Volume 9 Number 29 7 August 2021 Pages 9031-9334

Journal of Materials Chemistry C

Materials for optical, magnetic and electronic devices

rsc.li/materials-c

ISSN 2050-7526

REVIEW ARTICLE Qianqian Yu, Paul D. Topham, Linge Wang *et al.* A review on electrospun magnetic nanomaterials: methods, properties and applications

Journal of Materials Chemistry C

View Article Online

REVIEW

Cite this: J. Mater. Chem. C, 2021, 9, 9042

Received 31st March 2021, Accepted 25th June 2021 DOI: 10.1039/d1tc01477c

rsc.li/materials-c

1. Introduction

Materials that possess magnetic character often exhibit specific desirable properties. This has led to the inclusion of magnetic materials in an ever-growing range of applications, including hard magnetic materials within magneto-biology,¹ magnetic medicine,² magnetic separation³ and electrical machinery and soft magnetic materials in stator or rotator parts of generators and motors.⁴ In addition to the various types of magnetic materials, there is also a variety of magnetic functional materials with various niche functions and applications such as giant magnetic resistors, magneto-strictive materials, magnetic fluids and magnetic refrigeration materials. For these applications pure

† Y. Jia and C. Yang contributed equally to this work.

Yifan Jia,†^a Congyi Yang,†^a Xueyang Chen,^a Wenqing Xue,^a Helena J. Hutchins-Crawford, ^b Qianqian Yu,*^a Paul D. Topham ^b and Linge Wang ^b*^a

Magnetic materials display attractive properties for a wide range of applications. More recently, interest has turned to significantly enhancing their behaviour for advanced technologies, by exploiting the remarkable advantages that nanoscale materials offer over their bulk counterparts. Electrospinning is a high-throughput method that can continuously produce nanoscale fibres, providing a versatile way to prepare novel magnetic nanomaterials. This article reviews 20 years of magnetic nanomaterials fabricated via electrospinning and introduces their two primary production methods: electrospinning polymer-based magnetic fibres directly from solution and electrospinning fibrous templates for posttreatment. Continual advances in electrospinning have enabled access to a variety of morphologies, which has led to magnetic materials having desirable flexibility, anisotropy and high specific surface area. Post-treatment methods, such as surface deposition, carbonization and calcination, further improve or even create unique magnetic properties in the materials. This renders them useful in broad ranging applications, including electromagnetic interference shielding (EMS), magnetic separation, tissue engineering scaffolding, hyperthermia treatment, drug delivery, nanogenerators and data storage. The processing methods of electrospun magnetic nanofibres, their properties and related applications are discussed throughout this review. Key areas for future research have been highlighted with the aim of stimulating advances in the development of electrospun magnetic nanomaterials for a wide range of applications.

organic, pure inorganic and hybrid organic-inorganic composite materials have become of increasing interest.

Within the past few decades many classic bulk materials (such as magnetic materials) have been processed into shapes with one or more dimensions at the nanoscale, rendering the materials with desirable properties that nanotechnology delivers. Among these magnetic nanomaterials, materials with two-dimensional scale constraints such as nanofibres (NFs) achieve incredible advances due to their anisotropic nature. NFs exhibit great enhancement and control of many properties with the most notable being flexibility, large specific surface area, porosity and coercivity (H_c).

Electrospinning is a simple means of processing materials to form NFs, where polymer chains align themselves under an electrostatic force to form elongated, thin, filamentous nanostructures. During the process, a polymer solution (or melt) is stretched and deformed by the electrostatic force and a droplet forms at the tip of needle. The shape of the droplet is determined by gravity, viscosity, surface tension and electric field. In the process of electrospinning, the most common droplet shape is a cone, referred to as the Taylor cone.^{5,6} When charge repulsion exceeds surface tension the polymer is pulled from the end of the Taylor cone. The modes of flow are also determined by the

^a South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China. E-mail: yuqianqian@scut.edu.cn, lingewang@scut.edu.cn

^b Chemical Engineering and Applied Chemistry, School of Infrastructure and Sustainable Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK. E-mail: p.d.topham@aston.ac.uk

A review on electrospun magnetic nanomaterials: methods, properties and applications

aforementioned forces. The withdrawn flow initially experiences stable motion and is then forced into an unstable stage where the polymer solidifies in the air to form fibres, which are then received by the collector.

The final properties of the fibres are influenced by three key factors:

(i) solution properties (such as the viscosity, concentration, polymer molecular weight and dielectric properties of the solution);

(ii) processing parameters (such as applied voltage, needleto-collector distance and feeding rate) and

(iii) environmental conditions (such as temperature, humidity and air flow around the system).

These factors demonstrate the diverse range of magnetic electrospun NFs that can be produced from a single chemical composition; as the structure of a single NF and the fibre assembly can be manipulated by other means. Indeed, advances in the control over electrospun NFs is envisioned to vastly benefit the magnetic material field. For example, electrospinning is the only known method used to prepare continuous ultra-long, thin NFs.⁷

To the best of our knowledge, there are no comprehensive reviews of electrospun magnetic NFs that evaluate their methods of production, properties and applications. Herein, we have reviewed articles from 20 years of research on electrospun magnetic fibres. The review is divided into three main parts (as shown in Fig. 1): (i) electrospinning organic–inorganic hybrid magnetic materials (summarised in Table 1); (ii) using electrospun fibres as templates for the creation of both hybrid and solely inorganic magnetic materials (summarised in Table 2); and (iii) applications of magnetic nanofibrous materials. As explained in this review, organic–inorganic composite magnetic nanomaterials can be prepared *via* a one-step method and the resulting nanofibrous matrix can provide magnetic nanoparticles (MNPs) with mechanical support, protection against oxidation and favourable dispersion (Section 2). Alternatively, for pure inorganic

Fig. 1 General methods to prepare electrospun magnetic fibres, where the area process highlighted in red is discussed in Section 2 (a) and the processes highlighted in blue are discussed in Section 3 (b and c). (a) Direct method for producing magnetic nanofibres; (b) templating procedure of MNFs from a magnetic pre-cursor solution and (c) templating procedure of MNFs where the magnetic component is deposited upon them.

magnetic NFs (Section 3), electrospinning is a simple, available tool used in the fabrication of fibrous templates with different morphological structures enabling the user to manipulate the magnetic properties of the final product. The major difference between these two strategies is that organic matter is removed in the latter to create the final inorganic product. In the final section (Section 4), we explore the various applications of these advanced materials from electromagnetic interference (EMI) shielding and pollutant treatment, to biomedical devices in drug delivery and tissue engineering. In short, this review focuses on the processing methods of electrospun magnetic composite NFs and pure inorganic NFs from templates, their properties and related applications.

Finally, as aforementioned, we summarise the complete literature of magnetic NFs in two comprehensive tables, where Table 1 covers systems in the category described in Section 2 [*i.e.* organic-inorganic hybrid magnetic nanofibrous materials created directly from electrospinning solution(s)] and Table 2 lists those systems created from electrospun fibrous templates, as described in Section 3. Both tables describe the methodological approaches used, properties obtained and potential applications, where relevant. We anticipate that these tables will serve as a useful repository for researchers, in addition to those new to the field, looking to study such advanced materials.

2. Electrospinning magnetic materials: reagents, methods and morphologies

Electrospun polymer–magnetic material composite fibres have been widely reported across the literature. This section discusses the various electrospinning methods and parameters used to manipulate the creation of magnetic NFs, before reviewing the variety of magnetic materials that have been used. Table 1 serves as a comprehensive summary of this section, listing the various systems that have been explored, the magnetic reagent(s), polymer(s), electrospinning approach, major magnetic property and applications (where relevant) in each case.

2.1 Electrospinning methods and fibre structures

Electrospinning is a primary method used to prepare continuous nanofibrous materials with advantages such as simple device manufacture, material compatibility and controllable fibre morphology. Fibres produced by electrospinning have high surface area-to-volume ratios, tuneable surface morphology and controlled alignment. The specific morphology of the fibre can control the distribution of nanoparticles (NPs).⁸ In this section, we discuss the various electrospinning parameters that can be used to create an array of NFs, specifically focusing on magnetic NFs.

2.1.1 Materials. NFs can be produced by electrospinning from a solution or melt of a variety of materials. Adequate entanglement is the key for the material to be suitable for electrospinning. Most polymeric materials produce enough entanglement to perform both solution and melt electrospinning. The extent of entanglement is related to the polymer molecular weight, the concentration and the solvent system. Sufficiently low molecular weight, low

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 28 June 2021. Downloaded on 7/13/2025 12:03:28 AM. (cc)) BY-NC Table 1 Organic-inorganic hybrid magnetic nanofibrous materials created directly from electrospinning solution(s) discussed in Section 2, detailing magnetic components and polymers used, electrospinning method followed, the magnetic properties of the resulting materials and their applications, where relevant

Magnetic ingredients	Polymer	Electrospinning approaches	Magnetic properties	Applications	Ref.
Fe_2O_3	PVP PMMA, PU _{DVA}	Uniaxial – blend Uniaxial – blend Ilniaxial – denosition	$H_{\rm c} = 327$ Oe, $M_{\rm f}/M_{\rm s} = 0.244$ Superparamagnetic, $M_{\rm s} = 6.172$ emu g ⁻¹	FWA	44 37 and 90
γ -Fe ₂ O ₃	PLA	Uniaxial – blend	Paramagnetic, superparamagnetic, $M_{\rm s}$ = 0.049 emu g ⁻¹	Cell culture Tissue engineering scaffolding Oil adsorption/separation, cell	89, 254 255
$\mathrm{Fe}_{3}\mathrm{O}_{4}$	PVA CA Cellulose-CS, PEO	Coaxial Uniaxial – blend Uniaxial – blend Uniaxial – blend	Paramagnetic, superparamagnetic Superparamagnetic, $M_s = 2.284$ emu g^{-1} Superparamagnetic, $M_s = 18.61$ emu g^{-1} (max)	Tissue engineering scaffolding Water treatment Fluorescence self-display and	290 253 60
	Cellulose Cellulose pulp CS	Coaxial spinning - post treatment Uniaxial – blend Uniaxial – blend	Ferromagnetic Superparamagnetic and ferromagnetic at different	adsorption removal of mercury(ii) Nanofibrous scaffolds Hyperthermia treatment of tumor	291 292 145
	CS, PEO	Uniaxial – blend	temperature Superparamagnetic, $M_{\rm s} = 8.47-7.12$ emu g ⁻¹ Superparamagnetic, $M_{\rm s} = 11.21-16.94$ emu g ⁻¹ (RT)	cells Adsorption removal of heavy metal Hypothermic tumor cell treatment	293 294
	CMC, PVA CS, PVA CS: PVA = 3:7 CTMB	Uniaxial – blend Uniaxial – blend Uniaxial – blend Uniaxial – blend	Ferromagnetic, $H_c = 216-222$ Oe Superparamagnetic, $M_s = 0.67-3.19$ emu g ⁻¹ Superparamagnetic, $M_s = 20.98$ emu g ⁻¹	Bone regeneration Chromium(vı) removal Enantioselective adsorption of	295 296 22 297
	DNA-CTMA Gelatin HPMCP, CA MADO	Uniaxial – blend Uniaxial – blend Uniaxial – blend Uniaxial – blend	Superparamagnetic Superparamagnetic, $M_{\rm s} = 3.05-12.87 \text{ emu g}^{-1}$ Superparamagnetic, $M_{\rm s} = 0.28-0.52 \text{ emu g}^{-1}$ Superparamagnetic, $M_{\rm s} = 83.9-74.6 \text{ emu g}^{-1}$	racenne crug Water detoxification Drug release Hypothermic chemotherapy	298 20 18 299
	P(AN <i>-co-</i> AA) PA6 PAAm, PVA	Uniaxial – blend Uniaxial – blend Uniaxial – blend	Superparamagnetic, $M_s = 27.02-30.51 \text{ emu g}^{-1}$ Superparamagnetic, $M_s = 1.03 \text{ emu g}^{-1}$ Superparamagnetic, $M_s = 16.6, 47.7, 48 \text{ emu g}^{-1}$,	EMS	300 301 and 302 303
	PAN	Uniaxial – blend Twisted blend	$M_r = 2.8 \pm 0.5$ emu g ', $H_c = 150$ Oe Superparamagnetic, $H_c = 20.1-206.7$ Oe, $M_s = 4.67$ emu g ⁻¹ $M_s = 3.5-8.4$ emu g ⁻¹ Ferromagnetic Superparamagnetic, $M_s = 81.389$ emu g ⁻¹ $M_s = 8.6$ emu g ⁻¹ (max) Superparamagnetic, $M_s = 10.10-28.77$ emu g ⁻¹	Magnetic separation of the photo- sensitizers, electrets filter media Cell separation, drug targeting Microwave absorption Phenol removal Separation of glycoproteins	21 and 304-306 307 308 308 309 33
	PAN-co-AA	Layer-by-layer Uniaxial – blend Uniaxial – blend	$M_{\rm s}=5.56$ –20.76 emu g ⁻¹ Superparamagnetic, $M_{\rm s}=3.6$ emu g ⁻¹	Oil adsorption/separation Adsorbents for removal of malachite	36 310 311
	PANI, PAN PANI, PVP PANI/PMMA PBT	Layer-by-layer Uniaxial – blend Coaxial Uniaxial – blend	$M_{\rm s}$ = 10.848–21.856 emu g ⁻¹ Superparamagnetic, $M_{\rm s}$ = 3.35–10.89 emu g ⁻¹ $M_{\rm s}$ = 4.52 emu g ⁻¹	EMS EMS Thin film microextraction, magnetic	67 16 66 312 and 313
	PCL	Uniaxial – blend	Paramagnetic $Weak \ ferromagnetic \ or \ superparamagnetic, \ H_c \ \sim \ 2.5 \ Oe, \\ M_r \ \sim \ 0.27 \ emu \ g^{-1}, \ M_s = 1.011.2 \ emu \ g^{-1}$	separation Magnetically-actuated, electro- magnetic heating Tissue engineering scaffold	314 256

Review

Table 1 (continued)

iew								Journal o	f Materials	Chemistry C
Ref.	315 316 58 317 62	318 319	320 42 321 322	220 12 43	324 325 326 327	31 268 328 85 257 and 329	55 and 330 63, 64, 74 and 331 30, 65, 86 and 332–335	336 337 338 28	339 340 57 and 341	34 46, 51 and 342 61 56
Applications	Organic pollutants degradation Drug delivery vehicle Magnetic heating	Drug release Hyperthermia	EWA Malachite green adsorption	EMS	Photocatalyst	Electromagnetic heating Drug delivery Smart clothing Tissue engineering scaffolds Tissue engineering scaffold			Solid-phase extraction of triazine herbicides Remote and efficient oil adsorption	Cancer therapy Water oil separation
Magnetic properties	$M_s = 27.7-103.9$ emu g ⁻¹ , $H_c \sim 70$ Oe Superparamagnetic Ferrimagnetic, $M_s = 88.5$ emu g ⁻¹ , $H_c = 80$ Oe Superparamagnetic, $M_s = 71.549$ emu g ⁻¹	Superparamagnetic, $M_{\rm s}=0.74$ -3.52 emu g ⁻¹ , $H_{\rm c}=13.25$ -17.10 Oe	Superparamagnetic Superparamagnetic	$M_{\rm s} = 0.58$ –2.79 emu g ⁻¹ , $M_{\rm r} = 0.1$ –0.41 emu g ⁻¹ , $H_{\rm c} = 79.94$ –103.9 Oe Ferromagnetic, near-superparamagnetic Superparamagnetic	Superparamagnetic, $M_s = 9.7 \text{ emu g}^{-1}$ $M_s = 2.4-4.9 \text{ emu g}^{-1}$ Superparamagnetic, $M_s = 0.42-2.51 \text{ emu g}^{-1}$ Superparamagnetic	Paramagnetic Paramagnetic $M_s = 1.26-3.37 \text{ emu g}^{-1}$ Superparamagnetic, $M_s = 3.57-10.07 \text{ emu g}^{-1}$ $M_s = 1.37-3.94 \text{ emu g}^{-1}$, paramagnetic,	superparamagnetic, $M_{\rm s} = 5.22-23.19$ emu g ⁻¹ Superparamagnetic, $M_{\rm s} = 5.22-23.19$ emu g ⁻¹ $M_{\rm r} = 8.38$ emu g ⁻¹ , $M_{\rm s} = 4.23-35.77$ emu g ⁻¹ $M_{\rm s} = 2.96-32.61$ emu g ⁻¹ , superparamagnetic	$M_s = 31.98 \text{ emu g}^{-1}$ $M_s = 3.6-24.0 \text{ emu g}^{-1}$ $M_s = 7.69 \text{ emu g}^{-1}$ Superparamagnetic, $M_s = 23.52 \text{ emu g}^{-1}$	Superparamagnetic, $M_{\rm s} = 7.88$ and 15.80 emu g ⁻¹	Superparamagnetic, $M_{\rm s} = 1.18^{-3.66}$ emu g ⁻¹ , coercivity = 6.14-8.98 Oc, retentivity = 1.8-8.4 Oe, $M_{\rm s} = 2.77$ emu g ⁻¹ , $M_{\rm s} = 2.42$ emu g ⁻¹ Ferromagnetic, $M_{\rm s} = 26$ emu g ⁻¹ , $M_{\rm r} = 10$ emu g ⁻¹ , $H_{\rm c} = 20$ Oe Superparamagnetic, $M_{\rm s} = 7.11$ -21.28 emu g ⁻¹
Electrospinning approaches	Coaxial Uniaxial - blend-UV cross-linking	Coaxial Uniaxial – blend	Uniaxial - Diend-thermal treatment Coaxial Janus Uniaxial - blend	Uniaxial - blend Coaxial - blend	Uniaxial – blend Uniaxial – blend Uniaxial – blend Uniaxial – blend		Uniaxial – blend Coaxial Janus	Janus - coaxial Uniaxial - blend - cospinning Uniaxial - blend - cospinning Janus	Uniaxial – blend – cross-linking Uniaxial – blend Uniaxial – blend	Two-nozzle blend Uniaxial – blend Twisted blend
Polymer		PCL: $CS = 6:1$	PEK-C PEO PEO, PVA PEO/PLLA PEO/PLLA	PET	PF-Na, PVA PHB PHB, PHVB PHEMA, PLLA	PLA PLA, PCL PLA, PEG PLGA PLLA	PMMA	PMMA, PANI PMMA/PANI	PNIPAM Polythiophene, CS PS	PS, PVDF PVA
Magnetic ingredients										

Table 1 (continued)

		, .				Review
Ref.	94 72 343 258 344 345 19, 282 and 346 347	26, 68, 70 and 348–350 27, 35, 47, 87, 351 and 352 14, 69, 83, 84 and 353	354 355 356 and 357 73 8 91 259	1 50 358 359 360 361	362 260 101 and 363 364 365 98 17 265 29	366 367 1
Applications	Wastewater treatment Tissue engineering scaffolds Photocatalyst Microwave absorption Triboelectric nanogenerator Hyperthermia treatment and skin	wound nearing applications	EWA Tissue engineering scaffolds Induction of skin cancer apoptosis	Data storage and transfer Hyperthermia treatment and controlled drug release Mesenchymal stem cell proliferation	Bone scaffolds Enhanced cell attachment, growth and proliferation Determination of polycyclic aromatic hydrocarbons in water samples Remove arsenic from water Drug delivery and MrI imaging	Solar light driven photocatalyst Inducing cancer apoptosis
Magnetic properties	Superparamagnetic, $M_s = 0.1-5.8 \text{ emu g}^{-1}$ Ferromagnetic, $M_s = 1.72-6.77 \text{ emu g}^{-1}$ Superparamagnetic, $M_s = 1.0.9-39.9 \text{ emu g}^{-1}$ $M_s = 1.9 \pm 0.3 \text{ emu g}^{-1}$ Superparamagnetic, $M_s = 1.93-12.5 \text{ emu g}^{-1}$, $H_c = 96-113 \text{ Oe}$, $M_s = 46.5 \text{ emu g}^{-1}$, Superparamagnetic	Superparamagnetic, $M_{\rm s} = 1.76-13.59$ emu g ⁻¹ $M_{\rm s} = 1.73-18.99$ emu g ⁻¹ Superparamagnetic, $M_{\rm s} = 2.63-10.19$ emu g ⁻¹	$M_s = 7.4-14.84 \text{ emu g}^{-1}$ $M_s = 70.2 \text{ emu g}^{-1}, M_r = 8.7 \text{ emu g}^{-1}, H_c = 91 \text{ Oe}$ Superparamagnetic, $M_s = 36.6 \text{ emu g}^{-1}$ Superparamagnetic Superparamagnetic ($M_s = 60 \text{ emu g}^{-1}$ Superparamagnetic ($>13 \text{ kOe}$), $H_c = 250 \text{ Oe}$ (5 kOe)	$M_{\rm s} = 30.6 \text{ emu g}^{-1} (\text{max}), H_{\rm c} = 188.2 \text{ Oe} (\text{max})$ Superparamagnetic, $M_{\rm s} = 18.84 \text{ emu g}^{-1}$ Soft ferromagnetic, $M_{\rm s} = 0.53 \text{ emu g}^{-1}$ Superparamagnetic, $M_{\rm s} = 6.8 \text{ emu g}^{-1}$ Superparamagnetic Superparamagnetic, $M_{\rm s} = 50 \text{ emu g}^{-1}, T_{\rm B} = 125 \text{ K}$	Ferromagnetic, $M_r = 0.58 \text{ emu g}^{-1}$, $H_c = 1400 \text{ Oe}$ Weak soft ferromagnetic, $H_c \sim 20 \text{ Oe}$, $M_r \sim 0.01 \text{ emu g}^{-1}$ Superparamagnetic Ferromagnetic, $M_s = 0.024$ -3.19 emu g $^{-1}$ $M_s = 15 \text{ emu g}^{-1}$, coercivity = 97 Oe $M_s = 0.08$ -1.52 emu g $^{-1}$ $M_r / M_s = 0.72$, $H_c = 6.3 \text{ kOe}$ Ferromagnetic, $M_s = 10$ -18 emu g $^{-1}$	$M_{\rm s} = 0.48-22.37 \text{ emu g}^{-1}$ $H_{\rm c} = 320.40-541.35 \text{ Oe}, M_{\rm s} = 18.07-17.03 \text{ emu g}^{-1},$ $M_{\rm r} = 3.72-4.04 \text{ emu g}^{-1}$
Electrospinning approaches	Uniaxial - deposition Uniaxial - blend Uniaxial - blend Uniaxial - blend Coaxial Uniaxial - blend Uniaxial - blend		Janus – uniaxial – blend Uniaxial – blend Uniaxial – blend & Uniaxial – blend & coating Coaxial – blend & thermal	Uniaxial – blend Uniaxial – blend Uniaxial – blend Uniaxial – blend Uniaxial – blend Uniaxial – blend Uniaxial – blend &		Coaxial Uniaxial – blend Uniaxial – blend
Polymer	PVA, guar gum PVA, PAA PVA: PAA = 5 : 6 PVA, PCL PVA-PHB/PCL PVC PVDF	PVP	PVP/PLLA Silk fibroin PS-b-PI P(NIPAM-co-	PAN PIGA PLGA PVP PCL PDLLA PAN	PVDF-TrFE PVA PCL PCL PCL PAN PAN FVA Eudragit S100, PEO PVP	PVP PVP P(NIPAM- <i>co</i> - HMAAm)
Magnetic ingredients			Fe ₃ O ₄ , <i>γ</i> -Fe ₂ O ₃	Fe ₃ O ₄ , Fe ₂ O ₃ /NiO Fe-FeO IONPs SPIONs CoFe ₂ O ₄	Nd _{0.05} Bi _{0.05} Fe _{0.95} Co _{0.05} O ₃ Magnetic bioglass FePt Mg-ferrite Magnetic zeolite Ni SrFe ₁₂ O ₁₉ Gd(DTPA) SrTiO ₃ /NiFe ₂ O ₄ (porous nanotubes &	particle-in-tubes) Fe-Doped $\ln_2O_3(\alpha$ -Fe ₂ O ₃ CeO ₂ - γ and CoFe ₂ O ₄ Mixture of magnetite (Fe ₃ O ₄) and maghemite (γ -Fe ₂ O ₃)

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 28 June 2021. Downloaded on 7/13/2025 12:03:28 AM.

