds McT-1 and McT-2.
The emission spectra of the two macrocycles were recorded in solution (Fig. 2(a and b)). McT-1 shows an emission peak at 560 nm (with a vibronic shoulder around 600 nm) and correspond to optical band-gap (E_{gap}) values of 2.21 eV and 2.02 eV, respectively. In thin films (Fig. 2(c)), the two macrocycles present bathochromic shifts in the insurgence of a shoulder at ca. 545 nm is seen which is perhaps a vibronic half-maximum (FWHM) (ca. 70 nm for McT-1 and 82 nm for McT-2). It is also noteworthy that both compounds have large Stokes shifts despite the circularly locked structure. The Stokes shift was higher for McT-2 (ca. 166 nm) than for McT-1 (122 nm), possibly due to rotation of the BT units after excitation.106–108 A larger Stokes shift has also been observed in a BT-containing [10]cyclopaphenylene [BT[10]CPP] compared to its parent [10]CPP.109

To study the possible interactions between the macrocycles and fullerenes, fluorescence titration was performed with McT-1 and McT-2 in toluene solution, since fluorescence quenching can be indicative of intermolecular interactions.110,111 This was done through the addition of aliquots of a solution of C_{60} in toluene. When analysing the fluorescence intensity upon addition of small amounts of C_{60} (see Fig. S14, ESI†), one can notice a substantial quenching happening only after a considerable increase of C_{60} concentration in both cases. In fact, ca. 65% of the intensity was only quenched after an addition of ca. 300 equivalents of C_{60} to 1 equivalent of McT-1 and ca. 125 equivalents of C_{60} to 1 equivalent of McT-2. According to these

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of optical and electrochemical data of McT-1 and McT-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dye</td>
</tr>
<tr>
<td></td>
<td>(nm)</td>
</tr>
<tr>
<td>McT-1</td>
<td>438</td>
</tr>
<tr>
<td>McT-2</td>
<td>476</td>
</tr>
</tbody>
</table>

* Measured in dichloromethane (5×10^{-6} M). † Measured in thin film. ‡ Calculated using the formula $E_{\text{gap}} = \frac{1240}{\lambda_{\text{max}}}$; § Measured by square wave voltammetry in dichloromethane (1×10^{-3} M) and calibrated versus the ferrocene/ferrocinium (Fe/Fe⁺) redox couple. ‡‡ Calculated using the formula $IE = −[E_{\text{red}} + 4.8 \text{ eV}]$. ‡§ Calculated using the formula $E_{\text{band}} = |IE − EA| \text{ eV}$.114
results, we hypothesised that limited cavity filling or complexation between the McT series and C_60 took place in these solutions.

Cyclic voltammetry (CV) and square wave voltammetry (SWV) were used to study the electronic properties of the two molecules. The CV measurements revealed one clear oxidation wave with non-reversible character for McT-1, whereas for McT-2, three low intensity irreversible peaks at ca. 0.0 V, 0.4 V and 0.6 V and a quasi-reversible reduction wave was seen [Fig. 3(a and b)]. The SWV measurements revealed in turn a clearer peak of reduction for McT-1 and two clear reduction peaks for McT-2 (Fig. S15, ESI†). Utilising the SWV values to estimate the energy levels, the ascribed first reduction peak (E½red) of McT-2 is more positive than for its counterpart, resulting in a lower-lying electron affinity (EA, $/C_0$ 2.9 eV) than for McT-1 ($/C_0$ 2.9 eV). The first oxidation peak (E½ox) of McT-1 was found at 0.17 V, resulting in a high-lying ionisation energy (IE) of 5.0 eV. These low values of $E_{1/2ox}$ and shallow IE are typical of these types of thiophene-based macrocycles.57,72,76 Surprisingly, a higher IE was observed for electrochemical measurements performed on McT-2 (−4.8 eV). Hence, based on these data, both McT-1 and McT-2 are considered donor type materials, with a fundamental gap (E_{fund}) of 2.1 eV and 1.6 eV, respectively (in accordance with the E_{opt} obtained from solution), and can be used with PCBM as acceptors in BHJ cells (see energy level diagram in Fig. 3(c)).112,113 The electrochemical data are given in Table 1.