BY-NC

Table 1 (continued)					
Magnetic ingredients	Polymer	Electrospinning approaches	Magnetic properties	Applications	Ref.
$SrRE_{0.6}Fe_{11.4}O_{19}$ (RE = La, Ce)	pVP	Sol-gel & uniaxial – blend	Sol-gel & uniaxial – blend $H_c = 4890.3-5321.9$ Oe, $M_s = 53.475-53.839$ emu g ⁻¹ , $M_r = 28.511-28.765$ emu g ⁻¹		368
$BaFe_{12}O_{19}$	PVP	Uniaxial – blend & coaxial	$M_{\rm s} = 45.03-55.59 \text{ emu g}^{-1}, M_{\rm r} = 1.2-27.12 \text{ emu g}^{-1}, H_{\rm c} = 102.01-3761.57 \text{ Oe}$		369
$CoFe_2O_4(aY_2O_3:5\%Tb_3)$	PVP	Uniaxial & coaxial	$M_{\rm s} = 20.05 - 20.67 \ {\rm emu} \ {\rm g}^{-1}$		370
NaYF ₄ :Eu ³⁺ and Fe ₃ O ₄	PVP	Uniaxial – blend	Superparamagnetic, $M_s = 3.87 - 16.99$ emu g ⁻¹		371
Fe	PVP	Uniaxial – blend)		372
	PANI	Uniaxial – blend		Magnetic hypothermia treatment	373
Co	CA	Uniaxial – blend		Stem cells osteogenic differentiation	102
MnZnFe-Ni nanoparticles Estane	Estane	Uniaxial – blend	Superparamagnetic, $M_{\rm s} = 1.67$ –25 emu g ⁻¹	•	66
MGNPs	Beta-lactoglobulin,	Uniaxial – blend	$M_{\rm s} = 0.1-4.16$ emu g ⁻¹ , $M_{\rm r} = 0.01-1.25$ emu g ⁻¹ ,		78

View Article Online Journal of Materials Chemistry C

concentration or poor solubility typically result in beaded structures (beaded fibres or discrete microspheres) rather than long defect-free fibres. Wang et al.9 studied the effect of solvent on the preparation of fibres and beads and found that decreasing the compatibility between the solvent and the polymer decreased the intermolecular entanglement, thus producing beads.

375 376 76 377 378 379 379 381 100

Bio-separation

EMS EMS EMS

Artificial muscles, MRI

Superparamagnetic

374

 $H_c = 89-114$ Oe

Jniaxial – blend

Polycarbonate-urethanes

Jniaxial - blend Uniaxial – blend Uniaxial – blend

Hard magnetic Ferromagnetic

Jniaxial – blend

Silk CA PVA PAN, PVP

YFe garnet, YGdFe garnet

CoFe₂O₄, Fe₃O₄

ïź

Strontium hexaferrite TiO₂/SiO₂

MWCNTs

FeCl₃ Ferritin

Uniaxial – blend Uniaxial – blend Uniaxial – blend Jniaxial – blend

PVA PVA PVA

Nanoparticles can also be electrospun by adding nanoscale components into the polymer carrier. However, in order to form uniform nanoparticles some materials require pre-treatment. Common examples of pre-treatment include sol-gel treatment of the polymer solution and dispersive pre-treatment of composite nanoparticles, such as ultrasonic dispersion¹⁰⁻¹³ or coating with oleic acid (or grafting with a coupling agent) to prevent undesirable aggregation.14-17

2.1.2 Electrospinning rigs. Fig. 2 shows the wide range of electrospinning rigs that have been used to create various nanofibrous fabrics. The most commonly used electrospinning rig is relatively simple and is comprised of a power supply, a liquid supply device and a collector (Fig. 2(a)). The power supply provides sufficient electric field force to create liquid filaments. Adjustment of the liquid supply parameters such as; flow rate of solution, needle structure and mode of liquid supply, allow for continuous and uniform fibres to be formed. In addition to common single and multiple needle set-ups, there are also needleless devices such as silk thread, bulged roller and liquid pool. In these cases, the collector is usually a flat plate and the morphology of the fibre mat can be regulated by changing the collection method.¹¹

2.1.2.1 Uniaxial electrospinning. Uniaxial electrospinning is the most simplistic device design (Fig. 2(a)). The liquid supply uses a solitary nozzle to prepare a single component of solid micro/nanofibre.¹⁸ Fibres have been prepared, via uniaxial electrospinning, with different morphologies including; nanobelt (Fig. 3(c)), bead-on-string (Fig. 3(d)), and connected fibre mesh structures.¹⁹⁻²² The various morphologies provide different characteristics, such as hydrophobicity and mechanical properties. Superhydrophobicity is caused by the huge specific surface area of the fibrous mesh membrane. The large surface area of the membrane can greatly reduce the contact area between the fibrous membrane surface and the liquid. Additionally, the micro- and nanoscale voids on the surface of the specimen can easily trap air, and when water droplets come into contact with the material the air holds the droplets up in accordance with the typical Cassie-Baxster contact model.²³ Additionally, it has been shown that electrospinning can be used to construct a composite structure of electrospun nanofibres decorated with microspheres to provide the superhydrophobic character. On this basis it becomes easier to design and control the micro-nano structure of the surface, allowing the perfect realisation of superhydrophobic structures.24,25

2.1.2.2 Coaxial electrospinning. Coaxial electrospinning (Fig. 2(b and c)) can be used to produce continuous, singlechannel, or multi-channel core-shell and hollow fibres. The fibres are prepared by using two or more coaxial nozzles of

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 28 June 2021. Downloaded on 7/13/2025 12:03:28 AM. (cc)) BY-NC Table 2 List of magnetic materials (both hybrid and solely inorganic) fabricated using a template approach discussed in Section 3, listing magnetic reagents, polymer(s) used, electrospinning and posttreatment procedures followed, morphology and properties of the final material obtained and applications where relevant

WPUnival - entronisationRegular $M_s = 53 \text{ cmu g}^{-1}$, $H_s = 50.0 \text{c}$ PANDistail - entronisationProvise 31 cross-linkedFerromagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 406.0 \text{c}$ PANDistail - entronisationProvise 31 cross-linkedFerromagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 406.0 \text{c}$ Distail - entronisationRegularRegularRegularSoft-magnetis, $M_s = 12.22.2 \text{ cmu g}^{-1}$, $H_s = 504.701.0 \text{c}$ PANDistail - entronisationRegularRegularSoft-magnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.0 \text{c}$ PPADistail - entronisationRegularRegularSoft-magnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PPADistail - entronisationRegularRecomagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PNADistail - entronisationRegularRecomagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PNADistail - entronisationRegularRecomagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PNADistail - entronisationRegularRecomagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PNADistail - entronisationRegularRecomagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PNADistail - entronisationRegularRecomagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PNADistail - entronisationRegularRecomagnetis, $M_s = 32.5 \text{ cmu g}^{-1}$, $H_s = 504.701.10 \text{c}$ PNADistail - entronisationRegularRecomagnetis, $M_s = 32.52 \text{ cmu g}^{-1}$	Magnetic ingredients	Polymer	Electrospinning approach and post-treatments	Morphology (after post-treatment)	Magnetic properties	Applications	Ref.
PANUniaxial - carbonisationPronous 3D cross-linkedPVAUniaxial - carbonisation3D non-woren networkPVAUniaxial - betingRegularPVPUniaxial - betingRegularPVPUniaxial - stabilisationRegularPVPUniaxial - stabilisationRegularPVPUniaxial - stabilisationRegularPVPUniaxial - stabilisationRegularPVPUniaxial - stabilisationRegularPVAUniaxial - carbonisationRegularPVAUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegular <td>٥</td> <td>PVP</td> <td>Uniaxial – carbonisation Multi-nozzle – calcination – reduction</td> <td>Regular Regular</td> <td>$M_{\rm s} = 85 { m emu g}^{-1}$, $H_{\rm c} = 526 { m Oe}$</td> <td>EWA EWA</td> <td>232 382</td>	٥	PVP	Uniaxial – carbonisation Multi-nozzle – calcination – reduction	Regular Regular	$M_{\rm s} = 85 { m emu g}^{-1}$, $H_{\rm c} = 526 { m Oe}$	EWA EWA	232 382
Uniaxial - carbonisation3D non-woren networkPVAUniaxial - batingRegularactivatial - stabilisationRegularpvPUniaxial - stabilisationRegularparafin and pressed into toroidalShaped specimenspvP & Uniaxial - stabilisation - reductionRegularpvAUniaxial - stabilisationRegularpvAUniaxial - stabilisation - reductionRegularpvAUniaxial - cathonisationProceaconisationpvAUniaxial - cathonisationRegularpvAUniaxial - cathonisationCore-shellpvAUniaxial - cathonisationRegularpvAUniaxial - cathonisationCore-shellpvAUniaxial - cathonisationCore-shellpvAUniaxial - cathonisationCore-shellpvAUniaxial - cathonisation		PAN	Uniaxial - carbonisation	Porous 3D cross-linked network	Ferromagnetic, $M_{\rm s} = 32.95$ emu g ⁻¹ , $H_{\rm c} = 406$ Oe	EWA	226
FVAUnitaxial - heating nataxial - achimistion - carbonisation - mixed with paraffin and pressed into toroidal shaped precimens Unitaxial - calcination - reduction paraffin and pressed into toroidal shaped precimens Unitaxial - calcination PANRegular Regular paraffin and pressed into toroidal paraffin and pressed into toroidal Dinaxial - calcination PANRegular paraffin PresserionTBOSIPVAUnitaxial - calcination Dinaxial - calcination PANPines with deposited particlesTBOSIPVAUnitaxial - calcination provibilisation - reduction pophilisation - reductionPines with deposited 			Uniaxial – carbonisation–	3D non-woven network	Ferromagnetic, $M_{\rm s} = 11.2 - 22.2$ emu g ⁻¹	Catalyst for PMS	383
carbonisationmared mixed with paraffin and pressed into toroidal shaped specimens uniaxial - calcinationcarbonisationPVP & Uniaxial - stabilisation - Uniaxial - calcinationFibres with deposited parafin paraficesPVAUniaxial - calcinationFibres with deposited prophilisation - coating pagularPVAUniaxial - carbonisationRegular parafin pagularPVAUniaxial - carbonisationRegular pagularPVAUniaxial - carbonisationRegular pagularPVAUniaxial - carbonisationRegular pagularPVAUniaxial - calcination - uniaxial - calcinationRegular pagularPNUniaxial - calcinationRegular pagularPNUniaxial - calcinationRegular pagularPNUniaxial - calcinationRegular provisPANUniaxial - calcinationRegular provisPAN-PAIUniaxial - calcinationCore-shell provisPAN-PAIUniaxial - calcination<	0	PVA PVP	uniaxial – heating Uniaxial – stabilisation –	Regular Regular	$H_c = 0-275.0 \text{ Oe}$ Soft-magnetic, $M_s = 73 \text{ emu } \mathrm{g}^{-1}$	acuvation EWA	$120 \\ 227$
Pype RayUniaxial - calcination - reductionReclace-likePANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPVAUniaxial - calcinationRegularPNAUniaxial - calcinationRegularPNAUniaxial - calcinationRegularPNAUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - stabilisation -RegularPANUniaxial - stabilisation -RegularCore-shellUniaxial - stabilisation -RegularPANUniaxial - stabilisation -RegularCoriaxial - stabilisation -RegularCoriaxial - stabilisation -Core-shellCorasial - carbonisationNanofibres withCorasial - stabilisation -RegularCorasial - stabilisation -RegularCorasial - stabilisation -RegularCorasial - stabilisation -RegularCorasial - stabilisation -RegularPAN/PAUniaxial - stabilisation -Regular <td></td> <td></td> <td>carbonisation – mixed with paraffin and pressed into toroidal shaped specimens</td> <td></td> <td></td> <td></td> <td></td>			carbonisation – mixed with paraffin and pressed into toroidal shaped specimens				
PANcarbonisationFibres with deposited particlesPANUniaxial - carbonisationFibres with deposited particlesTEOS/PVAUniaxial - carbonisationRegular RegularPVAUniaxial - carbonisationRegularPVAUniaxial - carbonisationRegularPVAUniaxial - carbonisationRegularPVAUniaxial - calcinationRegularPVAUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularUniaxial - stabilisationRegularCore-shellRegularCore-shellRegularPAN/BAaUniaxial - carbonisationRegularPAN/PAAUniaxial - calcinationRegularPAN-PEIUniaxial - calcinationRegularPAN-PEIUniaxial - calcinationRegularPAN-PEIUniaxial - calcinationRegularPAN-PEIUniaxial - calcinationRegularPAN-PEIUniaxial - calcinationRegularPAN-PEIUniaxial - calcinationPorousPAN-PEIUniaxial - calcinationPorousPAN-PEIUniaxial - calcinationPorousPAN-PEIUniaxial - calcinationPorous		PVP &	Uniaxial – calcination – reduction Uniaxial – stabilisation –	Necklace-like Regular	Ferromagnetic, $M_{\rm s}=28.37$ em u ${\rm g}^{-1}$ (max), $H_{\rm c}=674$ –1016 O e $M_{\rm s}=60$ em u ${\rm g}^{-1}$	Catalysts	$384 \\ 385$
TEOS/PVAUniaxial - carbonisationparticlesUNIaxial - carbonisation - reduction - coatingparticlesPVAUniaxial - carbonisationRegularPVAUniaxial - carbonisationRegularPVAUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - calcinationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - carbonisationRegularPANUniaxial - stabilisationCore-shellPAN/PEAUniaxial - stabilisationCore-shellPAN/PEAUniaxial - stabilisationCore-shellPAN/PEAUniaxial - carbonisationRegularPAN/PEAUniaxial - carbonisationRegularPAN/PMMAUniaxial - carbonisationPorousPAN/PMAUniaxial - carbonisationPorousPAN-PEIUniaxial - carbonisationPorousPAN-PEIUniaxial - carbonisationPorousPAN-PEIUniaxial - carbonisationPorousPAN-PEIUniaxial - carbonisationPorousPAN-PEIUniaxial - carbonisationPorousPAN-PEIUniaxial - carbonisationPorousPAN-PEI<		PAN PAN	carbonisation Uniavial – calcination	Fibres with denosited	Entromaconetic $M = 10.1-23.9$ emul o ⁻¹ $H = 504.6-201.1$ Oe	Microwave absorption	38
TBOSPMAUnixatal - carbonisationRegular $M_{i} = 15$ cmu g $^{-1}$ (max)PVAUnixatal - carbonisationRegular $M_{i} = 271$ cmu g $^{-1}$ ($M_{i} = 352.5$ cmu g $^{-1}$ ($M_{i} = 353.0$ cmu g $^{-1}$ ($M_{i} = 32.53$ cmu g $^{-1}$ $M_{i} = 30.2$			-	particles			
PVAUniaxial - earbonisationRegularFerromagnetic, $M_a = 77.32 \text{ emug}^{-1}$, $H_a = 830 \text{ emug}^{-1}$, $H_a = 330 \text{ emug}^{-1}$, $H_a = 300 \text{ emug}^{-1}$, $H_a = $		TEOS/PVA	_	Regular Fibres with deposited	$M_{\rm s} = 15 \text{ emu g}^{-1}$ $M_{\rm s} = 27.1 \text{ emu g}^{-1}$ (max)	Catalyst for AR Absorbents	387 388
PVAUniaxial - calcinationRegular $M_{a}^{a} = 32.70$ cmu g a , $H_{a}^{a} = 382.50$ cm g a , $H_{a}^{a} = 300$ cm g a , $H_{a}^{a} = 10$, $H_{a}^{a} = 10$, $H_{a}^{a} = 30$ cm g a , $H_{a}^{a} = 10$, $H_{a}^{a} = 12$, $H_{a}^{a} = 10$, $H_{a}^{a} = 12$, $H_{a}^{a} = 10$		PVA	1	particles Regular	Ferromagnetic, $M_s = 77.52 \text{ emu } g^{-1}, H_c = 261.3 \text{ Oe},$		389
Uniaxial - calcinationRegularRegularRetromagnetic, $M_s = 25.3 \text{ emu g}^{-1}$, $H_c = 382.52$ Gé, $M_s = 57.66$ Ge, $M_r = 306 \text{ emu g}^{-1}$, $H_s = 300 \text{ emu g}^{-1}$, $H_s = 67.66$ Ge, $M_r = 3.06 \text{ emu g}^{-1}$, $H_s = 300 \text{ emu g}^{-1}$, $H_s = 67.66$ Ge, $M_r = 1.6.9 \text{ emu g}^{-1}$, $H_s = 67.66$ Ge, $M_r = 1.6.9 \text{ emu g}^{-1}$, $H_s = 800 \text{ emu g}^{-1}$, $H_s = 800 \text{ emu g}^{-1}$, $H_s = 800 \text{ emu g}^{-1}$, $H_s = 81.9 \text{ emu g}^{-1}$, $H_s = 800 \text{ emu g}^{-1}$, $H_s = 800 \text{ emu g}^{-1}$, $H_s = 800 \text{ emu g}^{-1}$, $H_s = 81.9 \text{ emu g}^{-1}$, $H_s = 1.21-274$ Ge, $H_r = 1.21-274$ Ge, $H_r = 1.21-274$ Ge, $H_r = 1.21-274$ Ge, $H_r = 2.69 \text{ emu g}^{-1}$, $H_r = 2.69 \text{ emu g}^{-1}$, 					$M_r = 7.97$ emu g $, H_s = 8500$ emu g $^{-1}$ (K1), $M_s = 78.45$ emu g $^{-1}$ (5 K) $H_c = 392.7$ Oe, $M_r = 9.26$ emu g $^{-1}$ (5 K)		
Uniaxial - calcinationRegularMs = 51.9 enu g^{-1}, Re = 185.0e, Mr = 16.9 enu g^{-1}PANUniaxial - calcinationPorousRecularPAN & Uniaxial - carbonisationPorousRegularPAN & Uniaxial - carbonisationRegularMs = 3.32-13.53 enu g^{-1}, He = 1.21-274 Oe,PAN & Uniaxial - carbonisation - surfaceShortPANUniaxial - carbonisation - surfacePAN & Uniaxial - stabilisation -RegularPAN Uniaxial - stabilisation -RegularPAN Uniaxial - stabilisation -RegularPAN Uniaxial - stabilisation -RegularPAN Uniaxial - stabilisation -RegularCarbonisationRegularUniaxial - stabilisation -Core-shellMs = 4-7.5 enu g^{-1}, He = 1.21-274 Oe,Uniaxial - stabilisation -RegularCarbonisationRegularUniaxial - stabilisation -Core-shellMs = 4-7.5 enu g^{-1}, He = 1.49-2.62 enu g^{-1},Uniaxial - stabilisation -Core-shellUniaxial - stabilisation -Core-shellMs = 6.1-81.2Ms = 4.7.5 enu g^{-1}, He = 1.49-2.62 enu g^{-1},Uniaxial - stabilisation -Core-shellMs = 6.1-81.2Ms = 6.1-81.2Uniaxial - eatonisationCore-shellMs = 6.1-81.2Ms = 6.1-81.2Uniaxial - carbonisationRegularUniaxial - eatonisationRegularMs = 6.1-81.2Ms = 6.1-81.2DavidMs = 6.1-81.2Uniaxial - eatonisationRegularMs = 0.654 enu g^{-1}Ms = 1.0 e.Mr	źi	PVA	Uniaxial – calcination	Regular	Ferromagnetic, $M_s = 25.3 \text{ emu } g^{-1}$, $H_c = 382.52 \text{ Oe}$, $M_r = 10.4 \text{ emu } g^{-1}$, $H_s = 3700 \text{ emu } g^{-1}$ (5 K), $M_s = 23.12 \text{ emu } g^{-1}$, $H = 57.66 \text{ Oe}$ M = 3.06 emu σ^{-1} H = 800 emu σ^{-1} (PT)		390
PANUnixatal - calcinationPorousPAN & Unixatal - carbonisationRegularPAN & Unixatal - carbonisationRegularPAN & Unixatal - carbonisationRegularPAN & Unixatal - carbonisationRegularPAN & Unixatal - stabilisationRegularPAN & Unixatal - stabilisationRegularUnixatal - stabilisationCore-shellPAN & Unixatal - bydrothermalNanofifore withUnixatal - bydrothermalNanofifores withDiaxal - carbonisationCore-shellPAN-PEIUnixatal - stabilisation -PAN-PEIUnixatal - carbonisationPAN-PEIUnixatal - carbonisationPAN-PEIUnixatal - carbonisationPAN-PEIUnixatal - calcinationPAN-PEIUnixatal - calcination<			Uniaxial – calcination – deoxidation	Regular	$M_{\rm s} = 51.9$ emu g ⁻¹ , H _c = 185 Oe, $M_{\rm r} = 16.9$ emu g ⁻¹		127
Uniaxial - carbonisationRegularPAN & Uniaxial - carbonisationsurfacePDAUniaxial - carbonisation - surfacePAN & Uniaxial - stabilisation -RegularPANUniaxial - stabilisation -PANUniaxial - stabilisation -CarbonisationCore-shellMather -Core-shellMather -RegularPAN-PEIUniaxial - carbonisationPAN-PEIUniaxial - calcinationPAN-PEIUniaxial - calcinationPAN-PEI <t< td=""><td></td><td>PAN</td><td>Uniaxial – calcination</td><td>Porous</td><td></td><td>Electromagnetic interference shielding</td><td>391</td></t<>		PAN	Uniaxial – calcination	Porous		Electromagnetic interference shielding	391
PDAmontificationRegular $M_s = 3.32 - 13.53 \text{ emu g}^{-1}, H_c = 1.21 - 274 \text{ Oe},$ PANuniaxial - stabilisation - mix with paraffin Uniaxial - stabilisation - carbonisationRegular $M_r = 0.05 - 1.8 \text{ emu g}^{-1}, M_r = 2.69 \text{ emu g}^{-1},$ Uniaxial - stabilisation - Uniaxial - stabilisation - carbonisationRegular $M_r = 0.05 - 1.8 \text{ emu g}^{-1}, M_r = 2.69 \text{ emu g}^{-1},$ Uniaxial - stabilisation - Uniaxial - hydrothermal - depositionCore-shell $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 180 - 240 \text{ Oe}, M_r = 1.49 - 2.62 \text{ emu g}^{-1}$ Uniaxial - hydrothermal - depositionNanoffbres with $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 180 - 240 \text{ Oe}, M_r = 1.49 - 2.62 \text{ emu g}^{-1}$ Uniaxial - hydrothermal - depositionNanoffbres with $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 1.49 - 2.62 \text{ emu g}^{-1}$ PAN/BA-a Dilaxial - carbonisationCore-shell $M_s = 6.1 - 81.2 \text{ emu g}^{-1}$ PAN/BA-a 		PAN &	rbonisation cbonisation -	Regular Short		Lithium-ion batteries Biosensors	, 392 393
carbonisation $M_r^* = 0.05-1.8 \text{ emu g}^{-1}, M_r = 2.69 \text{ emu g}^{-1},$ Uniaxial - stabilisation - carbonisationRegular $M_r^* = 0.05-1.8 \text{ emu g}^{-1}, M_r = 2.69 \text{ emu g}^{-1},$ Uniaxial - stabilisation - carbonisationCore-shell $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 180-240 \text{ Oc}, M_r = 1.49-2.62 \text{ emu g}^{-1}$ Uniaxial - hydrothermal - depositionNanofibres with deposition $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 180-240 \text{ Oc}, M_r = 2.69 \text{ emu g}^{-1}$ Nanofibres with depositionNanofibres with deposition $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 180-240 \text{ Oc}, M_r = 1.49-2.62 \text{ emu g}^{-1}$ Nanofibres with depositionNanofibres with deposited particles $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 180-240 \text{ Oc}, M_r = 1.49-2.62 \text{ emu g}^{-1}$ PAN/BAaUniaxial - bydrothermal depositionNanofibres with M_s = 6.1-81.2 \text{ emu g}^{-1}PAN/PMAUniaxial - carbonisationCore-shell M_s = 6.1-81.2 \text{ emu g}^{-1}PAN/PMAUniaxial - calcinationProus nanobelts M_s = 5.54-18.49 \text{ emu g}^{-1}PAN-PEIUniaxial - calcinationPorous nanobeltsPAN-PEIUniaxial - calcinationSintered particles to 	e_3O_4	PDA PAN	modification Uniaxial - stabilisation -	Regular	$M_{ m s}=3.32{-}13.53~{ m emu}~{ m g}^{-1}, H_{ m c}=1.21{-}274~{ m Oe},$	EWA	196
carbonisation $H_c = 189$ OeUniaxial - stabilisation - carbonisation - coating Uniaxial - hydrothermal - depositionCore-shell $M_s = 4-7.5 \text{ emu g}^{-1}, H_c = 180-240 \text{ Oe}, M_r = 1.49-2.62 \text{ emu g}^{-1}$ Uniaxial - stabilisation - carbonisationNanofibres with deposited particles $M_s = 10.18-39.65 \text{ emu g}^{-1}$ $H_c = 180-240 \text{ Oe}, M_r = 1.49-2.62 \text{ emu g}^{-1}$ Uniaxial - hydrothermal - 	4 5		carbonisation – mix with paraffin Uniaxial – stabilisation –	Regular	$M_r = 0.05-1.8 \text{ emu g}^{-1}$ Ferromagnetic, $M_s = 30 \text{ emu g}^{-1}$, $M_r = 2.69 \text{ emu g}^{-1}$,	EWA	197
carbonisation - coating Uniaxial - hydrothermal - depositionNanofibres with deposited particles $M_s = 10.18-39.65 \text{ emu g}^{-1}$ deposited particles RegularMass = 10.18-39.65 emu g^{-1} $M_s = 6.1-81.2 \text{ emu g}^{-1}$ Uniaxial - carbonisationRegular Regular $M_s = 6.1-81.2 \text{ emu g}^{-1}$ $M_s = 6.1-81.2 \text{ emu g}^{-1}$ Uniaxial - stabilisation - 			carbonisation Uniaxial – stabilisation –	Core-shell	$H_{\rm c} = 189$ Oe $M_{\rm s} = 4-7.5$ emu g ⁻¹ , $H_{\rm c} = 180-240$ Oe, $M_{\rm r} = 1.49-2.62$ emu g ⁻¹	EWA	150
Coaxial - carbonisationRegular $M_s = 10.18-39.65 \text{ emu g}^{-1}$ Coaxial - carbonisationCore-shell $M_s = 6.1-81.2 \text{ emu g}^{-1}$ Uniaxial - stabilisation -Hierarchical porous $H_c = 71 \text{ Oe}, M_r = 0.654 \text{ emu g}^{-1}$ Uniaxial - calcinationPorous nanobelts $M_s = 5.54-18.49 \text{ emu g}^{-1}$ Uniaxial - calcinationPorous nanobelts $M_s = 5.54-18.49 \text{ emu g}^{-1}$ Uniaxial - calcinationSintered particles toSuperparamagnetic, $M_s = 78.79 \text{ emu g}^{-1}$,			_	Nanofibres with deposited particles		Adsorbents for water purification	112
Uniaxial - stabilisation -Hierarchical porous $H_c = 71$ Oe, $M_r = 0.654$ emu g^{-1} calcinationPorous nanobelts $M_s = 5.54-18.49$ emu g^{-1} Uniaxial - calcinationPorous nanobelts $M_s = 5.54-18.49$ emu g^{-1} Uniaxial - calcinationSintered particles toSuperparamagnetic, $M_s = 78.79$ emu g^{-1} ,form a fibre $M_r = 0.528-10.5$ emu g^{-1}			Coaxial – carbonisation Coaxial – carbonisation	Regular Core-shell	$M_{\rm s} = 10.18-39.65 \text{ emu } \text{g}^{-1}$ $M_{\rm s} = 6.1-81.2 \text{ emu } \text{g}^{-1}$	Magnetic, electronic	$161 \\ 15$
Uniaxial - calcination Porous nanobelts $M_{\rm s} = 5.54-18.49$ emu g ⁻¹ Uniaxial - calcination Sintered particles to Superparamagnetic, $M_{\rm s} = 78.79$ emu g ⁻¹ , $M_{\rm r} = 0.528-10.5$ emu g ⁻¹		PAN/BA-a	Uniaxial – stabilisation –	Hierarchical porous	$H_{\rm c} = 71$ Oe, $M_{\rm r} = 0.654$ emu g ⁻¹	Absorbents for	394
Uniaxial – calcination Sintered particles to Superparamagnetic, $M_s = 78.79$ emu g ⁻¹ , form a fibre $M_r = 0.528-10.5$ emu g ⁻¹		PAN/PMM		Porous nanobelts	$M_{\rm s} = 5.54 - 18.49 \ {\rm emu} \ {\rm g}^{-1}$	Diganic uyes in water Absorbents for organic dues	111
		PAN-PEI	Uniaxial – calcination	Sintered particles to form a fibre	Superparamagnetic, $M_{\rm s} = 78.79$ emu g ⁻¹ , $M_{\rm r} = 0.528-10.5$ emu g ⁻¹	Absorbent	395