Theoretical calculations

Compounds McT-1 and McT-2 were studied using density functional theory (DFT) calculations (B3LYP/6-311G(d,p) level of theory in the gas-phase) to investigate their dihedral angles, conformation and frontier orbital distribution. To gain insight into whether these specific macrocycles would be generated as E,E or Z,Z isomers, McT-2 was first calculated in both forms (E,E and Z,Z) and the total energies of both analogues were compared upon geometry optimisation (see Fig. S16 in ESI†). A considerably strained conformation was observed for the Z,Z isomer of McT-2, whereas the E,E isomer is more planar (Fig. S16, ESI†). For the E,E isomer, the central thiophene moiety (T1) is allocated syn to its two peripheral neighbours (T1 and T10), whereas for the Z,Z isomer it is allocated anti [see Fig. 4(a) for atom and moiety labels]. A considerably higher bond angle of the vinyl group (bond angle C24–C25–C26 137°) was observed for the Z,Z isomer of McT-2 than for E,E isomer of McT-2 (126°), which implies that the Z,Z isomer has a more

![Fig. 3 Cyclic voltammograms of McT-1 (a) and McT-2 (b). The voltammograms were recorded in CH$_2$Cl$_2$ solution (1 × 10$^{-3}$ M). The electrodes used were a 1.6 mm diameter platinum working electrode, a platinum wire counter electrode and a silver wire quasi-reference electrode and the electrolyte of choice was TBA-PF$_6$ (0.1 M). Voltammograms were calibrated versus the ferrocene/ferrocenium (Fc/Fc+) redox couple as an external standard. In (c) the energy level diagram of McT-1, McT-2 and the PC$_{71}$BM acceptor (obtained from the literature) is provided."](image)
strained circular structure. A difference of 22 kJ mol$^{-1}$ was found between the E,E and the Z,Z isomers ground state total energy, with the E,E-isomer being the lowest in energy. In the literature, similar compounds with a more regular ratio of alkyne spacers are shown to cyclise in both forms. However, due to such strain observed for the Z,Z isomer, it was expected that both macrocycles are present as mainly their E,E isomers since the transition state conformation in the final synthetic step is likely to affect the activation energy to form the product. In such forms, both compounds show near-planar structure. For McT-1 only the central thiophene moiety (T1) shows a moderate dihedral angle with its neighbouring moieties (T2 and T10) (i.e. torsion angle $S1–C2–C5–S4$ 36.5°) [Fig. 4(b)], whereas McT-2 presents a notable dihedral angle of 41.1° also between the moieties T3 and BT1 ($C16–C17–C21–S20$) due to the alkyl chain.

The ring size is naturally wider/bigger for McT-2 since it contains 4 more aromatic moieties than McT-1. According to the calculations, the cavity size varies between 12.9 Å ($S11\ldots S42$) to 16.2 Å ($S1\ldots S30$) for McT-1 and between 20.1 Å ($S20\ldots S69$) to 22.8 Å ($S1\ldots S48$) for McT-2. Therefore, it is reasonable to assume that both compounds possess sufficiently large cavities to accommodate guest molecules such as fullerenes. C_{60} for instance, has a mean ball diameter of 7.1 Å, whereas C_{70} has a short axis of 7.1 Å and a long axis of 7.9 Å. However, due to the absence of alkyne spacers between several thiophene moieties in the macrocycles, both adopt elliptical-like structures. This could potentially discourage fullerene molecules filling the cavity due to steric reasons. This will be especially true for McT-1, as the cavity has a considerably shorter axis than the other macrocycle. The frontier orbitals, depicted in Fig. 4(c), are completely delocalised in the case of McT-1 with a total overlap of HOMO and LUMO. The distribution is different for McT-2, where the HOMO appears delocalised along the whole molecule but the LUMO is mostly confined over the BT moieties. This is mainly due to the push-pull system generated with the introduction of the BT moieties, which also causes the red-shift in the UV-vis spectrum. The calculated HOMO (-4.83 eV for McT-1 and -5.09 eV for McT-2) and the LUMO (-2.57 eV for McT-1 and -3.01 eV for McT-2) energy levels (Fig. S17, ESI†) are in good agreement with the IE and EA values obtained experimentally for McT-1, whereas for McT-2 the HOMO is lower than the experimentally derived value (see Table S3, ESI†).

Time-dependent DFT calculations were performed to gain more insight into the optical properties of the materials. These were conducted using the same method (B3LYP/6-311G(d,p) in the gas-phase). The calculations provided a reasonable
estimation of the absorption spectrum similar to the experimental data presented in Fig. 2 and Table 1 for both McT-1 and McT-2 (Fig. S18, ESI†). Upon analysing the electronic transitions responsible for the main bands of absorption observed for the two molecules (Tables S4 and S5, ESI†), we observed that in both cases the highest wavelength absorbance bands (around 500 nm for McT-1 and 630 nm for McT-2) are composed of four excited states (S₂, S₃, S₄ and S₆ for McT-1, and S₂, S₃, S₄ and S₅ for McT-2). This band is dominated by a transition from the HOMO – 1 to the LUMO (S₀ → S₁) for McT-1 and from the HOMO to the LUMO+1 (S₀ → S₁) for McT-2, the latter being ICT in nature. The lower wavelength absorbance (ca. 370 nm for McT-1 and ca. 440 nm for McT-2) splits between two main excited states (S₁₆ and S₁₇ for McT-1, and S₂₁ and S₂₃ for McT-2), resulting from a strong contribution of HOMO–1 to LUMO+4 for McT-1 and HOMO to LUMO+6 for McT-2. Plots of selected molecular orbital density maps is provided in Fig. S19 (ESI†) for McT-1 and Fig. S20 (ESI†) for McT-2, including those involved in the strongest transitions described here. These orbitals are also delocalised mostly along the whole molecule for McT-1, whereas for McT-2 the LUMO+6 is also delocalised over the thiophenes T3, T4, T8 and T9 and the vinyl residues.

X-Ray structures

Single crystals of McT-1 were obtained from slow diffusion of heptane in a benzene solution, and its structure was determined by X-ray analysis. Unfortunately, attempts to obtain single crystals of McT-2 were unsuccessful. The X-ray crystal structure of McT-1 (Fig. 5(a)) shows all the thiophene sulfur atoms face into the centre of the macrocycle and is consistent with the calculated prediction that the vinyl groups would be E-isomers. McT-1 crystallises with half the molecule in the asymmetric unit and the other half is related by inversion symmetry. The two crystallographically independent alkyne bonds have different conformations, with one having two almost exactly coplanar thiophene rings (angle between mean planes 0.99°) and the other with the two rings tilted at 27.75° to one another. The three linked thiophene rings have two rings essentially coplanar (torsion angles S₄–C₅–C₂–S₁ = 2.0(8)°) and the other two tilted at ~30° (torsion angle S₂₅–C₂₉–C₃₀–S₁₁ = 31.3(8)°). Apart from this tilted thiophene ring the macrocycle is essentially planar. The alkylic chain substituents on the central S1 thiophene both lie out of the plane on the same side for a given thiophene ring (also the same side for adjacent ring S18) and on the opposite side to the symmetry equivalent S1 thiophene on the other side of the macrocycle. The S1...S1(i) distance is 16.406(2) Å and S18...S1(i) 12.423(2) Å. Examination of the packing in McT-1 (Fig. 5(b) and Fig. S21, ESI†) shows that the cavities are filled by the alkylic chains from adjacent molecules. Each cavity contains four chains in total with two each from adjacent S1 two pointing downwards and two upwards forming zig-zag chains. These chains are then ‘cross-linked’ by the S...S contacts between the two 5 atoms across the other pair of alkylic bonds (S4 and S11) with an adjacent chain at approximately the sum of the van der Waals radii at just under 3.6 Å. The adjacent chain is shown in green in Fig. 5(b).

Fig. 5 (a) View showing McT-1 in the crystal structure (H atoms and minor alkylic chain disorder components omitted for clarity, displacement ellipsoids drawn at 50% probability level while alkylic chains drawn as spheres of arbitrary radius). The two halves of the molecule are related by an inversion centre (i = 1 – x, –y, –z). (b) Shows that the cavities are filled by the four alkylic chains, 2 each from adjacent molecules (shown in blue); an adjacent chain is shown in green.
Atomic force microscopy was used to study the difference in the topographies of the films. Images with scan area $10 \times 10 \, \mu m^2$ are presented in Fig. 7 as well at $5 \times 5 \, \mu m^2$ and $20 \times 20 \, \mu m^2$ in Fig. S22 and S23 (ESI†), respectively. The general topographies show similarities, with holes emerging in both films. However, the film deposited from chloroform shows smaller, more isolated domains whilst the films formed from toluene show larger domains although there are still pinholes present. The difference in topographies may result from the lower boiling point of chloroform causing quicker drying of the film. The gaps observed in the morphology of both films could help to explain the low mobilities measured, since charge transport will be limited with so many disconnections in the bulk. However, the closeness of