9048 | J. Mater. Chem. C, 2021, 9, 9042-9082

Table 2 (continued)

iew																								lou	rna	al c	of I	Mate	rial	s Ch	emis	try C
Ref.	148	396	131	41		397	398		399	107	109	145		400	108 401	197	101	108	162	245	100	188 217	163		144	137		402	403		$\frac{177}{237}$	236
Applications	EWA	EWA				EWA	Water treatment	:	Remote controllable	ULL TELILOVAL Hyperthermia treatment	Hyperthermia	ureaument Hyperthermia	treatment of tumour cells	0	Recyclable catalytic	capacities			Absorbents for dyes	Catalyst for azo dyes	degradation	Supercapacitor	electrodes		Stem cell	GILTERUTATION		Semiconductor			Catalyst Photocatalyst	, Photocatalyst
Magnetic properties		Ferromagnetic. $M_c = 58.4$ emu g ⁻¹ . $H_c = 186.7$ Oe	$M_{\rm s} = 57.6 \text{ emu } \text{g}^{-1}$, $H_{\rm c} = 188.4 \text{ Oe}$, $M_{\rm r}/M_{\rm s} = 0.28$	Ferromagnetic, $M_{\rm s} = 72.4-35.51$ emu g ⁻¹ ,	$M_{\rm r} = 3.15 - 0.07 \text{ emu } {\rm g}^{-1}, H_{\rm c} = 24.59 - 1.35 \text{ Oe}$		$M_{\rm s} = 5.95-9.22$ emu g ⁻¹ , superparamagnetic			Superparamagnetic, $M_{ m s}=33.12~{ m emu}~{ m g}^{-1}$	Superparamagnetic, $M_{\rm s}$ = 9–18 emu g ⁻¹ , $T_{\rm B}$ = 70–75 K	Superparamagnetic, $M_{\rm s} = 16.3$ –27.2 emu g ⁻¹ (300 K),		Ferromagnetic, $M_{\rm s} = 50.27 - 62.8$ emu g ⁻¹ , $H_{\rm c} = 50.2 - 150.72$ Oe	Superparamagnetic, $M_{\rm s} = 32.5 \text{ emu g}^{-1}$	$M = 1.52 - 10.46 \text{ emu} \text{ or}^{-1}$	1478 - T:77 IN CIIIA &	Ferromagnetic, $M_s = 1.9$ emu g ⁻¹ , $H_c = 930$ Oe, $M_s = 25$ 83 × 10 ⁻³ emu o ⁻¹	Weak ferromagnetic, $M_{\rm s} = 24.4$ emu g ⁻¹	$M_{\rm s} = 20 \text{ emu g}^{-1}, H_{\rm c} = 40 \text{ Oe} (\alpha \cdot \text{Fe}_2 O_3)$	Cinamanana martia formamana	Superparamagnetic, $M_s = 0-20 \text{ emu g}^{-1}$, $H_c = 150-760 \text{ Oe}$,	permanent magnetic material Ferromanetic H_ = 256 71–628 18 Oe	$M_{\rm r} = 0.2872 - 0.4512 {\rm emu}{\rm g}^{-1}$	Superparamagnetic, $M_{\rm s} = 3.56 \text{ emu g}^{-1}$	Ferromagnetic. $M_c = 98.9 \text{ emu} \text{ s}^{-1}$. $H_c = 175.5 \text{ Oe.}$	$M_{\rm r} = 6.9 \mathrm{emu}\mathrm{g}^{-1}$	Ferromagnetic, $M_s = 52.1 \text{ emu g}^{-1}$, $H_c = 460 \text{ Oe}$, $M_r = 16.7 \text{ emu g}^{-1}$, $H_s = 6000 \text{ Oe} (5 \text{ K})$; $M_s = 45.2 \text{ emu g}^{-1}$,	$H_c = 218 \text{ Oe}$, $M_r = 11 \text{ emu } \mathrm{g}^{-1}$, $H_s = 2000 \text{ Oe}$ (RT) Ferromagnetic. $M_s = 55.2 \text{ emu } \mathrm{g}^{-1}$ (fibre-in-tube).	$M_s = 56.3 \text{ emu g}^{-1}$ (tube-in-tube), $M_r = 5.5-15.9 \text{ emu g}^{-1}$, $H_c = 78-206 \text{ Oe}$. $M_c/M_c = 0.1-0.28$		Superparamagnetic, $M_{\rm s} = 8.42$ emu g ⁻¹ , $M_{\rm r} = 1.2$ emu g ⁻¹ , Photocatalyst $H_{\rm c} = 160$ Oe
Morphology (after post-treatment)	Regular	Necklace-like	Smooth	Sintered particles to	form a fibre	Short fibres with deposited	nanoparticles Sintered particles to	form a fibre	Nanotibres with	Fibres with deposited particles	3D cross-linked network	wun deposited particles 3D cross-linked	network with deposited particles	Regular	cross-link network Cross-linked mat with	deposited particles Ethree with deposited	particles	Nanofibres with denosited narticles	Hollow	Regular	Nonorod	Nanotubes	Nanotuhes		Nanofibres with	aepositea particies Core-shell		Regular	Core–shell fibres.	fibre-in-tube, tube-in-tube	Regular Porous hollow fibres	with nanoflakes coating Sintered particles to form a fibre
Electrospinning approach and post-treatments	Uniaxial – stabilisation – calcination – mix with bismaleimide		Uniaxial – calcination – reduction	Uniaxial – oxygen plasma	treatment	Uniaxial – calcination	Uniaxial – calcination		Uniaxial – deposition	Uniaxial – deposition	Uniaxial - crosslinking -	co-precipitation Uniaxial – deposition		Uniaxial - carbonisation	Uniaxial - anneal - deposition Uniaxial - blend - thermal treat-	ment – deposition Thisvial – thermal treatment		Uniaxial – deposition	Uniaxial - deposition -	calcination Uniaxial – calcination		Uniaxial - calcination Uniaxial - calcination	Uniaxial – calcination		Uniaxial – deposition	Uniaxial – hydrothermal synthesis		Uniaxial – calcination	Uniaxial – calcination		Uniaxial – calcination Uniaxial – calcination – post	treatment Uniaxial electrospinning - calcination
Polymer	PVP					PEO	PBZ		PVDF	PU	PEO &	PVA CS		PVA	PVA PVA/PAA	DAA	WU I	PANI	PVA			ЧVР			PLGA &	PVA			PVP		PVP	
Magnetic ingredients																			α -Fe ₂ O ₃						γ -Fe ₂ O ₃						Fe_2O_3	

This journal is © The Royal Society of Chemistry 2021

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 28 June 2021. Downloaded on 7/13/2025 12:03:28 AM. (cc) BY-NC

Table 2 (continued)

Magnetic ingredients	Polymer	Electrospinning approach and post-treatments	Morphology (after post-treatment)	Magnetic properties	Applications	Ref.
$\mathrm{Fe}_x\mathrm{O}_y$	PVP	Uniaxial – calcination	Porous nanosheets, nanotubes	Ferromagnetic, $M_{\rm s}$ = 2.84–18.91 emu g ⁻¹ , $H_{\rm c}$ = 106.27–152.87 Oe		105
α -Fe ₂ O ₃ , Fe ₃ O ₄	PAA	Uniaxial electrospinning – denosition	Nanofibres with denosited narticles	Superparamagnetic, $M_{\rm s} = 2.8-4.0$ emu g ⁻¹		143
α -Fe ₂ O ₃ , Co ₃ O ₄ Co ₃ O ₄	PVP PAN	Uniaxial - calcination Uniaxial - stabilisation -	Hollow Regular	$M_{\rm s} = 0.75-1.50 \text{ emu g}^{-1}$ Soft ferromagnetic	EWA	$103 \\ 121$
		carbonisation				
NIO	ЧЛЧ	Uniaxial - calcination	sintered particles to form a fibre	$M_{\rm s}$ = 55.3 emu g ⁻¹ , $H_{\rm c}$ = 194.0 Oe		404
	PEtOx	Uniaxial – calcination	Sintered particles to form a fibre		Alcohol sensor	405
CuO/NiO	PVA	Uniaxial – calcination Uniaxial – calcination	Regular Regular	Ferromagnetic, $H_c = 107.3$ Oe (max), $M_r = 0.472$ emu g ⁻¹ (max) Paramagnetic, $M = 0.337-0.480$ emu g ⁻¹ , $H_c = 10$ kOe		203 406
ZnO ZrO ₂	PVA PVP	Uniaxial – anneal Coaxial electrospinning – anneal – denosition	Regular Hollow	Ferromagnetic, $M_{\rm s} = 0.039$ emu g ⁻¹ (max)	Catalysts	$192 \\ 166$
		Uniaxial – anneal	Nanofibres with smooth surface	$M_{\rm s} = 0.45 - 0.57 \text{ emu g}^{-1}$	Photocatalysts for the degradation of	241
SnO_2	ЧVР	Uniaxial – anneal	Nanotubes	$M_s = 0.012 - 0.017 \text{ emu g}^{-1}, H_c = 79 - 95 \text{ Oe} (300 \text{ K}),$ $M_s = 0.11, 0.10 \text{ emu m}^{-1}, H_s = 1.62, 1.60 \text{ Oe} (5 V)$	organic pointers	173
${\rm Fe}_{3}{\rm C}$	PAN	Uniaxial – carbonisation	Short	$M_{\rm s}^{-0.11-0.19}$ end g $, R_{\rm c}^{-1.03-109}$ Oc (3 N) Soft ferromagnetic, $M_{\rm s} = 18.0$ emu g ⁻¹ , $H_{\rm c} = 108.3$ Oe, $M_{\rm c} = 0.68$ emu o ⁻¹	EWA	228
Fe ₃ O ₄ , α -Fe ₂ O ₃ , Fe ₂ N	PVP	Uniaxial - calcination	Sintered particles to form a hollow fibre	$F_{e_3}O_4: M_s = 82.99 \text{ emu } g^{-1}, M_r = 39.27 \text{ emu } g^{-1}, H_c = 400.45 \text{ Oe } \alpha \text{-Fe}_2O_3: M_s = 4.34 \text{ emu } g^{-1}, Fe_2N$	High performance anodes for LIBs	134
FeC_3/FeN_3	ЧЧ	Uniaxial - stabilisation -	Branch-like (400–700 $^\circ \mathrm{C}$)	M_s 2.07 emu g Ferromagnetic, $M_s = 122$ emu g ⁻¹ Fe, $H_c = 112$ Oe Fe,		407
Fe@FeO	PAN	nitridation Uniaxial - stabilisation -	Short	$M_{\rm r} = 10.4$ emu g ⁻ Fe Ferromagnetic, $M_{\rm s} = 6.8-24.1$ emu g ⁻¹ , $H_{\rm c} = 45-209$ Oe		408
Pd doped Co Fe-Doped NiO	PVA PVA	carbonisation Uniaxial – calcination Uniaxial electrospinning –	Regular Regular	Ferromagnetic	Photocatalyst Diluted magnetic	409 223
Fe doped ZnO Co doped ZnO	PVA PVP	carcination Uniaxial – calcination Uniaxial – calcination	Regular Regular	T _c > 300 K Ferromagnetic, $M_s = 0.05$ emu g ⁻¹ , $H_c = 53.2$ Oe, magnetic EWA loss fa-rior = 0.170–0.033	EWA	410 411
Fe doped SNO ₂ /TiO ₂ Mn doped SnO ₂	PVP PVP	Uniaxial – calcination Uniaxial – calcination	Beaded fibres Hollow	Ferromagnetic, $M_s = 0.02-0.37$ emu g ⁻¹ Ferromagnetic, $p_{s} = 0.02-0.37$ emu g ⁻¹	Photocatalyst	412 221
Cu doped SnO ₂ GO doped CoFe ₂ O ₄	PVP	Coaxial – calcination Uniaxial electrospinning –	Hollow Regular	RT ferromagnetism Ferrimagnetic, $M_{s=1}^{-1}$ 79.24–82.7 emu g ⁻¹ , H_c = 909–1514 Oe,		$413 \\ 224$
La-Doped TiO ₂ /CoFe ₂ O ₄	PVP	calcination (Sol-gel) – two-spinneret	Regular	$M_{\rm r} = 31-39 {\rm emu}{\rm g}^{-1}$ $M_{\rm s} = 8.888 {\rm emu}{\rm g}^{-1}$	Photocatalytic	414
Co-Doped SrTiO ₃ Gd doped bismuth ferrite	PVP PVP	Uniaxial – calcination – anneal Uniaxial – annealine	Regular Regular	Paramagnetic-weak ferromagnetic $M_{s}=2.4-4.12~{ m emu}~{ m em}^{-1}$, $H_{s}=450~{ m Oe}$		$129 \\ 415$
Ca doped BiFeO ₃	PVP	Uniaxial – calcination	Sintered particles to form a fibre	Ferromagnetic	Photocatalyst	240
Bi ₂ O ₃ doped Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ Fe _x CO _y	PVP PAN/PBZ	Uniaxial – calcination Uniaxial – activation –	Regular Regular	$M_{\rm s} = 2.6-59.1 \text{ emu } \text{g}^{-1}, H_{\rm c} = 32.6-112.9 \text{ Oe}$ $M_{\rm s} = 18.76 \text{ emu } \text{g}^{-1}$	Catalyst for PMS	416 417
	PVA	carbonisation Uniaxial - graphinisation	Fibres encapsulated in graphite shell	Ferromagnetic, $M_{\rm s}$ = 71.14 emu g ⁻¹ , $H_{\rm c}$ = 220 Oe (300 K), $H_{\rm c}$ = 648 Oe (5 K)	activation	225

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 28 June 2021. Downloaded on 7/13/2025 12:03:28 AM. (cc) BY-NC

Table 2 (continued)

Matter ingritingApplicationMerginiseMerciniseMerginiseMerciniseMerc							
We (with the induction of the induct	Magnetic ingredients	Polymer	approach	Morphology (after post-treatment)	Magnetic properties	Applications	Ref.
W1Unixal - cultantionPrime with departed interim - cultantion - reduction interim - cultantion - reduction weights univer all program (M_{1}^{-1} = 54.4.0.9.0 cm 	Fe-Ni	PVP	Uniaxial - calcination - deoxidation Uniaxial - calcination - deoxidation	Regular Nanoribbons	Ferromagnetic, $M_s = 72.54-195.06 \text{ emu g}^{-1}$, $H_c = 1.72-43.89 \text{ Oe}$ Soft magnetic, $M_s = 145.7 \text{ emu g}^{-1}$ (max), $H_c = 132 \text{ Oe}$		128 126
W1Distail - entinationSector-site strendRequire	e ₃ Si	PVP	Uniaxial – calcination	Fibres with deposited particles	Ferromagnetic, $M_{\rm s} = 0$ –8.4 emu g ⁻¹ , $H_{\rm c} = 50$ –90 Oe	Tunable EM and microwave absorption	418
PtAUnisati - attentionRegultFerromagnetic, $M_{-1} = 300$ OG, $M_{-5} = 50$ ($M_{-5} = 50$) 0_{1} Dixial - attentionRegultCertomagnetic, $M_{-1} = 300$ com g_{-1}^{-1} , $M_{-5} = 50.5$ com g_{-1}^{-1} , $M_{-1} = 320 = 000$ M_{1} Dixial - attentionRegult $M_{2} = 331 = 0.00$ com g_{-1}^{-1} , $M_{-1} = 356 = 52.5$ com g_{-1}^{-1} , $M_{-1} = 32.6$ com g_{-1}	ePt	PVP	Uniaxial – calcination – reduction process	Necklace-like sintered			123
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	oNi	PVA	Uniaxial – calcination	Regular			419
PUPUnixal - uncloadRegularCo-Fd, anxi, $-2, 3, 5, -3, 5, cm, g$, $-3, -3, -3, 5, -3, 5, cm, g$, $-3, -3, -3, -3, 5, -3, 5, cm, g$, $-1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2$	oPt	PVA		Bead	Ferromagnetic, $M_{\rm s} = 77.3$ emu ${\rm g}^{-1}$ (Co, max), $H_{\rm c} = 270.9$ Oe		420
PVP & TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TO TOPOP TO TO TO TO TO TO 	$n_2 Co_{17}$	ЧVР		Regular	$(\text{Co-Pd}, \max), M_r = 7.98 \text{ emu g}^{-1}$ (Co, min) $M_s = 55.5-106 \text{ emu g}^{-1}, M_r = 35.6-52.5 \text{ emu g}^{-1}$, $M_r = 75.70 \text{ Cos}$		206
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\lambda_x Fe_y Al$	PVP &	Uniaxial – anneal	Regular	Ferromagnetic		421
P(A)DescriptionRouteReference of the constraint of the con	nCoFe	PVP	Uniaxial – calcination – REDOX	Sintered particles to	$M_{\rm s} = 80-120 \text{ emu g}^{-1}, H_{\rm c} = 5-7.5 \text{ kOe}, M_{\rm r} = 55-69 \text{ emu g}^{-1},$		422
WP PM The The The The The 	OnM-c	PVA	post – treatment Uniaxial – calcination	torm a more Regular	$M_{\rm F}/M_{\rm s}^{-0.09} = 0.09 \pm 0.05$ Ferromagnetic, $M_{\rm s} = 49.95$ emu g^{-1} , $H_{\rm c} = 245$ Oe, $M = 7.55$ onto $m_{\rm c}$ $m_{\rm c} = 1$		423
PER Initial - calcinationRegular Manual - similar - summan - similar - summany regularRegular $H_{c} = 3.73$ Cost $H_{c} = 3.56$ - Photocarabyst of microhanofibresRegular $H_{c} = 3.73$ Cost $H_{c} = 167.36$ Cost $H_{c} = 0.2323-0.734.35$ enu g ⁻¹ , $H_{c} = 3.56$ - Photocarabyst of microhanofibresPhotocarabyst $H_{c} = 167.56$ Cost $H_{c} = 167.56$ Cost $H_{c} = 167.56$ Cost $H_{c} = 167.56$ Cost $H_{c} = 167.56$ Cost 	$1_{1-x}Co_xO$	PVP	ation – anneal	Regular	RT ferromagnetic, $M_{\rm s} = 0.877$ emu g ⁻¹ , $H_{\rm c} = 610$ Oe (max)		424
u_{1} PMCoasial - calcinationor menonatones to modificationExact or m_{1}^{-} autotraz-utaz-outa	O-nM-t	PVA TPEE	ation	kegular Microsphere composed		- Photocatalyst	218 425
bleUnixal - deposition - surface montificationRegularRegularBiosenorPVPUnixal - depositionKarial - aneal Unixal - calcinationNanotes Hollow core-double Vinkial - calcinationNanotes Hollow core-double With cluster Unixal - calcinationNanotes Hollow core-double Ma = 18 em ug^-1Biosenor 	$^{22}O_3$, Fe ₃ O ₄ , CuFe ₂ O ₄ ,	PAN	Coaxial - calcination	or micro/nanomicres Porous	223.78 Ue; $M_r = 0.010123 - 0.013766$ emu g ⁻¹ , Ferromagnetic, $M_s = 2.058$ emu g ⁻¹ , $M_r = 0.28148$ emu g ⁻¹ , m - 1676 Oo	EWA	426
PypUniaxial - calcinationNanotubes $M_s = 18 \text{ cm g}^{-1}$ PhotocatalystsUniaxial - calcination(<i>n</i> situ)Hollow core-double $M_s = 18 \text{ cm g}^{-1}$ PhotocatalystsUniaxial - calcinationWrinkle montructureWrinkle montructure $M_s = 33.17 - 61.24 \text{ cm g}^{-1}$ PhotocatalystsUniaxial - calcinationwrinkle mond with flake $M_s = 33.17 - 61.24 \text{ cm g}^{-1}$ PhotocatalystsUniaxial - calcinationwrinkle mond with flake $M_s = 33.17 - 61.24 \text{ cm g}^{-1}$ PhotocatalystsUniaxial - calcinationsurface $M_s = 33.272 \text{ cm g}^{-1}$, $H_c = 993.71 0$, $M_r = 10.876 \text{ cm alysts}$ PhotocatalystsUniaxial - calcinationwrinkle mond with flake $M_s = 33.272 \text{ cm g}^{-1}$, $H_c = 993.71 0$, $M_r = 10.876 \text{ cm alysts}$ PhotocatalystsUniaxial - calcinationsurface $M_s = 33.277 \text{ cm g}^{-1}$, $H_c = 923.1761.24 \text{ cm g}^{-1}$ PhotocatalystsUniaxial - calcinationSintered particles to $M_s = 33.2.71.7 \text{ cm g}^{-1}$, $H_c = 923.3-1161.7 \text{ OE}$ PhotocatalystsUniaxial - calcinationSintered particles to $M_s = 33.2.71.7 \text{ cm g}^{-1}$, $H_c = 923.3-1161.7 \text{ OE}$ PhotocatalystsUniaxial - calcinationSintered particles to $M_s = 33.2.71.7 \text{ cm g}^{-1}$, $H_c = 923.3-1161.7 \text{ OE}$ PhotocatalystsUniaxial - calcinationSintered particles to $M_s = 33.2.71.7 \text{ cm g}^{-1}$, $H_c = 923.3-1161.7 \text{ OE}$ PhotocatalystsUniaxial - calcinationSintered particles to $M_s = 33.2.71.7 \text{ cm g}^{-1}$, $H_c = 923.3-1161.1 \text{ OD}$ PhotocatalystsUniaxial - calc	agnetically susceptible agnetically complex		Uniaxial – deposition – surface modification	Regular	116 - 101.30 00	Biosensor	427
function with cluster Wrinkle nanofibres with cluster $M_s = 33.232 \text{ emu g}^{-1}, H_c = 893.71 \text{ Oe}, M_r = 10.876 \text{ emu g}^{-1}$ PhotocatalystWrinkle nanofibres with cluster Nanorod with flake surface cpost Regular $M_s = 33.232 \text{ emu g}^{-1}, H_c = 893.71 \text{ Oe}, M_r = 10.876 \text{ emu g}^{-1}$ PhotocatalystRenord with flake surface cpost RegularFerromagnetism, $M_s = 35.17^{-}61.24 \text{ emu g}^{-1}$ PhotocatalystSintered particles to form a fibre sintered particles to form a fibre $M_s = 35.2^{-}71.7 \text{ emu g}^{-1}, H_c = 925.3^{-}1161.7 \text{ Oe}$ Photocatalyst $M_s = 53.2^{-}71.7 \text{ emu g}^{-1}, H_c = 925.3^{-}1161.7 \text{ Oe}$ $M_s = 41.34 \text{ emu g}^{-1}$ PhotocatalystSintered particles to form a fibre form a fibre sintered particles to 	0Fe2O4	PVP	Uniaxial – anneal Uniaxial – calcination – (<i>in situ</i>)	Nanotubes Hollow core-double	$M_{\rm s} = 18 \text{ emu } \mathrm{g}^{-1}$	Photocatalysts Photocatalysts	158 158
Wrinkle nanotibres $M_s = 33.232 \text{ emu g}^{-1}, H_c = 893.71 \text{ Oe}, M_r = 10.876 \text{ emu g}^{-1}$ Photocatalystwith clusterNanorod with flakeFerromagnetism, $M_s = 35.17-61.24 \text{ emu g}^{-1}$ PhotocatalystNanorod with flakeFerromagnetism, $M_s = 35.17-61.24 \text{ emu g}^{-1}$ PhotocatalystsurfaceFerromagnetism, $M_s = 35.17-61.24 \text{ emu g}^{-1}$ PhotocatalystsurfaceFerromagnetism, $M_s = 35.17-61.24 \text{ emu g}^{-1}$ PhotocatalystsurfaceFerromagnetism, $M_s = 35.17-61.24 \text{ emu g}^{-1}$ PhotocatalystsurfaceSintered particles to $M_s = 53.2-71.7 \text{ emu g}^{-1}, H_c = 925.3-1161.7 \text{ Oe}$ Photocatalystform a fibre $M_s = 41.34 \text{ emu g}^{-1}, H_c = 925.3-1161.7 \text{ Oe}$ Magnetic, superparamagnetic, $M_s = 28.61-67.24 \text{ emu g}^{-1}, H_c = 758.62-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 758.62-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 758.62-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 758.62-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 758.62-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 758.62-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 758.62-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 758.63-2221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_c = 250 \text{ Oe}, H_r = 8.28-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe}, H_r = 250 \text{ Oe}, H_r = 8.28-35.11 \text{ emu g}^{-1}, H_r = 10.400 \text{ Oe} (5 \text{ K})$ ManotubesH_c = 300 \text{ Oe} (360 \text{ K}), H_c = 10.400 \text{ Oe} (5 \text{ K}) <td></td> <td></td> <td>oxidative polymerisation method</td> <td>shell nanostructure</td> <td>Ī</td> <td>energianza .</td> <td>OCT</td>			oxidative polymerisation method	shell nanostructure	Ī	energianza .	OCT
Nanorod with flake surfaceFerromagnetism, $M_s = 35.17-61.24 \text{ emu g}^{-1}$ Photocatalyst surface ς post RegularRegularPhotocatalyst ς surfaceSintered particles to form a fibre $M_s = 53.2-71.7 \text{ emu g}^{-1}, H_c = 925.3-1161.7 \text{ Oe}$ Photocatalysts for the <i>p</i> -nitrophenol hydrogenationSintered particles to form a fibre $M_s = 53.2-71.7 \text{ emu g}^{-1}, H_c = 925.3-1161.7 \text{ Oe}$ Photocatalysts for the <i>p</i> -nitrophenol hydrogenationSintered particles to form a fibre $M_s = 41.34 \text{ emu g}^{-1}$ $M_s = 25.62-2221.51 \text{ Oe}, M_r = 82.8-35.11 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe},form a fibreSintered particles toform a fibreM_s = 42.8 \text{ emu g}^{-1}, H_c (bulk) = 750-1000 \text{ Oe},form a fibreSintered particles toform a fibreH_c = 250 \text{ Oe}Sintered particles toform two phases thatare distributed semi-cylindricallyH_c = 300 \text{ Oe} (360 \text{ K}), H_c = 10400 \text{ Oe} (5 \text{ K})$			Uniaxial – calcination	Wrinkle nanofibres with cluster	$M_{\rm s} = 33.232$ emu g ⁻¹ , $H_{\rm c} = 893.71$ Oe, $M_{\rm r} = 10.876$ emu g ⁻¹	Photocatalyst	200
cpost RegularEfficient catalysts for the <i>p</i> -nitrophenol hydrogenationSintered particles to form a fibre 			Uniaxial – calcination	Nanorod with flake	Ferromagnetism, $M_{\rm s} = 35.17$ –61.24 emu g ⁻¹	Photocatalyst	202
Sintered particles to form a fibre sintered particles to form a fibre form a fibre form a fibre anus sintered particles to form a fibre form two phases that are distributed semi- cylindrically $H_c = 330 \text{ Oe} (360 \text{ K}), H_c = 10400 \text{ Oe} (5 \text{ K})$			ox post			Efficient catalysts for the <i>p</i> -nitrophenol hydrogenation	428
Sintered particles to form a fibre $M_s = 53.2-71.7$ emu g^{-1} , $H_c = 925.3-1161.7$ Oe form a fibre $M_s = 41.34$ emu g^{-1} Janus Sintered particles to form a fibre $M_s = 41.34$ emu g^{-1} Sintered particles to Soft magnetic, superparamagnetic, $M_s = 28.61-67.24$ emu g^{-1} , form a fibre $H_c = 758.62-221.51$ Oe, $M_r = 8.28-35.11$ emu g^{-1} , Sintered particles to Ferromagnetic, $M_s = 42.8$ emu g^{-1} , H_c (bulk) = 750-1000 Oe, form a fibre $M_r/M_s = 0.27-0.5$ Sintered particles to $H_c = 250$ Oe form two phases that are distributed semi- cylindrically $H_c = 300$ Oe (360 K) , $H_c = 10400$ Oe (5 K)			Uniaxial – calcination	Sintered particles to)	429
Torm a fibre Janus $M_s = 41.34 \text{ emu g}^{-1}$ Sintered particles to Soft magnetic, superparamagnetic, $M_s = 28.61-67.24 \text{ emu g}^{-1}$, form a fibre $H_c = 758.62-221.51 \text{ Oe}, M_r = 8.28-35.11 \text{ emu g}^{-1}$ Sintered particles to Ferromagnetic, $M_s = 42.8 \text{ emu g}^{-1}, H_c$ (bulk) = 750-1000 Oe, form a fibre $M_r/M_s = 0.27-0.5$ Sintered particles to $H_c = 250 \text{ Oe}$ form two phases that are distributed semi- cylindrically $H_c = 300 \text{ Oe} (360 \text{ K}), H_c = 10400 \text{ Oe} (5 \text{ K})$			Uniaxial – calcination	Sintered particles to	$M_{\rm s} = 53.2-71.7 \text{ emu g}^{-1}, H_{\rm c} = 925.3-1161.7 \text{ Oe}$		106
Sintered particles to Soft magnetic, superparamagnetic, $M_s = 28.61-67.24$ emu g ⁻¹ , form a fibre $H_c = 758.62-221.51$ Oe, $M_r = 8.28-35.11$ emu g ⁻¹ H_c (bulk) = 750-1000 Oe, form a fibre $M_r/M_s = 0.27-0.5$ Sintered particles to $H_c = 250$ Oe form two phases that are distributed semi-cylindrically $H_c = 300$ Oe (360 K), $H_c = 10400$ Oe (5 K) Nanotubes $H_c = 300$ Oe (360 K), $H_c = 10400$ Oe (5 K)			Uniaxial – anneal	torm a tibre Janus	$M_{\rm s} = 41.34 {\rm ~emu~g^{-1}}$		75
Sintered particles toFerromagnetic, $M_s = 42.8$ emu g^{-1} , H_c (bulk) = 750-1000 Oe, form a fibre $M_r/M_s = 0.27-0.5$ Sintered particles to $H_c = 250$ Oeform two phases that are distributed semi- cylindrically $H_c = 300$ Oe (360 K), $H_c = 10400$ Oe (5 K)			Uniaxial – calcination	Sintered particles to form a fibre	Soft magnetic, superparamagnetic, $M_{\rm s} = 28.61-67.24$ emu g ⁻¹ , $H_{\rm c} = 758.62-2221.51$ Oe, $M_{\rm r} = 8.28-35.11$ emu g ⁻¹		172
Sintered particles to $H_c = 250$ Oe form two phases that are distributed semi- cylindrically $H_c = 300$ Oe (360 K), $H_c = 10400$ Oe (5 K)			Uniaxial – calcination	Sintered particles to form a fibre	Ferromagnetic, $M_{\rm s} = 42.8$ emu g ⁻¹ , $H_{\rm c}$ (bulk) = 750-1000 Oe, $M_{\rm c}/M_{\rm c} = 0.27-0.5$		430
cylindrically $H_c = 300 \text{ Oe} (360 \text{ K}), H_c = 10400 \text{ Oe} (5 \text{ K})$			(Dual-channel) – calcination	Sintered particles to form two phases that are distributed semi-	$H_c = 250 \text{ Oe}$		431
			Uniaxial – calcination	cylindrically Nanotubes	$H_{\rm c} = 300 \text{ Oe} (360 \text{ K}), H_{\rm c} = 10400 \text{ Oe} (5 \text{ K})$		432

Table 2 (continued)

rnal of	Ma	terials C	hemistry	/ C																	Rev	view
Ref.	433	119 114	160	434 156	242	115	243	94	244	$194 \\ 435$	436	235	437 140	124	438	439	440	132	136	142	175	441
Applications					Photocatalyst		Catalyst for PMs activation		Catalysts		Magnetoelectric sensors	Catalyst for the degradation of organic pollutants	-)							EM shielding	. Electrode material and eneroy storage	Photocatalyst
Magnetic properties	$M_{\rm s} = 3.65-45.80 \text{ emu } { m g}_{-1}^{-1}, H_{\rm c} = 735-785 \text{ Oe},$ $M_{-} = 1.4-16.49 \text{ emu } {\sigma}_{-1}^{-1}$	ferromateric, $M_s = 64.6-80.3$ emu g ⁻¹ , $H_c = 1223-1802$ Oe $M_s = 76.2-85.2$ emu g ⁻¹ (2-300 K), $H_c = 895$ Oe (max), $M_7/M_s = 0.75-0.89$	Ferromagnetic, $M_s = 9.0-34.7$ emu g ⁻¹ , $H_c = 858-1207$ Oe, $M_r = 2.7-13.1$ emu g ⁻¹ , $M_r/M_s = 0.30-0.38$ (300 K), $M_s = 9.6-36.1$ emu g ⁻¹ , $H_c = 11953-14110$ Oe, $M_r = 8.3-32.5$ emu g ⁻¹ , $M_r/M_r = 0.86-0.89$ (2 K)	$H_c = 11043$ OG (10 K) , $H_c = 707$ OG (300 K) $M = 161$ emit σ^{-1}		$M_{\rm s} = 56 \text{ emu g}^{-1}, H_{\rm c} = 757 \text{ Oe}, M_{\rm r} = 18 \text{ emu g}^{-1} (300 \text{ K}), M_{\rm c} = 72 \text{ emu g}^{-1}, H_{\rm c} = 14507 \text{ Oe}, M_{\rm c} = 56 \text{ emu g}^{-1} (2 \text{ K})$	$M_{\rm s}^{\rm s} = 30 {\rm emu g}^{-1}$	$M_{\rm s} = 50-63 \text{ emu g}^{-1}, H_{\rm c} = 0-667 \text{ Oe}, M_{\rm r} = 0-17 \text{ emu g}^{-1}$	$M_{\rm s} = 35 {\rm emu}{\rm g}^{-1}, H_{\rm c} = 1260{ m Oe}$	$M_{\rm r} = 16.1-32.5 \text{ emu g}^{-1}$, $H_{\rm c} = 611.9-786.5 \text{ Oe}$ $M_{\rm s} = 10.7 \text{ emu cm}^{-3}$	Ferromagnetic, $M_{\rm s} = 60 \text{ emu g}^{-1}$, $H_{\rm c} = 800 \text{ Oe}$, $M_{\rm r} = 18 \text{ emu g}^{-1}$		Ferromagnetic, $H_c = 386-730$ Oe, $M_r = 3.3-11.3$ emu g ⁻¹ Ferromagnetic, $H_c = 700$ Oe, $M_r = 3.40$ emu g ⁻¹	Ferromagnetic, hard magnetic, $M_s = 66.8-220.2$ emu g ⁻¹ , H = 0.62-1.37 Oe M = 27.6-106.4 emu o ⁻¹	$M_{\rm s} = 52.9-62.8 \text{ emu g}^{-1}, H_{\rm c} = 1089-4046 \text{ Oe}, M_{\rm r} = 18.22-31.21 \text{ emu g}^{-1}$	$M_{\rm s} = 63.83-76.16 \text{ emu g}^{-1}, H_{\rm c} = 12.79-13.36 \text{ kOe}$	$M_{\rm s} = 53.95 - 69.62 \text{ emu g}^{-1}, H_{\rm c} = 69 - 110 \text{ Oe}, M_{\rm r} = 3.8 - 11 \text{ emu g}^{-1}, M_{\rm f} M_{\rm s} = 0.07043 - 0.15799$	Ferromagnetic, $M_{\rm s} = 0.085$ -4.177 emu g ⁻¹ , $H_{\rm c} = 21.1$ -85.8 Oe, $M_{\rm c} = 0.005$ -1 136 emu o ⁻¹	Soft magnetic, $M_s = 49.5-109.3$ emu g ⁻¹ , $H_c = 219-460$ Oe	Ferromagnetic, $M_{\rm s} = 1.5$ emu g ⁻¹ , $H_{\rm c} = 47$ Oe	Paramagnetic-antiferromagnetic (200-300 K), $M_{\rm s} = 34$ emu g ⁻¹ , Electrode material $H_c = 96.7$ Oe. $M_c = 13$ emu v^{-1} (5 K)	
Morphology (after post-treatment)	Regular	Nanoribbons Nanoribbons (400– 700 °C), nanofibres (900 °C)	Hollow	Wire-in-tube structure Core-shell	Nanofibres with depos- ited particles	Porous nanoribbons	Regular	Regular	Hollow fibres with deposited particles	Regular Regular	Janus	Sintered particles to form a hollow fibre	Regular Core-shell	Regular	Hollow	Core-shell, fibre-in- tube, tube-in-tube	Short	Regular	Regular	Regular	Short fibres	Core-shell
Electrospinning approach and post-treatments	Uniaxial – ultrasonic – coaxial	Uniaxial – calcination Uniaxial – calcination	Uniaxial - calcination	Uniaxial – calcination Coaxial – anneal	Uniaxial – coprecipitate – calcination	Uniaxial – anneal	Uniaxial – carbonisation	Uniaxial – stabilisation – carbonisation	Uniaxial - calcination - polyaniline assisted (self-assembly) process - deposition	(Sol-gel) uniaxial - calcination Uniaxial - blend - calcined - casted	Uniaxial – calcination – electrical assembly	Uniaxial – calcination	Uniaxial – anneal Coaxial – anneal	Uniaxial – calcination – partially reduction	Uniaxial - calcination	Coaxial - calcination	Uniaxial – calcination	Uniaxial – thermal reduction – heat treatment	Uniaxial – calcination – partially reduction	Uniaxial – stabilisation – carbonisation	Uniaxial – anneal	Uniaxial – calcination – atomic layer deposition
Polymer							PAN		PANI	PVAc PVDF	PVP	PVP	PS PVP & PMMA	PVP	PVP	PVP	PVP	AN & PEO	PVP	PAN	PVP	ЧVР
Magnetic ingredients											CoFe ₂ O ₄ /barium carbonate	$\rm CoFe_2O_4/Ag$	$CoFe_2O_4-Pb(Zr_{0.52}Ti_{0.48})O_3$	$CoFe_2O_4/CoFe_2$	$CoFe_2O_4/SrFe_{12}O_{19}$	CoFe ₂ O ₄ , NiFe ₂ O ₄	$ m ZnFe_2O_4/CoFe_2O_4$	Mullite fibres with embedded Ni NPs	Fe-Ni/NiFe2O4	NiFe ₂ O ₄ & MWCNTS	Spinel-Ni Mn_2O_4	NiFe ₂ O ₄