Table 2 Summary of OFET performance of McT-1 deposited from chloroform and toluene solutions

<table>
<thead>
<tr>
<th>Solvent</th>
<th>On/off ratio</th>
<th>V_{th} [V]</th>
<th>μ_{th} [cm2 V$^{-1}$ s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform</td>
<td>10^2</td>
<td>-9</td>
<td>$1.66 \pm 0.6 \times 10^{-4}$</td>
</tr>
<tr>
<td>Toluene</td>
<td>10^2</td>
<td>-1</td>
<td>$1.92 \pm 0.8 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

Fig. 7 Tapping mode atomic force microscopy images of McT-1 films deposited from (a) chloroform (RMS roughness = 17.8 nm) and (b) toluene (RMS roughness = 22.8 nm) solutions on prefabricated OFET substrates. Scan area = $10 \times 10 \, \mu m^2$.
the general topographies is consistent with the similar calculated hole mobilities.

Photovoltaic properties
To investigate the photovoltaic properties of McT-1 and McT-2, bulk heterojunction solar cells were fabricated using PC$_{71}$BM as the acceptor. Before proceeding with device fabrication, charge transfer of McT-1 and McT-2 donors to the PC$_{71}$BM acceptor was investigated using photoluminescence quenching studies. Efficient charge transfer from the donor to acceptor will quench the photoluminescence of the donor molecules. The steady-state luminescence spectra of the neat donor molecules and their blends with PC$_{71}$BM for different weight ratios (1:1, 1:2, 1:3 and 1:4) are shown in Fig. 8(a and b). With the addition of PC$_{71}$BM, for both donor molecules, the photoluminescence is significantly quenched which implies that there is efficient charge transfer from the donors McT-1 and McT-2 to the acceptor. The UV-Vis absorption properties of these different blend films are shown in Fig. 8(c and d). For both the blends the absorption bandwidth is narrow and mainly in the region 400–600 nm.

With the efficient charge transfer properties confirmed through the PL quenching, solution-processed organic solar cells were fabricated for both McT-1 and McT-2 using different donor : acceptor [PC$_{71}$BM] ratios of 1 : 1, 1 : 2, 1 : 3 and 1 : 4. The photovoltaic performance parameters of the corresponding blend films are shown in Table 3 and the J–V characteristics are shown in Fig. 9(a and b). For McT-1 with the increase of PC$_{71}$BM content, the power conversion efficiency increases and at the optimised blend ratio of 1:4, the corresponding solar cells show an efficiency of ~1.1%. Photovoltaic devices with higher blend ratios were not fabricated since the power conversion efficiencies for the 1:3 and 1:4 blends are very similar. For McT-2:PC$_{71}$BM blends, a similar trend is seen and the highest efficiency of 0.63% is obtained for 1:3 donor:acceptor ratio.

For both McT-1 and McT-2, with the increase in PC$_{71}$BM content, the short circuit current density (J_{sc}) increased and a corresponding increase in power conversion efficiency is obtained (shown in Table 3). This increase in photovoltaic properties with increase in fullerene content has been previously reported for oligothiophene: fullerene BHJ blends. With increase in fullerene content, crystallisation of the macrocycles is prevented by the fullerenes, resulting in a BHJ morphology with enhanced mixing, favouring the exciton dissociation and photocurrent. Moreover, increased fullerene content has also been
reported in better percolative carrier transport pathways. However, for both donors, the main limiting factors of the photovoltaic properties are the low short circuit current density \((1.6–4.0 \text{ mA cm}^{-2})\) and the fill factor which is below 40% even for the optimised donor:acceptor blend. One of the main contributing factors for the low \(J_{sc}\) is the narrow absorption bandwidth in the visible region. The low FF implies unfavourable nanoscale morphology of the donor:acceptor blends preventing efficient collection of photogenerated charges. For both McT-1 and McT-2, under the optimised donor: acceptor blend condition, the open circuit voltage is very similar \(\sim 0.67 \text{ V}\). Considering the HOMO level of the McT-1 and LUMO level of the PC71BM as shown in Fig. 3(c), a voltage loss of less than 0.2 V is seen for the optimised blend of McT-1:PC71BM. McT-2 showed in general slightly poorer \(V_{oc}\) than McT-1 due to its higher HOMO level.