Table 2 (continued)

																										Viev	v Article Online
view	_																				Jou			1at	eria	ls Ch	emistry C
Ref.	442	COT	443	444	445	110		229	446	100	215	447	174	186 I	185	448	159	199	182		1 1	190	210		45U 451	193	452 453
Applications	Č	Ue,						EWA	EWA	FXX/A		Catalysts (magnetic	separation	Mr Magnetic recording device, magneto- optical recording and		Photocatalyst	0.52	Visible light photo- catalyst (magnetic			CR adsorption and CO catalytic oxidation of the samples	Oe,	~	Dhotocotoluct	FIIOLOCALAIYSI EWA		Photocatalyst Oe, Photocatalysts for wastewater disposal or drug release
Magnetic properties	$M_{\rm s} = 2.7 \times 10^8$ emu cm ⁻³ , $H_{\rm c} = 166$ Oe, $T_{\rm c} = 858$ K soft formotion $M_{\rm c} = 1.2$, $M_{\rm c} = 1.0$, $M_{\rm c} = 1.$	$M_r = 0.008-7.8 \text{ emu g}^{-1}$	$H_{\rm c} = 30 \text{ Oe} (300 \text{ K}), H_{\rm c} = 576 \text{ Oe} (5 \text{ K})$	Ferromagnetic, $M_{\rm s} = 33.3$ emu g ⁻¹ , $H_{\rm c} = 225$ Oe		Soft magnetic, $M_{\rm s} = 14.44$ emu g ⁻¹			$M_{\rm s} = 11.9-53.4$ emu ${\rm g}^{-1}$, $H_{\rm c} = 114.3-409$ Oe	$M = 375-66.2$ emm n^{-1} $H = 78.3$ Oe (max)	$M_{\rm s} = 13.4-56.4$ emu g ⁻¹ , $H_{\rm c} = 210-1255$ Oe		$M_{\rm s} = 43.5 - 46.3 \ { m emu} \ { m g}^{-1}$	$M = 46.8-61.14 \text{ emu g}^{-1}$ (10 kOe), $H_c = 607.7-642.6 \text{ Oe}$, M_r Magnetic recording = 13.4-17.8 emu g $^{-1}$ (600-800 K) device, magneto- optical recording ar	$M_{\rm s} = 56.8 \text{ emu } { m g}^{-1} ({ m max}), H_{\rm c} = 998-1264 \text{ Oe},$ $M_{\rm c} = 16.210 \text{ emu}, \sigma^{-1} M/M = 0.41-0.67$	141 - 10 01:0 CIIIA & 144 148 - 0:41 -0:01	Ferromagnetic, $M_{\rm s} = 18.99-25.04$ emu g ⁻¹ , $H_c = 345-1451$ (De. $M_c = 5.32-13.02$ emu g ⁻¹ , $M/M_c = 0.28-0.52$		Ferromagnetic, soft magnetic, $M_s = 7.73-23.98$ emu g ⁻¹ , : $H_c = 299-625$ Oe, $M_r = 6.08-9.91$ emu g ⁻¹ ,	$M_{\rm r}/M_{\rm s} = 0.34-0.41$	Ferromagnetic	Ferromagnetism – antiferromagnetism, $M_s = 11.43-60.24 (\times 10^{-3}) \text{ emu g}^{-1}$, $H_c = 10707-734.67$	$M_{\rm r} = 4.02-25.78 \ (\times 10^{-5}) \ {\rm emu} \ {\rm g}^{-5}, M_{\rm r}/M_{\rm s} = 0.289-0.428$ Soft ferromagnetic, $M_{\rm s} = 15.1-37.71 \ {\rm emu} \ {\rm g}^{-1}$,	$H_{\rm c} = 50.9 - 144.66 \ {\rm Oe}$	Ferromagnetic, $M_{\rm s}$ = 12.4 emu g ⁻¹ , $H_{\rm c}$ = 48.79 Oe	Superparamagnetic – paramagnetic (calcined at 500–700 °Cl, $M_c = 1.33-2.55$ emu g ⁻¹	Ferromagnetic, $M_{\rm s} = 22.9-34.2$ emu g ⁻¹ , $H_{\rm c} = 208.7-425.1$ Oe, $M_{\rm r} = 5.8-10.1$ emu g ⁻¹
Morphology (after post-treatment)	Multi-particle-chain-like	form a fibre	Regular	Nanotube	Regular	Hierarchical porous	cross-linked structure	kegular	Regular	Necklare-like	Regular	Short fibres	Nanorods	Regular	Regular	Hollow	Hollow	Nano fibres with deposited particles	Sintered particles to form a fibre or lamellar	post sintering	Sintered particles to form short or hollow fibres	Regular	Regular	Douton of the second	Forous nanounces Sintered particles to	Sintered particles to form a fibre	Porous nanotubes Regular
Electrospinning approach and post-treatments	Uniaxial – calcination		Uniaxial – calcination	Uniaxial – anneal	Uniaxial – anneal	Uniaxial – (dip-coating) –	calcination	Uniaxial - stabilisation - carbonication	Uniaxial – carbonisation – mix	with paraffin Thisvisl – celeinstion	Uniaxial – stabilisation –	calcination Uniaxial – calcination	Uniaxial – calcination	Uniaxial – calcination	Uniaxial – carbonisation	Uniaxial – calcination – ANI	Uniaxial – calcination	Uniaxial – deposition	Uniaxial – calcination		Uniaxial – calcination	Uniaxial – calcination	Uniaxial – calcination	TTuring and a second se	Uniaxial - annear Uniaxial - calcination	Uniaxial – calcination	Uniaxial - calcination Uniaxial - calcination
Polymer					PVA	PVA &	TEOS	PAN	PVP,	PAN	PVP	РИР		PVAc	PAN	PVP	PVP					PAN	РVР		7 V7		PVP PVP
Magnetic ingredients								$N1C0_2O_4$	Ni _{0.8} Co _{0.2} Fe ₂ O ₄ , Ni		$Co_{1-x}Ni_xFe_2O_4$ (x = 0.0, 0.2,	0.4, 0.6, 0.8, 1.0) MnFe $_2O_4$				$\mathrm{Co}_{0.5}\mathrm{Mn}_{0.5}\mathrm{Fe}_{2}\mathrm{O}_{4}$	$CuFe_2O_4$					CuCo ₂ O ₄	$Ni_{1-x}Cu_xFe_2O_4$		zurre ₂ O ₄		ZnFe ₂ O ₄ /ZnO ZnFe ₂ O ₄ /Fe ₃ O ₄

Review

Table 2 (continued)

rnal of	Mate	rials Che	mistry C														R	leview
Ref.	454 216	455 211 456	457 458 1	184	135 459	104	249	151	201	238 460	461	191 462 167 3	138	116	176 153 209	130 463	181	464
Applications		EWA	EWA DNA separation for clinical diagnoses and biomolecular recognition	0			Catalyst for waste- water treatment			Photocatalyst Photocatalyst	Photocatalyst	EWA Photocatalyst	High density magnetic recording and micro- wave devices			Batteries		
Magnetic properties	Ferromagnetic, $M_s = 45 \text{ emu } \text{g}^{-1}$ (max) Ferromagnetic-paramagnetic, $M_s = 58.4 \text{ emu } \text{g}^{-1}$ (max), $H_s = 35.2-72.35 \text{ Oe. } M_s M_s = 0.11-0.47 \text{ emu } \text{o}^{-1}$	H_c = 121.6 Oe (298 K), H_c = 235.9 Oe (max), H_c = 338.2 Oe (max) EWA H_c = 121.6 Oe (298 K), H_c = 295.9 Oe (77 K) H_s = 61 emu g ⁻¹ , H_c = 43 Oe, M_r = 3 emu g ⁻¹	Soft magnetic, $M_{\rm s} = 78.6$ emu g ⁻¹ , $H_{\rm c} = 57.4$ Oe Ferromagnetic	$M_{\rm s} = 17-31.1$ emu g ⁻¹ , $H_{\rm c} = 35.8-98.9$ Oe	Ferromagnetic $M_s = 20.25$ emu g ⁻¹ , $M_r = 5.1$ emu g ⁻¹ , $H_c = 90$ Oe, soft ferromagnetic	Ferromagnetic, $M_s = 0.012$ emu g^{-1} , $H_c = 65.26$ Oe, $M = 0.0015$ emu σ^{-1}	$M_{\rm s} = 0.0002 - 1.2 {\rm emu g}^{-1}$	$M_{\rm s} = 14-20 \text{ emu g}^{-1}, H_{\rm c} = 390-400 \text{ Oe}$	Ferromagnetic, $M_{\rm s} = 56.4$ -80 emu g ⁻¹ , $H_{\rm c} = 1477$ Oe	Superparamagnetic	$H_{\rm c}$ = 585.09 Oe, $M_{\rm r}$ = 3.2408 emu g ⁻¹ , $M_{\rm s}$ = 9.5869 emu g ⁻¹ Photocatalyst	Ferromagnetic Weak ferrimagnetic, $H_c = 73-224$ Oe $M_s = 30.7-57.8$ emu g^{-1} , $H_c = 95.3-4187.1$ Oe Ferromagnetic, $M_s = 7.968$ emu g^{-1} , $H_c = 5149.7$ Oe,	$M_{\rm s} = 64 \text{ emu g}^{-1}, H_{\rm c} = 6533.3 \text{ Oe}$	$M_{\rm s} = 50-67.9 \text{ emu g}^{-1}, H_{\rm c} = 7150-7310 \text{ Oe},$ $M = 275-373 \text{ emu o}^{-1}$	$M_{\rm s} = 50.9-60.8 {\rm emu} {\rm g}^{-1}, H_{\rm c} = 4538.2-6565.9 {\rm Oe}$ $M_{\rm s} = 569-60.8 {\rm emu} {\rm g}^{-1}, H_{\rm c} = 1249-3190 {\rm Oe}$ $M_{\rm s} = 13-62 {\rm emu} {\rm g}^{-1}, H_{\rm c} = 5668-7737 {\rm Oe} (298 {\rm K}),$	$M_s = 10-85$ cmu g , $T_c = 0800$ Ue (// K) Ferromagnetic, $M_s = 0.74$ emu g ⁻¹ (max) Paramagnetic-ferromagnetic, $M = 0.46-0.82$ emu g ⁻¹ , $M = 1.42$ or $M = 0.04$ of 1.5 cmu, m^{-1} m > 200 V	Hard magnetic, $M_s = 55.1 \text{ emu g}^{-1}$, $H_c = 6523 \text{ Oe} (\text{max})$, $H_{ard} = 6523 \text{ Oe} (\text{max})$, $H = $	$H_c = 3037.1-4762.7$ Oe (77–297 K), $M_r = 53.5-39.1$ emu g ⁻¹ (77–297 K)
Morphology (after post-treatment)	Nanoribbons Regular	Regular Regular Nanowires in	Regular Sintered particles to form a fibre	Sintered particles to form a fibre	Nanotubes Regular	Regular	Core-shell	Core-shell	Hollow short fibres	Necklace-like Sintered particles to form fibres		Regular Regular Hollow Core-sheath	Necklace-like	Nanoribbons	Necklace-like Core-shell Necklace-like	Regular Regular	Regular	Sintered particles to form a fibre
Electrospinning approach and post-treatments	Uniaxial – calcination Uniaxial – calcination	Uniaxial – calcination Uniaxial – calcination Uniaxial – anneal – calcination	Uniaxial - calcination Uniaxial - calcination	Uniaxial – calcination	Uniaxial – anneal – sinter Uniaxial – calcination	Uniaxial – anneal	Coaxial – calcination	Uniaxial – calcination – deposition	Uniaxial – anneal	Uniaxial – calcination Uniaxial – calcination	(Sol-gel) – vertical two – spinneret – calcination	Uniaxial – calcination Uniaxial – calcination Coaxial – stabilisation – sinter Uniaxial – calcination – deposi-	uon - caucination Uniaxial - calcination	Uniaxial – anneal	Uniaxial - calcination Coaxial - calcination - reduction Uniaxial - calcination	Uniaxial - calcination - anneal Uniaxial - calcination	Uniaxial – calcination	Uniaxial - calcination
Polymer	PVA PVP	PVP PVP PVP	PVP	ЧVР	PVP	pvp	P123, PVP	TEOS	PVP & TEOS	PVP PVP	PVP	PVP PVP			PVP PVP	PVP PVP	pvp	PVP
Magnetic ingredients	${ m ZnFe_2O_4/\gamma-Fe_2O_3} { m Cu_1xZn_xFe_2O_3}$	C00.6Zn0.4Fe2O4 Ni0.5-xCuxZn0.5Fe2O4 Ni0.5Zn0.5Fe2O4	NiZn ferrite	$\mathrm{MgFe}_{2}\mathrm{O}_{4}$	$\mathrm{Mg}_{1-x}\mathrm{Zn}_x\mathrm{Fe}_2\mathrm{O}_4$	$CuAl_{0.95}Co_{0.05}O_2$	Fe@TiSi	α -Fe ₂ O ₃ @SiO ₂	SiO_2 -CoFe $_2O_4$	CaFe ₂ O ₄ CaFe ₂ O ₄ /MgFe ₂ O ₄	$TiO_2/CoFe_2O_4$	Ti _{0.9} V _{0.1} O ₂ Cr _{0.046} Zn _{0.954} O SrFe ₁₂ O ₁₉			StFe ₁₂ O ₁₉ /FeCo StAl _x Fe _{12-x} O ₁₉ $(x = 0-3.0)$	$\begin{split} & \text{SrTi}_{1-x}\text{Co}_x\text{O}_3\\ & \text{SrTi}_{1-x}\text{Fe}_x\text{O}_3 \ (\text{SrTi}_{0.9}\text{Fe}_{0.1}\text{O}_3) \end{split}$	$SrTiO_3/SrFe_{12}O_{19}$	SrFe ₁₂ O ₁₉ , Ni _{0.5} Zn _{0.5} Fe ₂ O ₄

Journal of Materials Chemistry C

Table 2 (continued)

iew																			Jo	urn	al d	of	Ma	teri	als	s C	hen	nis	try C
Ref.	465	466 170	467	468	469	212	222	470	471	472	473	48	171 474	475	476	$179 \\ 180$	208	477	478 220	152	479	219	154	165	480	481	482		125
Applications	1							EWA	e Electromagnetic interference shields								EWA		_ `	Dye removal		Magnetoresistance	Permanent magnet	Drug delivery	Drug delivery)			
Magnetic properties	$M_{\rm s} = 56.1-64.9$ emu ${\rm g}^{-1}$, $H_{\rm c} = 1484.7$ Oe, $M_{\rm r} = 31.5$ emu ${\rm g}^{-1}$	$M_{\rm s} = 45.6-58.0 \text{ emu g}^{-1}, H_{\rm c} = 6283.8 \text{ Oe} \text{ (max)}$ $M_{\rm s} = 3.1-21.5 \text{ emu g}^{-1}, H_{\rm c} = 21.5-140 \text{ Oe}$	$M_{\rm s} = 46.15-51.56 { m ~emu~g}^{-1}, H_{\rm c} = 5226 { m ~Oe}, M_{\rm c} = 22.54-77.59 { m ~emu~o}^{-1}$	$M_{\rm s} = 17.8 \text{ emu } g^{-1}, H_{\rm c} = 4106.9 \text{ Oe}$	$M_{\rm s} = 71.5 \text{ emu } \text{g}^{-1}, H_{\rm c} = 5943 \text{ Oe}$	Hard magnetic, $M_{\rm s} = 29.70-63.92$ emu g ⁻¹ , $H_{\rm c} = 3614.0-9288.4$ Oe, $M_{\rm r} = 17.73-33.44$ emu g ⁻¹ , $M/M_{\rm c} = 0.52-0.60$	Paramagnetic	$M_{\rm s} = 34.5-64.4$ emu g ⁻¹ , $H_{\rm c} = 93.2-132.8$ Oe	Superparamagnetic, $M_s = 12-12.5$ emu g ⁻¹ , $H_c = 87-95$ Oe Electromagnetic interference shie	Ferromagnetic, $M_{\rm s} = 2.479$ emu g ⁻¹ , $H_{\rm c} = 44.873$ Oe, M = 0.100 emu c ⁻¹	Soft magnetic		Ferromagnetic, $H_c = 28078$ Oe, $M_r = 0.23$ emu g ⁻¹ $T = 255$ K $T_c = 180$ K	Ferromagnetic, $T_c \approx 365$ K	Ferromagnetic, $M_{\rm s} = 0.022 - 0.067$ emu g ⁻¹	$M_{\rm s} = 1.23-40.52$ emu g ⁻¹ , $H_{\rm c} = 62$ 00 (max) Superparamagnetic-ferromagnetic, $M_{\rm s} = 1.8-50$ emu g ⁻¹	$M_{\rm s} = 77.188 \text{ emu g}^{-1}, H_{\rm c} = 3559.0 \text{ Oe (min)}$	$M_{\rm s} = 43.2-72.2$ emu g ⁻¹ , $H_{\rm c} = 164.3-5478.7$ Oe	$M_{\rm s}$ = 70.76 emu g ⁻¹ , $H_{\rm c}$ = 6.26 kOe, $M_{\rm r}$ = 36.35 emu g ⁻¹ . Ferromagnetic, $T_{\rm c}$ > 390 K, $M_{\rm s}$ = 0.0025–0.0923 emu g ⁻¹ . $t_{\rm c}$ = 1.0 k.	$M_{\rm s} = 20.51 - 28.32$ emu g ⁻¹ , $M_{\rm r} = 7.24 - 12.85$ emu g ⁻¹	Ferromaonetic $M=10 \times 10^{-5}$ emu a^{-1}	$T_c \approx 150 \text{ K}$, $T_{ m B} \approx 50 \text{ K}$	2			Paramagnetic, mass magnetic susceptibility = 1.4252×10^{-4}	10 · emu g ⁻ Oe ⁻ (± 20 Oe) Paramagnetic, magnetisation, $M_s = 2.11-2.46$ emu g ⁻¹		Superparamagnetic, $M_{\rm s} = 34.17-56.13$ emu g ⁻¹ , $H_{\rm c} = -50$ to 50 kOe, mass magnetic susceptibility = 2.2239-3.7438 × 10 ⁻⁵ emu g ⁻¹ Oe ⁻¹
Morphology (after post-treatment)	Sintered particles to	Necklace-like Sintered particles to form a fibre	Hollow	Sintered particles to	Sintered particles to form a fibre	Sintered particles to form a fibre	Sintered particles to form a fibre	Necklace-like	Regular	Regular	sinter Regular	Core-shell	Short fibres Null	Regular	Regular	Regular Hollow	Regular	Necklace-like	Regular Null	Core-shell	Dorous hollow	Regular	Core-shell	Hollow	Porous	Regular	Regular	-	Nanobelts
Electrospinning approach and post-treatments	Uniaxial – calcination	Uniaxial - calcination Uniaxial - presintering - calcination	Coaxial - calcination	Uniaxial – calcination	Uniaxial - calcination	Uniaxial – calcination	Uniaxial – anneal	Uniaxial – stabilisation –	carbonisation – Uniaxial – stabilisation – carbonisation	Uniaxial – anneal	Uniaxial – magnetic field – sinter	Coaxial – anneal	Uniaxial - calcination Uniavial - calcination	Uniaxial – calcination	Uniaxial - calcination	Uniaxial – calcination Uniaxial – calcination	Uniaxial – calcination	Uniaxial – calcination	Uniaxial – sinter Uniaxial – calcination	Uniaxial - calcination -	precipitation – calcination Uniavial – calcination	Uniaxial – calcination	Uniaxial – calcination – soft	magnet plating Uniaxial – anneal	Uniaxial – anneal	Uniaxial - calcination -	tluorination - oxidation Uniaxial - calcination -	fluorination	Uniaxial – calcination – fluorination
Polymer		PVP PVP	PVP			pvp	PVP	PVP	PAN	PVP	PVP		PVP PVA	PVP	PVP	PVP	PVP	PVP	PVP PVP	PVP	d/Jd	PVP	PVP	PEI	PVP	PVP	PVP		PVP
Magnetic ingredients		xSrSiO ₃ /(100 - x)SrFe ₁₂ O ₁₉ Yttrium iron garnet	$BaFe_{12}O_{19}$			${ m BaFe_{12-x}Al_xO_{19}}$	${\rm BaTi}_{0.90}{\rm Mn}_{0.10}{\rm O}_3$	$\rm Ni_{0.4}Co_{0.2}Zn_{0.4}Fe_{2}O_{4}/BaTiO_{3}$	Fe_2O_3 , BaTi O_3	$Ba_{0.7}Sr_{0.3}TiO_{3}\text{-}Ni_{0.8}Zn_{0.2}Fe_{2}O_{4}\ PVP$	Cobalt ferrite/barium calcium PVP	tıtanate Nickel ferrite/barium titanate	LaFeO ₃ LaMnO;	$La_{1-vSrvMnO_3+0}$	$La_{0.5}Sr_{0.5}TiO_3$	$La_{0.7}Sr_{0.3}MnO_3$	$\mathrm{Ba_{1-x}La_xFe_{12}O_{19}}$	${\rm Sr}_{0.8}{\rm La}_{0.2}{\rm Zn}_{0.2}{\rm Fe}_{11.8}{\rm O}_{19}$	$\mathrm{Sr}_{1-x}\mathrm{La}_{x}\mathrm{Fe}_{12-x}\mathrm{Co}_{x}\mathrm{O}_{19}~(x=0.12)$ $\mathrm{Ce}_{0.96}\mathrm{Fe}_{0.04}\mathrm{O}_{2}$	$CuFe_2O_4$ (a) CeO_2	SnO./Ce	Lan 32 Pro 34 Can 33 MnO3	Hard Sm_2Co_{17} core and soft	Fe ₁₁ Co ₅ shell ~-NaYF.:Yh/Fr/Gd	$Na(Y/Gd)F_4:Yb^{3+},Er^{3+}$	GdOF:Er ³⁺	${ m GdF_3}{:}{ m Eu}^{3+}$		NaGdF ₄ :Dy ^{2*}

Table 2 (continued)

Magnetic ingredients	Polymer	Electrospinning approach and lost-treatments (Morphology (after post-treatment)	Magnetic properties	Applications	Ref.
NaGdF4:0.5%Dy ³⁺ ,Eu ³⁺	PVP	Uniaxial – calcination – fluorination	Regular	Magnetisation = $1.69-2.00$ emu g ⁻¹		483
${ m Gd}_2{ m O}_2{ m S:Dy}^{3+}, { m Eu}^{3+}$ ${ m SrDy}_{ m x}{ m Fe}_{12-x}{ m O}_{19}$ ${ m Ni}_{0.8}{ m Gd}_{0.2}{ m Fe}_2{ m O}_4$	qvq qvq	nter – sulfurising ulcination ulcination	Regular Regular Nanoribbon	$M_{\rm s} = 2.56-2.68 \text{ emu } \mathrm{g}^{-1}$ Hard magnetic, $M_{\rm s} = 53-64 \text{ emu } \mathrm{g}^{-1}$, $H_{\rm c} = 6835-7155$ Oe $M_{\rm s} = 29.45-36.71 \text{ emu } \mathrm{g}^{-1}$, $H_{\rm c} = 8.7-33.73$ Oe,		484 155 213
$\begin{array}{l} Co_{0.5}Cu_{0.2}Ni_{0.2}Zn_{0.1}Fe_2O_4,\\ Co_{0.94}Gd_{0.06}Fe_2O_{4.03}\end{array}$	PVP	Uniaxial – calcination	Sintered particles to form a fibre	$M_r = 0.22^{-1.55}$ enu g Soft magnetic, $M_s = 33.32^{-67.37}$ enu g ⁻¹ $(Co_{0.5}Cu_{0.2}N_{0.2}Tn_{0.1}Fe_2O_4), M_s = 12.44^{-71.98}$ enu g ⁻¹		214
BiFeO ₃	PVP	Uniaxial – calcination Uniaxial – stabilisation – anneal – 1	Regular Regular	$(\text{CO}_{0.91}\text{CM}, \text{GeV}_{0.06}\text{TC}, \text{C}_{4.03})$ Photocatalyst Weak ferromagnetic Work ferromagnetic good magnetic response, $M_{\text{s}} = 4.4 \text{ emu g}^{-1}$, Photocatalyst $H = 170 \text{ (Os}$	Photocatalyst , Photocatalyst	45 239
		ation – hydro-	Nanofibres with	Ferromagnetic	Photocatalyst	485
		tion	nanosneet uepositeu Short Necklace-like	Weak-ferromagnetic Magnetic moment = $0.4-3.0$ emu g ⁻¹		139 486
		- anneal - anneal - calcination - calcination - grind -	Nanotubes Regular Regular Regular	Ferromagnetic, $T_c = 300 \text{ K}$ Weak ferromagnetic, $M_s = 4 \text{ emu } \text{g}^{-1}$ (max), $H_c = 200 \text{ Oe}$ Ferromagnetic, $M_s = 4 \text{ emu } \text{g}^{-1}$ Ferromagnetic, $M_s = 0.18-0.36 \text{ emu } \text{g}^{-1}$		113 487 207 488
Nylo Ni _{0.2} Zn _{0.3} Fe ₂ O ₄ /Pb(Zr _{0.52} Ti _{0.48})O ₃ PVP Bi ₅ Ti ₃ FeO ₁₅ PVP	Nylon-6 O ₃ PVP PVP	Uniaxial - calcination Uniaxial - calcination Uniaxial - calcination Uniaxial - calcination	Regular Regular Compact pellet to form			489 178 490
Bi ₂ Sr ₂ CaCu ₂ O _{8+x} Bi _{0.95} Y _{0.05} FeO ₃	PVP PVP	Uniaxial – anneal – calcination Sol-gel uniaxial – calcination	a nbre Regular Sintered particles to	$H_c = 255$ Oe, $M_r = 0.92 \times 10^{-5}$ emu g $\gamma, M_r/M_s = 0.14$ $T_c = 78.7$ K M = 1.143 - 1.996 emu g ⁻¹ (MH = 2 T)		491 492
${ m Bi}_{0.9}{ m La}_{0.1}{ m Fe}_{0.95}{ m Mn}_{0.05}{ m O}_3{ m Li}_{7}{ m La}_{3}{ m Zr}_{2}{ m O}_{12}{ m Value}$	PVP PVP	Uniaxial - calcination Uniaxial - calcination Sol and - unioxial - archanication	Regular Regular Trollow	$M_{\rm s} = 404.7 \text{ memu g}^{-1}, H_{\rm c} = 687.72 \text{ Oe}, M_{\rm r} = 48.115 \text{ memu g}^{-1}$	_	493 494
PbZr _{0.52} Ti _{0.48} O ₃ -NiFe ₂ O ₄ Fe ₃ O ₄ @SiO ₂	PVP PVP		Core-shell Fibres with deposited	Magnetisation = $6.5-9.6 \text{ emu g}^{-1}$	Photocatalyst	157 496
Montmorillonite	PVDF	hydrothermal treatment Uniaxial – blend	particles Agglomerates		EWA	497

Fig. 2 Variety of different electrospinning apparatus including: (a) three basic parts, (b) core-shell needle, (c) multi-channel needle, (d) Janus fibre needle, (e) fibre blend, (f) layer-by-layer fibre, (g) drum collector, (h) twisted fibre collector, (i) multi-needle electrospinning, (j) drum electrospinning and (k) magnetically assisted electrospinning.

Fig. 3 SEM images of electrospun fibres and particles: (a) NFs with encapsulated MNPs;⁸ (b) NFs with dip-coated MNPs;⁸ (c) nanobelts;⁵⁵ (d) beaded fibres;¹⁹ (e) hollow fibres;²⁶ (f) Janus NFs;¹⁴ (g) cross section of a bi-layered composite nanofibrous film;³⁶ (h) the fibre of left layer containing the terbium complex Tb(TTA)₃(TPPO)₂ (where TTA is thenoyltrifluor-oacetone and TPPO is triphenylphosphine oxide);³⁶ (i) the fibre of right layer containing PANI-Fe₃O₄-PAN;³⁶ reproduced from ref. 36 with permission from the PCCP Owner Societies; (j) random fibre mat;⁴⁵ (k) oriented fibre mat;⁴⁵ reproduced from ref. 45 with permission from the PCCP Owner Societies (l) yarn twist fibres⁵⁶ (Published by The Royal Society of Chemistry); and (m–q) electrosprayed and electrospun fibres of styrene– (ethylene-*co*-butylene)–styrene from neat tetrahydrofuran (THF) solutions at varying polymer concentration (8 wt%, 10 wt%, 12 wt%, 14 wt% and 18 wt% for m–q, respectively).⁹

differing diameter, which are loaded with the shell and core materials, respectively. The high speed of the jets prevents the disparate materials from mixing, resulting in a distinct boundary between the core and shell materials. Coaxial electrospinning is a useful method for separating the material of the inner and outer layers whilst protecting the load material (typically contained within the core). Yu *et al.*²⁶ loaded air into the inner syringe to prepare hollow NFs (Fig. 3(e)) to be applied in targeted drug delivery applications.

2.1.2.3 Janus structure electrospinning. Janus nanostructures consist of two segregated materials with distinct physical and chemical properties to create a single nanostructure with two 'faces'. Commonly, the two materials exhibit antagonistic properties, such as being hydrophilic/hydrophobic (polar/nonpolar), which forms an important area of research in materials science. To create Janus NFs, two different fibres are produced from separate nozzles that have opposite charges. The two different fibres attract one another to form the final Janus structure (Fig. 3(f)). The Janus structure stops the two parts of the material interfering with one another to prevent the loss of dual performance. This technology has been utilised to produce materials with superior properties in catalysis, sensing, biomedicine and display technology.^{27–30}

2.1.2.4 Collecting methods and collectors. In addition to nozzle design, and the whip and curing stages of the electrospinning process, the overall morphology of the fibre can be controlled by changing the method of collection. In addition to a stationary plate, common collection methods include (but are not limited to) additional magnetic field,^{13,31,32} mechanical traction,³³ spinning³⁴ and layer-by-layer blending^{35,36} (Fig. 2). For example, Yang *et al.*³⁵ prepared a novel sandwich-structured pellicle *via* layer-by-layer blending where the electric, magnetic and luminous layers could be effectively isolated from each other.

The arrangement of fibres can also be controlled by using different collectors. Again, compared to the more traditional flat plate, other collectors include the drum^{37–41} (Fig. 2(g)), parallel roller^{11,42–44} (Fig. 2(h)) and slit collector. These collectors allow NF membranes to be obtained with intricate patterns (Fig. 3(j–l)) for more innovative applications.^{38,45} Among these collectors, the drum is the most common for preparing oriented fibre fabrics and membranes.⁴⁶

2.1.2.5 Combinations. The aforementioned methods (discussed in Sections 2.1.2.1–2.1.2.4) are often combined to achieve enhanced control over the process. Such combinations have been exploited to access morphologies such as the yarn twist (Fig. 2(i)), Janus array fibre films^{28,35,47} and oriented coaxial fibres.⁴⁸ Wang *et al.*³⁶ fabricated highly fluorescent membranes made up of Janus NFs composed of magnetic [Fe₃O₄/polyvinylpyrrolidone (PVP)] and fluorescent terbium ligand complex Tb(BA)₃phen/PVP (where BA is benzoic acid and phen is phenanthroline) NFs. The trifunctional bi-layered composite nanofibrous film was produced using layerby-layer electrospinning and by systematically altering the process parameters during the electrospinning process.

2.1.2.6 Industrial production. In order to improve production efficiency, and to allow scale-up from the laboratory to industrial manufacture, modifications to the electrospinning equipment are often made. Most commonly the liquid supply device is adjusted commonly to; the use of densely packed needle arrays⁴⁹ (Fig. 2(j)), separate silk threads used as spinnerets,⁵⁰ a drum with grooves

that rotates in a liquid pool to fill the hole for the supply of liquid (Fig. 2(k)) or a feedstock pool mounted with columns of magnets to directly supply the magnetic liquid⁵¹ (Fig. 2(l)).

Generally, the development of electrospinning rigs has been based on the design and combination of the two main components: the solution feeding system and collector. The development of industrial mass production equipment has also contributed to the commercialisation of electrospinning fibres.

2.1.3 Morphology and parameters. The processing parameters that affect the structure and morphology of an electrospun fibre include the applied voltage, liquid flow rate and the distance between nozzle and collector. The applied voltage determines the electric field intensity and charge density of the droplet, which directly influence the diameter of the fibres produced. Generally, a simple increase in voltage, without changing any other parameters, results in a decrease in fibre diameter. However, special cases still exist. For example, beaded fibres can be produced at low polymer solution concentration and at increasing (but low) voltages, the diameter initially increases with decreasing bead density. It is only at significantly higher voltages that a reversal is observed; the fibre diameter decreases and the beads reappear.⁵² Additionally, a voltage increase can also decrease the uniformity and length of the fibres produced.⁵³ Conversely, increasing the flow rate of the liquid results in an increase in fibre diameter. Sufficient time is required for the solvent to fully evaporate during the fibre forming process, which corresponds directly to the distance between the nozzle and collector. If the distance between the nozzle and collector is too short there is insufficient time for the solvent to evaporate and fused fibres are formed. Similarly, fused fibres are formed when the distance is too large, this is attributed to the reduced electrostatic field strength experienced by the fibres meaning they are not stretched appropriately. In this latter case, the fibres formed often have large diameters which is a result of solvent being trapped within.⁵⁴

System properties such as polymer molecular weight, concentration, solution viscosity, solvent type and solution electroconductivity also affect the fibre morphology. Electrospinning relies on chain entanglement to produce fibres. The level of chain entanglement is directly related to the solution viscosity, which is intrinsically linked to the polymer molecular weight and sufficiently high solution concentration. Insufficient chain entanglement causes bead-like morphologies instead of continuous fibres. Wang et al.9 studied the effect of co-solvent and polymer concentration on fibre morphology and the phenomenon of microphase separation during solution fibrillation (Fig. 3(m-q)). They found a morphological transition from fibres to beads occurred when increasing the concentration of dimethylformamide (DMF) in the THF/DMF co-solvent system. However, for the polymer system to self-assemble (microphase separate) the quantity of THF present had to be between 65–90 wt%. In another example, Doepke et al.⁵⁰ investigated nanoparticle concentration when preparing polymer bead/fibre mats for data storage. In this case they found that mechanical dispersion by ultrasonic treatment allowed for higher quantities of nanoparticles to be incorporated in both mats and bead formation without unwanted agglomeration effects.

MNPs or their constituent components (*e.g.* inorganic metal salts, alloys and oxides) are typically added into solution. These materials are highly electroconductive and alter the solution permittivity and conductivity, which in turn affects the creation of the local electrical field, improves the fibre morphology and decreases the fibre diameter.⁵² Additionally, environmental factors such as humidity and temperature can also influence the fibre structure. Typically, these conditions relate to the speed of solvent volatilisation and thus affect the overall fibre morphology.

In order to obtain the desired morphology or functionality for the target application, the electrospun fibrous membrane is often post treated. The surface of the NFs can be coated with functional entities (*e.g.* collagen⁵⁷) or heat treated to chemically crosslink the polymer to improve mechanical strength and/or prevent dissolution (*e.g.* for temperature-controlled drug release).¹ Sandwich structure fibrous membranes have also been prepared by thermally treating the electrospun sample post-deposition.⁵⁸ The magnetic mat is sandwiched between two non-magnetic mats before an alternating magnetic field is used to induce magnetic heating, which in turn thermally bonds the nanofibrous mats together.

Overall, the development of solution supply systems has provided a rich and varied internal structure of individual fibres and the development of the collector has resulted in a diverse range of inter-fibre structures.

2.2 Magnetic materials and properties

Magnetic nanomaterials such as Fe_3O_4 , α/γ - Fe_2O_3 (hematite/ maghemite) and MFe_2O_4 (M = metal) have received considerable attention due to their properties and potential applications. Herein, we review the magnetic materials that have been used in electrospun polymer-based NFs and how this relates to their final structure and properties.

2.2.1 Fe₃O₄. Fe₃O₄ (magnetite) is one of the most commonly used magnetic materials due to its ease of preparation, biocompatibility, high surface area, catalytic activity, electrical conductivity, low toxicity and almost full spin polarisation at room temperature (RT). Superparamagnetic^{38,59,60} and ferrimagnetic^{58,61} Fe₃O₄ NPs have been prepared with varying saturation magnetisation (M_s) values. The surface of Fe₃O₄ nanoparticles can also be modified to alter or enhance given properties. Song et al.²¹ prepared Fe₃O₄-polyhedral oligomeric silsesquioxane (POSS) particles using a hydrosilylation reaction whilst maintaining an Ms value of the Fe3O4-POSS at 18.77 emu g^{-1} . The POSS was used in the system to improve the stability of the surface potential and charge retention of the mats. Gong et al.62 synthesised Fe₃O₄-loaded multi-walled carbon nanotubes (MWCNTs) (as a template for the Fe_3O_4 NPs), achieving M_s as high as 71.549 emu g^{-1} . Fe₃O₄ NPs can also be mixed with a variety of polymer materials to increase their stability, introduce stimuliresponsiveness and manipulate the interparticle distance and magnetic interactions (Fig. 4). Additionally, polymers can guide the assembly of Fe₃O₄ NPs to form novel structures.^{14,33,63-70}

Since polymeric materials can encapsulate and bind the nanoparticles as a matrix, research groups mix polymer materials with Fe_3O_4 NPs by uniaxial electrospinning, coaxial electrospinning

Fig. 4 Magnetization curves produced when mixing Fe_3O_4 NPs with different polymeric materials (a) Fe_3O_4 NPs in PMMA,⁶³⁻⁶⁶ (b) Fe_3O_4 NPs in PAN,^{33,67} and (c) Fe_3O_4 NPs in PVP.^{14,68-70}

and parallel-plate electrospinning. The method of electrospinning used affects the structure and properties of the composite material. The $M_{\rm s}$ of fibres prepared by uniaxial electrospinning increases with increasing mass of Fe₃O₄.^{71,72} Savva *et al.*⁷³ prepared oleic acid-coated magnetite nanoparticles, which show lower saturation magnetisation (~40 emu g⁻¹) due to the presence of the organic, nonmagnetic oleic acid coating. However, no significant agglomeration phenomena occur during the electrospinning process as exhibited in Fig. 5(a).

Fluorescent magnetic NFs have been targeted in research owing to their suitability in a wide range of applications such as;

Fig. 5 (a) TEM bright field image of a PVP/PLLA/OA–Fe₃O₄ nanocomposite membrane;⁷³ (b) BM image of [Fe₃O₄/PMMA] coaxial nanobelts;⁷⁴ (c) BM image of [Fe₃O₄/PANI/PMMA]//[Tb(BA)₃phen/PMMA] Janus nanoribbons;²⁸ (d) FESEM image of PVP NFs;⁴⁴ (e) TEM image of α-Fe₂O₃/europium complex [Eu(DBM)₃(Bath), where DBM is dibenzoylmethanate and Bath is bathophenanthroline]/PVP composite NFs;⁴⁴ (f) TEM image of CoFe₂O₄/ yttrium aluminium garnet (YAG):5% Eu³⁺/PVP composite NFs;⁷⁵ reproduced from ref. 75 with permission from The Royal Society of Chemistry; (g) TEM image of strontium hexaferrite nanoparticles (SrM-NPs) embedded in a PVA matrix;⁷⁶ (h) TEM image of SrM-NPs;⁷⁶ (i) TEM image of NiZn ferrite nanoparticles;⁷⁷ (j) SEM image of 1% MGNPs-polymer;⁷⁸ (k) SEM image of 3% MGNPs-polymer;⁷⁸ and (l) SEM images of 7% MGNPs-PEO.⁷⁸

light-emitting diodes,⁷⁹ sensors,⁸⁰ resonators⁸¹ and full-colour displays.⁸² However, heavy losses in fluorescent intensity is observed when Fe₃O₄ NPs are in direct contact with luminescent compounds.⁶⁹ In order to circumnavigate this problem, coreshell and Janus structures have been produced as they offer the opportunity to incorporate both components in disparate zones of the material; minimising the direct interactions that would typically occur between them. Shao et al.⁶⁴ reported the fabrication of tuneable fluorescent colour-electrical-magnetic trifunctional coaxial nanoribbons using coaxial electrospinning. These coaxial nanoribbons exhibited similar magnetic properties (M_s of 18.58 emu g^{-1}) to the corresponding composite nanoribbons (where all components were mixed within the ribbons). Most significantly, the fluorescent intensity and electrical conductivity of the coaxial nanoribbons were considerably higher than those of the composite nanoribbons, demonstrating the importance of architecture derived properties. Fig. 5(b) demonstrates the coaxial nanobelt structure, revealing that the core contains large quantities of dark-coloured Fe₃O₄ NPs whilst the shell of the coaxial nanobelts appears transparent.⁷⁴

Another effective method to create the Janus structure is via parallel-plate electrospinning. Gai et al.^{83,84} prepared Janus nanobelts from Fe₃O₄/PVP and rare earth complex/PVP which demonstrated desired magnetism-luminescence bifunctionality. The M_s ranged from 3.16 emu g⁻¹ to 10.19 emu g⁻¹ and the results suggest that the magnetism can be tuned via different Fe₃O₄ NP loadings. The Janus nanobelts exhibited superparamagnetic behaviour using Fe₃O₄ nanoparticles of approximately 15 nm diameter. When the dimensions of the magnetic component, such as magnetite, drop to less than 20 nanometres, its magnetisation direction can flip randomly under the influence of temperature. However, in this circumstance, magnetite becomes superparamagnetic with only one magnetism domain.⁸⁵ In another example, Ma et al.⁸⁶ fabricated Janus NFs with Fe₃O₄/poly(methyl methacrylate) (PMMA) as the magnetic component and the M_s reached 32.61 emu g^{-1} when the mass ratio of Fe₃O₄ to PMMA was 6:1. This is similar to Fe₃O₄/rare earth complex/PMMA composite nanobelts (32.15 emu g^{-1}) that have also been produced.⁸⁶ However, the fluorescent intensity of the Janus nanobelts is considerably higher than that of the composite nanobelts. Additionally, luminescent-electrical-magnetic trifunctional materials are also a popular target structure in multifunctional nanocomposites. Lv et al.87 added polyaniline (PANI) to the magnetic half of the Janus structure and the electrical conductivity

values of the Janus NFs increased with increasing PANI loading. However, the conductivity of the Janus NFs decreased with increasing amounts of Fe_3O_4 NPs due to the influence of Fe_3O_4 on the polymerisation process of aniline. The inner structure of the Janus nanoribbons can be revealed by the transmission light of a biological microscope (BM). As shown in the Fig. 5(c), one side of the Janus nanoribbon contains large quantities of dark coloured PANI and Fe_3O_4 NPs and, by contrast, the other side is transparent.²⁸

2.2.2 α -Fe₂O₃ and other iron oxides. α -Fe₂O₃ is another popular choice of magnetic material due to its high stability, ease of fabrication, appropriate saturation magnetisation and increased acid resistance compared with Fe₃O₄. Additionally, α-Fe₂O₃ also has excellent adsorption ability of heavy metal ions and organic pollutants.⁸⁸ Wang et al.⁴⁴ fabricated NFs based on α-Fe₂O₃ nanoparticles and a europium complex to achieve magnetic-photoluminescent bifunctionality. The coercivity of the sample was 327 Oe with a remanent magnetisation $(M_r)/M_s$ ratio of 0.244. Wang et al.⁴⁴ found that the ${}^{5}D_{0}-{}^{7}F_{2}$ transition was higher in the pure complex than in the composites. This was due to the addition of α-Fe₂O₃ nanoparticles decreasing the symmetry of the coordination environment for the Eu³⁺ ions. As shown in Fig. 5(d), the pure poly(vinyl alcohol) (PVA) NFs are relatively smooth. After incorporation of europium complexes and α -Fe₂O₃ nanoparticles into the polymer matrix the average diameter increased; this was due to an increase in viscosity of the feed solution.

Hematite is also often blended with polymeric materials *via* uniaxial electrospinning. Meng *et al.*⁸⁹ produced a paramagnetic nanofibrous composite film with polylactide (PLA), hydroxyapatite and γ -Fe₂O₃ nanoparticles. The $M_{\rm s}$ of γ -Fe₂O₃ NPs was 67.6 emu g⁻¹ whilst the $M_{\rm s}$ of the film was 0.0492 emu g⁻¹, achieved at a mass ratio of 8.3% γ -Fe₂O₃ NPs within the film. Alternatively, Khanlou *et al.*⁹⁰ prepared γ -Fe₂O₃ NPs through a chemical co-precipitation process with an $M_{\rm s}$ of 12.19 emu g⁻¹. Following the chemical co-precipitation, at 5 wt% γ -Fe₂O₃ NPs, the NPs were added to a PMMA solution. The $M_{\rm s}$ of the composite produced was then 6.172 emu g⁻¹. Both cases demonstrate that the magnetic properties of MNP blended NFs are not proportional to the mass ratio of MNPs. Polymers do not simply act as a loading matrix but interact with MNPs and mutually influence the overall magnetic properties.

Additionally, there are other iron oxides that can be used to produce magnetic nanomaterials. For example Zhu *et al.*⁹¹ produced core–shell Fe–FeO nanoparticles with an average diameter of 20 nm. The M_s of the Fe@FeO NPs was 108.1 emu g⁻¹ whilst that of the nanocomposite fibres was 30.6 emu g⁻¹; with a nanoparticle loading of 30 wt%. Before electrospinning, the radii of the core and shell was calculated to be 13.2 and 6.8 nm, respectively. However, after electrospinning the radii became 12.7 (core) and 7.3 nm (shell). The shell thickness increase was attributed to an increase in particle oxidation at the extremely high voltages used during the electrospinning process.