The external quantum efficiency (EQE) spectra of the McT-1:PC71BM and McT-2:PC71BM blends are shown in Fig. 9(c and d). For both donors, EQE increases with increase in PC71BM content and this agrees with the increase in \(J_{sc}\) shown in Table 3. Under the optimised blend ratio of 1:4, McT1:PC71BM shows an EQE of \(\sim 40\%\) and for McT1:PC71BM, the EQE is slightly lower around 25\% in the 350 to 550 nm range. Because of the narrow spectral bandwidth of the UV-Vis absorption profile and the EQE spectra of the McT-1:PC71BM and McT-2:PC71BM, the spectral responsivity is estimated as a function of wavelength towards their use in photodetectors. The narrow spectral

Table 3

<table>
<thead>
<tr>
<th>Blend</th>
<th>D: A (wt.) ratio</th>
<th>(J_{sc}) (mA cm(^{-2}))</th>
<th>(V_{oc}) (V)</th>
<th>FF (%)</th>
<th>(R_{sh}) ((\Omega) cm(^2))</th>
<th>(R_{s}) ((\Omega) cm(^2))</th>
<th>PCE avg (%)</th>
<th>PCE best (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McT-1 and PC71BM</td>
<td>1–1</td>
<td>2.84 ± 0.70</td>
<td>0.699 ± 0.011</td>
<td>33.6 ± 1.0</td>
<td>453 ± 31</td>
<td>10.3 ± 1.2</td>
<td>0.67 ± 0.05</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>1–2</td>
<td>3.74 ± 0.18</td>
<td>0.683 ± 0.033</td>
<td>33.7 ± 1.7</td>
<td>357 ± 64</td>
<td>5.3 ± 1.6</td>
<td>0.86 ± 0.10</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>1–3</td>
<td>3.86 ± 0.35</td>
<td>0.669 ± 0.019</td>
<td>35.3 ± 1.2</td>
<td>341 ± 33</td>
<td>3.0 ± 1.3</td>
<td>0.91 ± 0.11</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>1–4</td>
<td>4.08 ± 0.29</td>
<td>0.662 ± 0.018</td>
<td>35.0 ± 0.9</td>
<td>303 ± 29</td>
<td>3.4 ± 1.3</td>
<td>0.95 ± 0.09</td>
<td>1.07</td>
</tr>
<tr>
<td>McT-2 and PC71BM</td>
<td>1–1</td>
<td>1.62 ± 0.13</td>
<td>0.401 ± 0.047</td>
<td>29.9 ± 0.3</td>
<td>361 ± 46</td>
<td>5.4 ± 1.4</td>
<td>0.20 ± 0.03</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>1–2</td>
<td>2.25 ± 0.21</td>
<td>0.421 ± 0.038</td>
<td>31.4 ± 0.4</td>
<td>300 ± 40</td>
<td>2.7 ± 1.2</td>
<td>0.30 ± 0.04</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>1–3</td>
<td>2.59 ± 0.26</td>
<td>0.682 ± 0.057</td>
<td>28.9 ± 1.1</td>
<td>392 ± 30</td>
<td>3.6 ± 1.5</td>
<td>0.51 ± 0.07</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>1–4</td>
<td>2.62 ± 0.19</td>
<td>0.604 ± 0.077</td>
<td>29.5 ± 1.1</td>
<td>348 ± 39</td>
<td>3.1 ± 1.3</td>
<td>0.47 ± 0.08</td>
<td>0.58</td>
</tr>
</tbody>
</table>

![Fig. 9](https://example.com/fig9.png)