Finally, Murillo-OrtÍz *et al.*⁷⁶ embedded strontium hexaferrite nanoparticles (SrM-NPs) in PVA NFs. The ratio of M_r/M_s increased by 81 when 30 wt% SrM-NPs were added to the PVA solution.

As observed in Fig. 5(g), these nanoparticles have uniform size and have a localised distribution of NPs inside the surface of the NFs. Additionally, they do not show the presence of agglomerates. Fig. 5(h) then shows that the nanoparticles are ordered on the surface of the fibre and aligned with respect to the NFs' growth. This is a consequence of the nanoparticles' interaction with the highly intense electric field aligned with the electrodes in a point-plate configuration.

2.2.3 MFe₂O₄ (**M** = **metal**). In typical spinel and inverse spinel structures of magnetite, Fe(n) and Fe(m) ions are distributed in either octahedral or tetrahedral voids. MFe₂O₄ can be prepared by doping Mn²⁺, Fe²⁺, Co²⁺ and Ni²⁺ metal ions into the crystal voids of the iron oxide nanoparticles (IONPs).⁹² This has resulted in nanoscale spinel ferrites MFe₂O₄ (M = Co, Mn, or Ni) with 1D structures (*e.g.* fibres) being studied more actively in recent years.⁹³

Chen et al.94 synthesised and modified CoFe2O4 nanoparticles to improve dispersion. The diameter of the CoFe₂O₄ particles produced was 5 nm and the M_s achieved was 50 emu g⁻¹. The diameter achieved is smaller than that of the bulk materials, due to the size of the CoFe₂O₄ crystallites and fewer defects being present in the structure. Finally, the CoFe₂O₄ NPs were mixed with polyacrylonitrile (PAN) and the composite exhibited an M_s of 45 emu g⁻¹. The decrease in M_s is attributed to the non-magnetic material coating (PAN) and its influence on the uniformity and magnitude of magnetisation by extinguishing the surface magnetic moment. Alternatively, Wang et al.95 fabricated Janus NFs using CoFe₂O₄ to achieve magnetism-luminescence bifunctionality. When the mass ratio of CoFe₂O₄: PAN was 1:3 the $M_{\rm s}$ and $H_{\rm c}$ achieved were 5.09 memu g⁻¹ and 20 kOe, respectively. Additionally, Bi et al.⁷⁵ electrospun [Fe(NO₃)₃ + $Co(NO_3)_2$ /PVP precursor solution before annealing in air at 700 °C for 4 hours to prepare CoFe₂O₄ NFs. YAG:5% Eu³⁺ calcinated NFs were also prepared via the same method. Janus NFs were then fabricated from both the CoFe₂O₄ NFs/PVP and YAG:5% Eu^{3+} NFs/PVP solutions, as shown in Fig. 5(f). The M_s of the CoFe₂O₄ NFs was 41.34 emu g⁻¹ whilst the M_s of the Janus NFs ranged from 3.12-20.32 emu g⁻¹. The observed enhanced performance is attributed to the isolation of YAG:5% Eu³⁺ luminescent NFs from the CoFe₂O₄ magnetic NFs. Gonçalves et al.⁹⁶ prepared composite fibres of CoFe₂O₄ and poly(vinylidene fluoride) (PVDF). The composites demonstrated an increase in magnetisation with increasing CoFe₂O₄ content. They also found that the piezoelectric coefficient of the NF composites increased with increasing applied magnetic field. This is a result of the strain-mediated coupling between the magnetostrictive CoFe₂O₄ nanoparticles and the piezoelectric PVDF matrix. However, when compared with bulk polymers the piezoelectric coefficients were lower. It is speculated that this reduction is due to clamping by the surrounding material; which may significantly reduce the local deformation of the NFs.

Ghanbari *et al.*⁹⁷ synthesised CaFe₂O₄ nanoparticles that exhibit ferrimagnetism before producing cellulose acetate (CA)–Ag–CaFe₂O₄ nanocomposites by electrospinning. The M_s , of the nanoparticle compared to the NF, decreased from 6.1 to 0.31 emu g⁻¹ whereas the H_c increased from 40 to 78 Oe, respectively. The authors stated

View Article Online Journal of Materials Chemistry C

that the magnetic moments of the CaFe₂O₄ nanoparticles are pinned by the polymer chains so that a higher magnetic field is required to align the single domain nanoparticles in the field direction. Additionally, Khan *et al.*⁷⁷ prepared Ni_{0.6}Zn_{0.4}Fe₂O₄ nanoparticles (see the transmission electron microscopy (TEM) image in Fig. 5(i)) with M_s of 26.81 emu g⁻¹. The NPs were then incorporated into composite NFs [with carbon nanotubes and recycled polystyrene (PS)] at 7.5, 15, and 30 wt% to produce fabrics with M_s values of 2, 4, and 8 emu g⁻¹, respectively.

2.2.4 Other magnetic materials. Other active magnetic materials that have also been incorporated into NPs include Ni, Co, and some dopants (such as Sr). Chen *et al.*⁹⁸ reported the M_s of pure Ni nanoparticles as 14.3 emu g^{-1} , which was considerably lower than bulk nickel (58.57 emu g^{-1}). The decrease is attributed to the oxidation of the nickel nanoparticles as a consequence of their large surface area. In another study, Gupta et al.⁹⁹ measured the M_s of pure MnZnFe–Ni as 25.47 emu g⁻¹ before forming a blend with Estane[®] 5750; a polyester-based segmented polyurethane (PU). The M_s of the blend increased from 1.71 emu g⁻¹ to 6.33 emu g⁻¹, with increasing MnZnFe-Ni content, and the composite NFs formed demonstrated superparamagnetic behaviour. Murillo-Ortíz et al.17 synthesised SrFe₁₂O₁₉ with diameters ranging from 37 nm to 179 nm. The M_r/M_s and H_c of the SrFe₁₂O₁₉ were 0.63 and 6.22 kOe, respectively. The remanent squareness increased by 15% and the coercivity by 1.2% when SrFe12O19 nanoparticles were added to the PVA NFs by electrospinning. Additionally, the thermal stability and arsenic adsorption ability of the NFs was improved upon SrFe₁₂O₁₉ addition.

Erfan *et al.*⁷⁸ prepared ferrimagnetic glass ceramics, with a diameter of 10 nm, through the use of high-energy ball milling. The M_s of the magnetic glass ceramic nanoparticles (MGNPs) was 53 emu g⁻¹ and the H_c equal to 88 Oe. The M_s of the composite fibre reached a maximum of 4.16 emu g⁻¹ when the mass ratio of MGNPs was 7%. Low MGNPs concentration (1 wt%) NFs (Fig. 5(j)) appear clear and smooth, however, the roughness and nanoparticle aggregation on the surface of the NF increased at higher MGNP content (Fig. 5(k) (3 wt%) and 5 (l) (5 wt%)).

Min *et al.*¹⁰⁰ fabricated PVA/ferritin superparamagnetic fibres. The interaction between the host PVA hydrogel and the protein shell on the ferritin bio-nanoparticles was controlled by thermal methods to vary the size and concentration of the ferritin clusters. The average size and concentration of the ferritin clusters increased in the PVA NFs when the mixing temperature was raised from 30 to 80 °C. The close proximity of the ferritin cores within the clusters resulted in magnetic ordering and increased magnetisation in some cases.

Additionally, many research groups are now developing novel magnetic nanomaterials. One example is FePt which has demonstrated good chemical stability and high magnetocrystalline anisotropy.¹⁰¹ Another example shows micron size graphene sheets decorated with cobalt NPs to endow magnetism.¹⁰² There has also been an increasing focus on producing composite fibres with a range of polymeric materials. However, the mechanism regarding the interaction between the magnetic nanoparticles and polymer materials remains unclear.

3. Electrospun fibrous templates

This section discusses the various approaches used to create magnetic nanofibrous materials by electrospinning template constructs and the post-spinning treatment used: (i) deposition of magnetic NPs; (ii) carbonisation; and (iii) calcination. Fig. 1(b and c) highlights the different routes that have been used in this area of research. Table 2 serves as a comprehensive summary of this section, listing the various systems that have been explored, the magnetic reagent(s), polymer(s), electrospinning and processing approach, the final morphology obtained, major magnetic property and applications (where relevant) in each case.

3.1 Product morphology and corresponding processing

The template method is a cost-effective and scalable route used to produce both pure inorganic magnetic NFs and organicinorganic hybrid magnetic NFs. Electrospun fibrous templating is also a convenient method for inorganic magnetic nanofibre (MNF) fabrication and the MNFs produced sometimes exhibit an increase in $M_{\rm s}$.¹⁰³ However, the change in $M_{\rm s}$ depends on a range of complex factors and is not always enhanced. The appearance of a magnetically inert layer in the fibrous structure,¹⁰⁴ the formation of ferromagnetic phase¹⁰⁵ and smaller grain size are all factors that may contribute to a decrease in M_s in 1D nanostructures prepared by the electrospun fibrous template method.¹⁰⁶ The templating procedure of the MNFs (Fig. 1(b and c)) generally encompasses two steps: electrospinning to create a fibrous template followed by post-treatment of the template. A typical template-assisted electrospinning precursor solution is made up of three parts: (i) a magnetic component; (ii) polymer(s); and (iii) a solvent system. The magnetic component is typically in the form of magnetic nanoparticles (MNPs)¹⁰⁷ or metal salts. Polymers are added to the system to meet the viscosity demand of electrospinning (i.e. to provide entanglements). The most widely used polymers include PANI,¹⁰⁸ poly(ethylene oxide) (PEO),¹⁰⁹ polyurethane,¹⁰⁷ PVA,¹¹⁰ PAN,^{111,112} and PVP.^{48,113–116} The purpose of the solvent is to dissolve the polymer(s), disperse or dissolve the magnetic component used and improve the charge-carrying capacity of solution. Typical solvents used are DMF, dichloromethane (DCM), methyl ethyl ketone (MEK), deionised water, ethanol¹¹⁶ or a combination thereof.¹⁰⁷ The viscosity, concentration, surface tension and dielectric properties of the spinning solution exert a great influence on the electrospinnability of the solution and the diameter, morphology, crystallinity and tensile strength of the NFs. Such influences have been referred to in previous studies.^{117,118} Finally, Fig. 1(c) highlights an alternative route where NFs without any magnetic components are used as templates before MNPs are deposited upon them.

In the sol-gel process, literature reports have demonstrated the use of metal nitrate^{114,116,119} and acetate¹¹⁴ precursors with polymer(s) in the production of electrospun NFs with uniform distributions, even at very high loadings.¹²⁰ Although the mechanisms for such processes were not explicitly discussed, the conditions in which the precursor solutions were prepared are reported.^{48,121,122}

Following initial deposition, the obtained fibres are often dried and pre-sintered to evaporate any solvents.94,114-116,119,121,123 This is followed by calcination, at a given heating rate, in order to (partially or completely) remove the polymers to form pure inorganic fibres. Concomitantly, the metal ions are converted to their neutral elemental state⁴⁸ and the atoms aggregate to form nanoparticles.¹²⁴ The calcination conditions are adapted to meet the varying demands of a given system. For example, air is an idealised atmosphere if metal oxide NFs¹²⁵ are targeted, whereas hydrogen (H_2) ,^{126–128} often in combination with an inert gas such as argon (Ar),¹²⁹⁻¹³² and ammonia gas (NH₃) are adopted as a reduction (often referred to as de-oxidation in the literature) source. In some cases, the calcination atmosphere is selected to generate oxygen vacancies or eliminate impure phases.¹³³ For example, α -Fe₂O₃ NFs obtained in a study by Guo et al.¹³⁴ were heated in an NH₃ atmosphere and the crystallites were transformed into Fe₃O₄ crystallites. Additionally, when the temperature was raised, Fe₂N NFs were obtained. The electrospinning parameters, environmental conditions, physical and electrical properties of the spinning solution, and calcinating conditions (temperature, rate, profile and duration) all enable the crystal structure, morphology and ultimate properties of the final product to be manipulated.¹³⁵ For example, the preparation of mullite-nickel nanocomposite NFs¹³² was performed through two heating stages. The first was used to convert Ni²⁺ to Ni NPs in a reducing atmosphere between 550-750 °C before the mullite phase was formed at 1000 °C. However, if the first stage was not allowed to proceed for sufficient time (to permit Ni²⁺ to be fully reduced to Ni NPs), an undesirable spinel phase mixed with a mullite phase was formed during the second heating stage. In a similar procedure, a Fe/Ni alloy was prepared from the reduction of NiFe2O4 (300-600 °C) to produce Fe-Ni alloy nanoribbons.^{126,136} The morphology of the Fe-Ni alloy precursor (body-centred cubic or face-centred cubic) was influenced by the heating temperature used during the reduction stage.

Often the calcinated products are formed as powders and do not maintain their structure.41 Efforts have been made to resolve this problem by shifting towards the production of fibre mats that offer the added benefit of being flexible, easy to produce, recyclable and cost-effective. In one example, flexible fibre mats have been utilised in the development of magnetic devices; offering a new design method for electromagnetic shielding systems.¹²¹ Additionally, the ease of recycling the mats and the enhanced structural stability, when compared to powders, is highly desirable in applications such as waste water treatment.¹¹⁸ The key factors that influence the flexibility of these fibrous mats are the uniform distribution of NPs throughout the NFs,¹¹⁰ the porous structure of the mats¹¹⁰ and the interfacial energy between NPs and NFs.¹¹⁰ Consequently, attempts have been made to improve the interfacial interactions between the MNPs and the matrix.⁹⁴ For example, zein (a maize protein) was used as an adhesive between NiFe₂O₄ NPs and SiO₂ NFs to render the resultant fibre mats with extraordinary flexibility.¹¹⁰ In addition, Wang et al. reported that oxygen plasma treatment was an effective way to keep the membrane integrated during the stage where the organic component is removed.41 Finally, flexible calcinated y-Fe2O3/C NF mats have

Fig. 6 Example SEM images of: (a) fibres with particle deposition;¹⁰⁷ (b) necklace-like NFs;¹³⁸ (c) short NFs;¹³⁹ (d) nanobelts;¹¹¹ (e) core-shell NFs;¹⁴⁰ reproduced from ref. 140 with permission from The Royal Society of Chemistry; (f) hollow NFs;¹³⁴ reproduced from ref. 134 with permission from The Royal Society of Chemistry; (g) nanotubes;¹⁴¹ reprinted with permission from ref. 141. Copyright (2021) American Chemical Society; (h) 3D crosslinking NFs;¹⁰⁹ and (i) regular NFs (calcinated).¹⁴² Specific details: (a) Fe₃O₄@PU NFs, Fe₃O₄ NPs at 1 mg ml⁻¹; (b) SrFe₁₂O₁₉ NFs calcinated at 1000 °C; (c) BiFeO₃ NFs calcinated at 550 °C; (d) Fe₃O₄/C NFs calcinated at 800 °C; (e) CoFe₂O₄-Pb(Zr_{0.52}Ti_{0.48})O₃ NFs calcinated at 750 °C; (f) Fe₂N NFs calcinated at 400 °C; (g) SnO₂ NFs calcinated at 500 °C; (h) Fe₃O₄-alginate (SA)/PVA crosslinked NFs; and (i) NiFe₂O₄/multi-walled carbon nanotube (MWCNT) carbon-based NFs (CNFs) calcinated at 850 °C.

also been prepared by combining electrospinning, hydrothermal synthesis and calcination.^{121,137}

NFs with different morphologies can also be fabricated by changing the shape of the liquid supply nozzle or by adjusting the calcination parameters used to remove the polymer construct. In the first stage, when polymers are present, fibres decorated with inorganic particles are obtained. Once the polymers have been removed, necklace like NFs, short NFs, nanobelts, core shell NFs, hollow NFs and regular NFs can be obtained. Fig. 6 shows the various types of MNFs that can be targeted by electrospinning, as discussed in the following sections.

3.1.1 Decorated fibres. Fig. 1(c) shows how fibres decorated with particles can be created and Fig. 6(a) shows an example of such surface topology. Polymers are electrospun to form fibres and then MNPs are coated onto the fibres either by in situ synthesis^{109,143} or post-spinning deposition.^{107,108,112} Both approaches face the issue of aggregation, however, there have been few research efforts focused on resolving this problem.^{107,110,143} In one notable example, in situ synthesis was studied, focussing on the influence of drying mode on the morphology of iron oxides upon polyimide (PI) NFs.¹⁴³ This study concluded that drying under vacuum was more effective than drying in air to allow for uniform particle distribution. When using the deposition method, specific techniques are used to provide uniform distribution of the MNPs. These techniques include use of a surfactant,¹¹⁰ polyol immersion¹⁰⁷ and layer-by-layer assembly.¹⁴⁴ In some cases, where the polymer completely remains, cross-linking agents

Review

can be used to form 3D cross-linked networks¹⁰⁹ to improve water resistance and mechanical integrity.¹⁴⁵

3.1.2 Necklace-like nanofibres. In single nozzle electrospinning, where amorphous polymer templates are removed by calcination, NFs will inevitably transform from smooth morphologies to rough surfaces before necklace-like structures are eventually formed (Fig. 6(b)). This happens when the calcination temperature reaches a relatively high value. For example, Xiang *et al.*¹²² found that the calcinated $Co_{0.5}Ni_{0.5}Fe_2O_4$ NFs formed the necklace-like morphology when the temperature was greater than 800 °C. The transmission electron microscopy (TEM) images collected in this study revealed that the rapid growth of nanocrystals, aggregation of small NPs and resultant formation of larger NPs at high temperatures gave rise to their unique morphology.

3.1.3 Short nanofibres. The length of electrospun NFs can reach several tens to even hundreds of microns,^{146,147} where 'short' NFs are defined as those that are less than ten microns in length (Fig. 6(c)). Short/broken fibres are typically generated under two circumstances: (1) when the NPs experience uneven thermal stress and they aggregate; and (2) by the inhomogeneous distribution of sacrificial templates.^{139,148} In both cases, the local area will fracture readily. For example, Sakar *et al.*¹³⁹ fabricated BiFeO₃ NFs at varied spinning voltages (8, 10, 15 and 20 kV) and found that 10 kV or less was not sufficient to homogenously distribute the polymer. The calcinated products then have the tendency to be broken at the area where the polymer is scarce.

3.1.4 Nanobelts and nanoribbons. Necklace-like NFs (Fig. 6(b)), nanobelts (Fig. 6(d)) or nanoribbons can be fabricated with minor adjustment to the composition of the spinning solution and electrospinning experimental conditions.¹¹¹ One possible formation mechanism suggests that if the solvent evaporates rapidly during jet flow, a columnar transition state structure is formed with a thin elastic polymer skin. This structure buckles gradually and finally becomes belt-like.^{119,149} Additionally, in this process, specific polymers (such as PMMA) are found to be beneficial towards the formation of the flat shape belt NF morphology.¹¹¹ Additionally, the effects of calcination have been investigated and show no significant changes to the morphology of the nanobelt following removal of the polymer.

3.1.5 Core-shell nanofibres. An example of the core-shell structure is illustrated in Fig. 6(e). These structures are typically generated by coaxial electrospinning or, alternatively, by using a single nozzle, followed by calcination and finally coating. There have been a number of reports where magnetic coreshell NFs are produced. In one example, Bayat et al. coated polydimethylsiloxane (PDMS) on Fe₃O₄/C NFs, which were produced via electrospinning followed by pyrolysis at 900 °C, for future use as electromagnetic interference (EMI) shields.¹⁵⁰ In a second method, α -Fe₂O₃ NFs were soaked in a tetraethyl orthosilicate (TEOS) precursor solution whereby a catalysed hydrolysis and condensation polymerisation reaction resulted in a uniform silica (SiO₂) coating along the fibres.¹⁵¹ Li et al.³ and Zou et al.¹⁵² coated SrFe₁₂O₁₉ and CuFe₂O₄ NFs with TiO₂ and CeO₂, respectively, via a soaking and calcination procedure. In addition to these multi-step procedures, as aforementioned,

core–shell NFs can be fabricated through a straightforward onestep method by coaxial electrospinning. In this case, two different spinning solutions are loaded into inner and outer syringes. Each jet flow is then formed with a different velocity and collected before being annealed to obtain magnetic–magnetic,^{153–155} magnetic– luminescent¹⁵⁶ or magnetic–electric^{48,140,157} bifunctional core– shell nanofibrous materials.

3.1.6 Hollow nanofibres. Similar to the construction of core-shell MNFs, hollow fibres (Fig. 6(f)) can be prepared with single¹⁵⁸⁻¹⁶⁰ or coaxial nozzles,^{15,161} both followed by calcination. During the single spinning procedure, both Cheng et al.¹⁶⁰ and Chen et al.98 identify the key factor critical in hollow or solid morphology determination. Cheng et al. shows that the gas diffusion rate, from the interspaces between the nanoparticles, is slower than the PVP decomposition. As the polymer decomposition continues, the observed increase in internal pressure forces the nanoparticles to the exterior and hollow fibres form.¹⁶⁰ However, the study of Chen et al. highlighted that metallic shell formation is the key factor in hollow morphology determination.^{103,158} When the NFs are heated in air, metal oxide clusters begin to form on the surface of the fibre until they create a shell. After which, at even higher temperatures, the polymer component degrades to form volatile decomposition products leaving behind the hollow NF structure. This illustrates that hollow structures are difficult to produce in cases where the metal oxide forming temperature is higher than the decomposition temperature of the polymer matrix. Further studies by Zhao et al.¹⁵⁹ have determined that a concentration gradient (which causes varied consumption rates of Cu2+ and Fe3+) and difference in gas pressure between the inside and outside of the fibre are also two important factors to consider when preparing hollow CuFe₂O₄ NFs. On the other hand, Fu et al. determined that phase separation caused by a concentration gradient is the most critical factor in the preparation of hollow MNFs.¹³⁵ Notably, the organic nanofibrous template can be removed afterwards to create hollow MNFs.162

Nanotubes (Fig. 6(g)) are similar in structure to hollow fibres and the differences between them are subtle and sometimes difficult to identify.¹⁶³ In some cases, the term 'nanotube' is used to describe shorter, defect-free hollow fibres, but there is no clear definition and the term tends to be used interchangeably with hollow NFs across the literature. Accurate heating methods are required for nanotube construction via single nozzle electrospinning and Jiang et al. has reported the successful synthesis of nanotubes several microns in length.¹⁶⁴ Additionally, Li et al. obtained NaYF4:Yb/Er/Gd-decorated SiO2 nanotubes via single nozzle electrospinning followed by calcination using a spinning solution comprised of NaYF4:Yb/Er/Gd nanocrystals, TEOS and PVP. The as-spun NFs were annealed between 200-600 °C at a heating rate of 2 °C min⁻¹. In this example, PVP is forced to migrate to the surface once leaving the nozzle resulting in a PVP-silica shell with the magnetic component and TEOS within the core. Upon removal of the organic material, nanotubes were produced.165

In the coaxial spinning procedure, the pure organic part (such as mineral oil, polymers or components that incorporate magnetic ingredients¹⁶⁶) can be adopted as the core solution.¹⁶⁷ However, the flow rate of the inner solution should be controlled to prevent leakage.¹⁶⁶

In addition to the aforementioned traditional single-walled hollow structures, there are novel structures that have been obtained, such as hollow-core-double-shell NFs. Kim *et al.*¹⁵⁸ produced CoFe₂O₄ core-PANI double shell structures. Initially hollow CoFe₂O₄ NFs were obtained by calcinating the precursor fibres between 80–550 °C at a heating rate of 5 °C min⁻¹ for 2 hours. The inner and outer surfaces were then coated with PANI *via in situ* oxidative polymerisation.