Fig. 9 \(J–V\) characteristics of the (a) McT-1: PC71BM and (b) McT-2: PC71BM blends as a function of different blend ratios. External quantum efficiency (EQE) spectra of the (c) McT-1: PC71BM and (d) McT-2: PC71BM blends as a function of different blend ratios. (e) Spectral responsivity curves of the corresponding photovoltaic devices estimated from their EQE spectra.
bandwidth allows them to be used in photodetector applications without the use of filters in colour image sensing. The corresponding spectral responsivity curves for the optimised blend ratios are shown in Fig. 9(e). For the McT-1:PC\textsubscript{71}BM blend, a maximum responsivity of 0.16 A W-1 at 478 nm, and for McT-2:PC\textsubscript{71}BM, 0.10 A W-1 at 478 nm are obtained under zero external bias. This zero bias responsivity values obtained are comparable to the previously reported responsivity of organic photodiodes such as P3HT:ICBA, P3HT:PC\textsubscript{60}BM blends1,118 and better than the recently reported responsivity of pentacene:PC\textsubscript{60} hetrostructure121 in the blue wavelength range. This blue wavelength responsivity of McT-1:PC\textsubscript{71}BM blend is relevant for the development of organic photodetectors without colour filters for imaging applications.

Conclusions

In conclusion, we show that incorporating an electron-deficient benzothiadiazole unit within a thiophene-based macrocycle red-shifts and broadens the main band of absorption while improving the absorbance in higher energy wavelengths, whereas the simplest macrocycle McT-1 shows a higher ε_{max} value. DFT calculations indicated that the macrocycles would possess a high level of planarity with E,E-isomers being preferred, and in the case of McT-1 this prediction was further indicated by crystallographic data. The theoretical calculations also revealed the ICT character of McT-2, which has a striking impact on the absorption profile. Organic field-effect transistors were fabricated, with McT-1 exhibiting a hole mobility of 1.92 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}. Efficient charge transfer between the macrocycles and PC\textsubscript{71}BM acceptor was revealed by photoluminescence quenching studies and led us to investigate them in photovoltaic devices. For both macrocycles, the photovoltaic cells showed an increase in J_{sc} with concomitant increase of power conversion efficiency with the increase in PC\textsubscript{71}BM content. The cells displayed an optimal efficiency of ~\text{1.1} \% for the 1:4 McT-1:PC\textsubscript{71}BM blend and 0.63% 1:3 for the McT-2:PC\textsubscript{71}BM blend. The improvement in spectral did not produce higher J_{sc} in the case of McT-2 presumably due to unfavourable nanoscale morphology preventing efficient charge collection, as indicated by the OPV data. This is also likely due to the presence of alkyne residues, which tend to affect charge generation and OPV performance. For future studies of related macrocycles in OPVs, we encourage the total removal of alkyne residues and further investigation of the self-assembly of these molecules. In photodetectors, the McT-1:PC\textsubscript{71}BM and McT-2:PC\textsubscript{71}BM blends showed a maximum responsivity of 0.16 A W-1 at 478 nm, and 0.10 A W-1 at 478 nm, respectively, under zero external bias. This is a relevant result for the field of organic photodetectors without colour filters for imaging applications.

Conflicts of interest

The authors declare that they have no conflict of interest.

Acknowledgements

GC acknowledges the EPSRC for funding (EP/E036244/1). JMS acknowledges the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 for PhD funding. JMS also acknowledges Dr Nor Basid Adiwibawa Prasetya for helpful advice. Dr L. K. Jagadamma acknowledges support from a Marie Skłodowska-Curie Individual Fellowship (European Commission) (MCIF: No. 745776).

References

12. R. Rana, A. Jetly and R. Mehra, An Extensive Review on Organic Light-Emitting Diode for Energy-Saving and...

26 Y. Li, J. Y. Liu, Y. D. Zhao and Y. C. Cao, Recent advancements of high efficient donor-acceptor type blue small molecule applied for OLEDs, Mater. Today, 2017, 20, 258–266.

cells with small driving forces for both hole and electron transfer, *Adv. Mater.*, 2018, **30**, 1804215.

70. H. Ito, Y. Mitamura, Y. Segawa and K. Itami, Thiophene-based, radial π-conjugation: Synthesis, Structure, and
photophysical properties of cyclo-1,4-phenylene-2',5'-thienylenes, *Angew. Chem.*, 2015, **54**, 159–163.
75 M. Iyoda, Giant macrocycles composed of thiophene, acetylene, and ethylene units, *C. R. Chim.*, 2009, **12**, 395–402.

112 G. Liu, C. Weng, P. Yin, S. Tan and P. Shen, Impact of the number of fluorine atoms on crystalline, physicochemical and photovoltaic properties of low bandgap copolymers based on 1,4-dithienylphenylene and diketopyrrolopyrrole, *Polymer*, 2017, **125**, 217–226.