3.1.7 Three dimensional networks. Post-treatment can be adopted to enhance the properties of NF mats. If the polymer scaffold is retained in the final product, a cross-linking agent is frequently used to form 3D cross-linked networks¹⁰⁹ (Fig. 6(h)) to improve water resistance and enhance mechanical stability.¹⁴⁵ For example, Gao *et al.* adopted *N*,*N*'-trimethylene-bis[2-(vinylsulfonyl)-acetamide] as a chemical cross-linking agent for PVA. Whilst a slight weight loss (<0.4%) was observed after immersing the mat in hot water for two hours the cross-linked PVA NF mats demonstrated enhanced water resistance.¹⁶⁸ Chemically cross-linking the polymer chains prevents dissolution of the macromolecules and changes the mechanical properties of the constructs, due to the creation of a chemically bound mesh that no longer relies on physical entanglements for structural integrity.

3.1.8 Regular nanofibres. If the NFs are calcinated solid fibres that cannot be categorised into any of the aforementioned morphologies, they are defined as regular NFs (Fig. 6(i)). Regular NFs are then subdivided into two categories, depending on whether they have rough or smooth surface morphology. Generally, aggregated crystals consisting of NFs appear after the removal of organic components and result in the surface morphology of the NFs being rough. However, there are two exceptions to this rule. The first case is when carbon-containing backbone polymers are carbonised instead of being completely removed. In this case, MNPs are embedded in the continuous carbon phase.94 The second case is when the calcination atmosphere is controlled. For example, Barakat et al.¹⁶⁹ revealed that smooth morphologies of nickel NFs were retained even after heat treatment in argon. However, previous studies where hydrogen has been adopted to reduce the nickel precursor NFs do not produce a smooth morphology. To obtain NFs with a uniform size distribution, the surface tension, viscosity and electronic conductivity can be adjusted through the addition of a low molecular weight agent, if optimum conditions cannot be otherwise identified.168

3.2 Processing parameters and magnetic properties

The most common processing parameter for electrospinning NF templates is calcination. Calcinated NFs still possess superior magnetic performance than their zero-dimensional (0D, *i.e.* nanoparticles) or bulk counterparts. The most apparent property enhancement is in the coercivity (H_c) due to the anisotropic nature of NFs, as compared to NPs.¹²⁷ The magnitude of the coercivity is related to the anisotropy of the material, which includes magneto-crystalline anisotropy, shape anisotropy and stress anisotropy. However, the NF structure possesses large shape anisotropy as a

Fig. 7 Scheme of expected magnetic performance in a uniform, onedimensional, hard-soft magnetic core-shell nanocomposite and its counterpart.¹⁵⁴ Adapted with permission from ref. 154. Copyright (2021) American Chemical Society.

result of the strict restriction of magnetic moment along the fibre axis.¹⁷⁰ For example, LaFeO₃ exhibits antiferromagnetism in the bulk, yet is ferromagnetic when in processed as a one-dimensional (1D) nanostructure with an increased coercivity value of 28 000 Oe.171 In addition, 1D hard-soft exchange-coupling nanomaterials offer a unique platform for enhancing the maximum magnetic energy product [(BH)max] due to the reduced selfaggregation when compared to their 0D counterparts.^{124,154} In another case, Lee et al.154 fabricated core-shell Sm2Co17/FeCo NFs by electrospinning, calcination, calciothermic reduction and electroless plating. Relative to its 0D counterpart, the well-dispersed 1D/core-shell nanostructure demonstrates an enhancement in (BH)max (46% increase) as a result of the dense homogeneous soft magnetic coating as shown in Fig. 7. However, it should be noted that the magnetic properties are not always improved by simply introducing anisotropy (going from nanoparticles (0D) to NFs (1D) nanomaterials). This was highlighted in a study where the M_s value of CoFe₂O₄ NFs was lower than that of CoFe₂O₄ NPs and even the bulk counterparts.¹⁷²

3.2.1 Morphology. As aforementioned, morphology is another factor that influences the magnetic properties of the final NFs. Manipulating the electrospinning voltage can cause the morphology of the MNFs to go through a series of changes. However, this has only been demonstrated in a limited number of studies. In one example, at lower voltages ($\sim 8 \text{ kV}$) the NFs aggregate and by gradually increasing the voltage pass through the following formations: rods (~ 10 kV), fibres (~ 15 kV) and finally, belts (~ 20 kV). The M_s values are then shown to decrease in the sequence of belts > rods > fibres > aggregated fibres.¹³⁹In another notable example, Zhao *et al.* highlighted that SnO₂ nanotubes exhibit stronger room-temperature ferromagnetism than the corresponding NFs. This observation is attributed to a larger number of surface defects that result from the Sn interstitial and O vacancies having lower formation energies than the Sn vacancy and the surface area-to-volume atom quantities for the nanotubes being greater.¹⁷³ Additionally, the average particle size for the nanotubes (30 nm) was larger than that of the NFs (20 nm). Similarly, the average outer diameter of the nanotubes (110 nm, with a 10 nm wall thickness) was also larger than that of the NFs (100 nm).

3.2.2 Calcination. The magnetic properties of NFs are strongly dependent on calcination. Diamagnetic as-spun NFs

Review

View Article Online

Journal of Materials Chemistry C

have been shown to exhibit ferromagnetic behaviour after calcination. The calcination parameters such as rate, temperature and calcination atmosphere exert influence on the final properties of the NFs.¹⁷⁴ When the organic components are completely removed, the calcinated products are typically composed of nanocrystallites of various size. Overall, the magnetic behaviour of the nanocrystallites assembly is determined by the shape and size of the crystalline NPs and the interactions between them.^{114,120,159,175}

3.2.2.1 Calcination temperature. The relationship between calcination temperature and M_s is often system dependent. Generally, for a given system, lower thermal treatment temperatures result in smaller particles being formed (down to a critical minimum size) and the smaller particles exhibit smaller *M*_e values.^{106,114,119,122,132,133,170,172,176-188} Larger particles have less magnetic contribution from the surface (whilst the contribution from the interior concomitantly increases) and thus the M_s value increases.¹¹⁴ However, the smaller M_s values observed at low calcination temperatures are not always only due to the decrease in size of the particles. For example, in Liu's study, the CoFe₂O₄ NFs were calcinated at 700, 750, 800, 850 °C, respectively. In addition to the increase in particle size, the XPS results suggested that as the calcination temperature increases, the migration of cobalt ions to the tetrahedral sites as well as iron ions to the octahedral sites increases, thus also contributing to the larger $M_{\rm s}$ observed.¹⁸⁹ However, there are examples that do deviate from this trend. For example, the $M_{\rm s}$ values of $CuCo_2O_4$ fibres have been found to decrease with increasing calcination temperature.¹⁹⁰ In this case, the decrease is attributed to surface distortions brought about by interactions between oxygen atoms and transition metal ions. Ti_{0.9}V_{0.1}O₂ NFs were also shown to exhibit a decrease in M_s with increasing heat treatment temperature, which was assigned to the increase of nearestneighbour V ions with direct antiferromagnetic coupling.¹⁹¹

In the study of Liu *et al.*, the $M_{\rm s}$ value of α -Fe₂O₃/TiO₂ NFs decreased with increasing calcination temperature. The authors ascribed this to an increased density of α -Fe₂O₃.¹⁷⁷ The decrease in $M_{\rm s}$ with arising calcination temperature was also found in other studies.¹⁹² In more recent work, Ponhan *et al.*¹⁹³ determined that the $M_{\rm s}$ dependency on calcination temperature of ZnFe₂O₄ NFs exhibits through both of the observed trends. Initially, $M_{\rm s}$ increases with calcination temperature before then decreasing, with crystal-lite size increasing typically from 19 to 26 nm.

Similarly, the H_c transition with calcination temperature is also system dependent. In most cases, H_c increases with calcination temperature; including that observed for MgFe₂O₄ nanotubes,¹³⁵ CoFe₂O₄ NFs,¹⁹⁴ NiFe₂O₄ NFs,¹⁸³ MnFe₂O₄ NFs,¹⁸⁶ Ni/mullite NFs¹³² and Co_{0.5}Ni_{0.5}Fe₂O₄ NFs,¹²² However, there are also reports where the H_c transition does not follow this trend. For example, the H_c value of MnFe₂O₄/C NFs decreases with increasing calcination temperature¹⁸⁵ and is attributed to the MnFe₂O₄/C NFs exhibiting ferromagnetic properties due to the distribution of cations over tetrahedral and octahedral sites. In the study by Lu *et al.*,¹⁰⁶ the H_c value of CoFe₂O₄ NFs demonstrated an initial increase followed by a decrease with increasing annealing temperature. The same phenomenon was reported in both SrTiO₃/SrFe₁₂O₁₉ NFs¹⁸¹ and yttrium iron garnet NFs,¹⁷⁰ attributed to the motion of domains experienced at different particle sizes. Furthermore, the same trend was found in hollow CuFe₂O₄ NFs.¹⁵⁹ In this case, higher calcination temperatures gave rise to larger MNPs and thus a higher field force was required to alter the magnetic moment direction; in turn resulting in higher H_c . However, when the particle size exceeded the critical size for a single-multi domain transition, H_c declined. Findings from the study of CoFe₂O₄ hollow fibres further support this claim as H_c increases with annealing temperature.¹⁶⁰ The H_c value of the CoFe₂O₄ nanobelts¹¹⁹ achieved a maximum value of 1802 Oe before decreasing with further increases in calcination temperature as a result of the particle size being below the critical domain size. In addition, the absence of domain walls and unique rectangular cross-sectional shape contributed to the high magneto-crystalline properties observed.

The final important magnetic property to be discussed in relation to calcination temperature is remanent magnetisation, M_r . In one example, CoFe₂O₄ NFs, fabricated by single spinning and calcination, and were shown to exhibit a uniform increase in M_r with increasing calcination temperature. This is commonly attributed to an increase in the particle size.¹⁹⁴ The same phenomenon was found for MnFe₂O₄ NFs,¹⁸⁶ SrTiO₃/SrFe₁₂O₁₉ NFs,¹⁸¹ MgFe₂O₄ nanotubes,¹³⁵ hollow CuFe₂O₄ NFs¹⁵⁹ and hollow CoFe₂O₄ NFs.¹⁶⁰ In one contradictory case, the M_r value of CuCo₂O₄ fibres¹⁹⁰ was found to decrease with increasing calcination temperature, which was suggested to be due to weakening of the superexchange interaction between the Cu³⁺ and Co²⁺ cations.

In some fabrication methodologies, the heat treatment encompasses two stages; calcination and reduction. The magnetic properties are known to be dependent on the reduction temperature. For example, the reduction temperature of Fe/Ni alloy nanobelts¹²⁶ show an increase followed by decreasing trend in M_s , whereas the H_c initially decreases before remaining almost constant with increasing temperature. In this example, the Fe/Ni alloy nanobelts were reduced from NiFe₂O₄ and the initial relative low temperatures used resulted in the observed partial reduction of M_s .

The relationship between calcination temperature and M_s , H_c and M_r has been identified as significantly system dependent. Factors such as density, surface distortions, cation distribution, particle size and cation interaction have all been shown to contribute to the final magnetic properties of the NFs produced.

3.2.2.2 Calcination atmosphere. The calcination atmosphere used can have a significant effect on the magnetic properties of NFs. For example, $SrFe_{12}O_{19}/CoFe_2O_4$ obtained from as-spun NFs calcinated in air showed a H_c value of 3190 Oe. On the other hand, $SrFe_{12}O_{19}/FeCo$ obtained from as-spun NFs calcinated in air and then reduced in hydrogen showed a significantly lower H_c value of 1249 Oe. This change is attributed to the close contact of the soft and hard phases which in turn results in strong exchange coupling. In addition, Fe_2O_3 hollow NFs obtained from as-spun NFs calcinated in air were superparamagnetic and achieved an M_s value of 4.34 emu g⁻¹, whilst

Fe₃O₄ and Fe₂N hollow NFs obtained from as-spun NFs calcinated in air and then reduced in gaseous ammonia achieved $M_{\rm s}$ values of 82.99 emu g⁻¹ and 2.07 emu g⁻¹, respectively. Finally, the Fe₃O₄ hollow NFs exhibited ferromagnetism whilst the Fe₂N hollow NFs demonstrated superparamagnetism.^{134,153} The morphology of the fibre can also be altered depending on the calcination atmosphere used and, as previously discussed, is directly related to the magnetic properties of the final fibre. In one example α -Fe₂O₃ nanotubes and Fe₃O₄ NFs were produced when the calcination atmospheres were air and argon, respectively. Nanotubes were formed due to the lack of oxygen present as gas diffusion from the decomposed organic component (PEO) drives the nanoparticles from the inside to the outside of the fibres.¹⁹⁵

3.2.3 Magnetic component loading. The most influential factor on the overall magnetic performance of NFs are the components used to make them, rather than how they are made. This is particularly evident in cases that involve the combination of magnetic inorganic constituents and non-magnetic polymers. Typically, M_s has a linear correlation with the quantity of magnetic components, 107,156,196-199 whilst the addition of nonmagnetic components generally impairs the M_s value.^{200–202} Therefore, the M_s values of NFs where polymers are retained are lower than those observed for fibres that consist of pure MNPs.^{94,107} Another common example, reflecting this logical observation, is M_s enhancement after carbonisation. Again, due to the loss of the non-magnetic compounds during the procedure. With ascending carbonisation temperature, M_s will increase when the size and coarsening of MNPs within the NFs increases and if a new phase with larger $M_{\rm s}$ comes into force.¹⁹⁸ However, one report claims that the M_s value in their system was independent of shape and size of the MNPs and is only affected by the total quantity of magnetic atoms.¹⁹⁸

Moreover, carbonisation often induces the transformation from superparamagnetism to ferromagnetism in electrospun NFs.¹⁹⁴ This is due to the formation of a new phase, such as the carbide crystal, which destroys the single crystal domain of the original NFs.¹⁷² It has also been claimed that enhancement of particle size leads to higher magnetocrystalline anisotropy.^{197,198}

3.2.4 Types of polymer. The different types of sacrificial polymer result in varied magnetic properties in the final NF. For example, NiO NFs obtained from poly(2-ethyl-2-oxazoline) (PEtO_x)/nickel(II) acetate tetrahydrate precursor were shown to exhibit antiferromagnetism, whereas NiO NFs obtained from styrene–acrylonitrile random copolymer (SAN)/nickel(II) acetate tetrahydrate precursor exhibited ferromagnetism at RT.²⁰³ The authors suggested that the change in magnetism occurs because of the distinct degradation mechanism of the different polymers. The degradation of SAN begins with elimination of the nitrile group followed by random scission of the backbone. In contrast, PEtO_x begins with random chain scission followed by elimination of the side chains. Additionally, the activation energy for grain growth and corresponding grain sizes were also different. Both factors lead to non-stoichiometry of the NiO NFs.

3.2.5 Polymer concentration. Polymer concentration notably influences the electrospinning process, which determines the morphology and magnetic properties of the fibres produced.

Typically, increasing the concentration of the polymer produces fibres with increased diameter, uniformity and tensile strength.²⁰⁴ The variation in morphology, particularly NF diameter and uniformity, is also often attributed to the solution properties (polymer and solvent) on the electrospinning process; most significantly the viscosity of the electrospinning solution. The viscosity, alongside the surface tension, ultimately determine the ability of a given solution to be electrospun. Therefore, it is unsurprising to see examples in the literature that describe increased solution viscosity due to higher concentrations of polymer resulting in NFs with increased diameter.²⁰⁵ In one investigation, the effect of PVP concentration on the morphology and magnetic properties of SrFe₁₂O₁₉ nanobelts was investigated.¹¹⁶ It was found that increasing the PVP concentration from 8.5-12.3 wt% led to the increase in the width of the nanobelts produced. Additionally, the diameter of NPs were reduced and the NPs' overall size was largely below the single domain size. As a direct result of this, H_c achieved a maximum value of 7310 Oe (the highest known value in the literature to the best of our knowledge) of all the pure 1D SrFe₁₂O₁₉ structures. This value is also close to the theoretical limit.116

3.2.6 Dopants. Doping has been shown to affect the crystal size of magnetic materials, which influences the magnetic properties of the final MNFs. The extent of this effect depends on the properties and loading of the dopant.206-212 Typical dopants that have been explored to enhance the magnetic properties and direct the morphology of MNFs include graphene oxide (GO),²¹³ Co,²¹⁴ Ni,²¹⁵ Cu²¹⁰ and Zn.²¹⁶ For example, GO-doped Ni_{0.8}Gd_{0.2}Fe₂O₄ NFs showed a transformation from fibre to ribbon morphology and a decrease in M_s with increasing GO content. Additionally, Ni-doped Fe NFs were shown to exhibit lower M_s and H_c values compared to pure Fe NFs.¹²⁸ Ni-doped $CoFe_2O_4$ NFs were also found to show a decreasing trend in M_s and $H_{\rm c}$ with increasing Ni²⁺ concentration, which was due to the lower magnetic moment and magnetocrystalline anisotropy of Ni²⁺ compared to Co²⁺ ions.²¹⁵ It is important to note that the change in magnetic properties with dopant concentration is not always uniform²⁰⁹ and can contradict known theories (such as Brown's theory²¹⁷) where M_s and H_c are inversely related. For example, the Ms value of Zn-doped CuFe2O4 NFs initially increases before decreasing with increasing Zn²⁺ concentration due to increased exchange interaction between ions within the lattice.²¹⁶ Co-Doped ZnO NFs were fabricated by electrospinning a PVA/Co-doped ZnO suspension followed by sintering in air.²¹⁸ Doping ZnO NFs with 1.8-7.2 wt% Co was shown to change the material properties from ferromagnetism to ferrimagnetism, as shown by the temperaturedependent magnetisation curves and Curie-Weiss fits in Fig. 8. The origin of ferrimagnetism in $Zn_{1-x}Co_xO$ NFs is attributed to the substitution of Co for Zn and the corresponding change of characteristics in the electronic state.

Doping has also been known to lead to the production of NFs with unique properties. For example, hole-doped manganites, with the general formula $R_{1-x}A_xMnO_3$ (where R refers to a trivalent rare earth element and A is a divalent alkaline earth element) were found to exhibit colossal magneto resistance (CMR). La_{0.33}Pr_{0.34}Ca_{0.33}MnO₃ NFs (prepared at a calcination temperature of 600 °C) exhibited

Fig. 8 The effect of doping ZnO NFs with Co^{2+} on magnetic properties, illustrated through: (A)–(D) temperature-dependent magnetisation (*M*–*T*) curves of $Zn_{1-x}Co_xO$ (x = 0, pure ZnO nanowires) NFs with 1.8, 4.4 and 7.2% Co, respectively. This visually shows the transition from ferromagnetism to ferrimagnetism. (E) Co^{2+} doping-induced ferromagnetism to ferrimagnetism crossover.²¹⁸ Reproduced from ref. 218 with permission from The Royal Society of Chemistry.

CMR over a wide temperature range and the magneto resistance reached a maximum value of 95% at the metal-insulator transition temperature of 70 K under 7 Tesla.²¹⁹ In another case, doping α -Fe₂O₃ nanotubes with V₂O₅ was found to increase M_s , and decrease H_{c} , which was attributed to the aforementioned Brown's theory; where H_c and M_s are inversely proportional to one another.²¹⁷ In other work, after Co doping, SrTiO₃ was endowed with room temperature ferromagnetism due to Co addition and oxygen vacancies,130,173 which has also been demonstrated in the study of SnO2 nanotubes.²²⁰ However, Mohanapriya et al. suggests that ferromagnetism in Mn-doped SnO₂ NFs is induced only by precipitated impurity phases instead of pure SnO₂ or dopant.²²¹ Nevertheless, Mn doping was found to impair the ferromagnetism of BaTiO₃ and resulted in dia- and paramagnetic behaviour of the BaTi0.9Mn0.1O3 NFs that were produced.²²² Fe-Doped NiO NFs were prepared as a diluted magnetic semiconductor (DMS) and, notably, doping was shown not to affect the fibre diameter or surface morphology.²²³ Finally, the addition of GO dopant to CoFe2O4 NFs demonstrated enhanced crystallinity, which boosted Ms values at low loadings, but was then shown to exhibit a slight decrease in M_s with higher GO loadings.224

3.2.7 Alloys. Alloy systems with nanoscale dimensions often demonstrate outstanding magnetic properties. There have been a number of reports where alloys have been processed into NFs to create magnetic materials. For example, Zhang et al.¹²⁸ reported Fe-Ni NFs for the first time and demonstrated that the use of an Fe-Ni alloy resulted in superior ferromagnetic properties. Additionally, it was suggested by Jiang et al.¹²⁶ that an Fe–Ni alloy also produces NFs with high saturation magnetisation, permeability, Curie temperature (T_c) , low coercivity and low energy loss. FeCo is another promising soft magnetic nanomaterial which exhibits low magneto-striction, high saturation magnetisation, high resistivity, small coercive forces, high Curie temperature and high magnetic anisotropy energies.²²⁵ Finally, a range of novel Sm₂Co₁₇ NFs were fabricated by Lee et al. reporting a decrease in $M_{\rm s}$ and concomitant $H_{\rm c}$ increase with arising Sm content within the alloy.²⁰⁶

4. Applications

In this section, the application of magnetic materials, and how this relates to their final properties, are explored. This apply highlights the versatility of electrospun magnetic materials whilst concomitantly highlighting the need for future work into their production and design.

4.1 Electromagnetic shielding/absorption

With the extensive utilisation of electronic devices for civil and military purposes there is a strong desire to reduce electromagnetic (EM) pollution due to its associated negative impact on human health, national defence security and electronic safety.^{121,226–231} EM wave shielding, or absorption materials, are designed to address this challenge. Fig. 9 shows a schematic diagram that illustrates the working mechanism of so-called microwave absorption materials (MAMs). When incident waves reach the surface of the material, they are either reflected off the sample or transmitted into a porous channel; where multiple reflections occur and the energy is dissipated. The difference between MAMs and electromagnetic-induced (EMI) shielding materials is that MAMs require EM waves to be transmitted into

Fig. 9 Electromagnetic wave attenuation through a shielding material.²³³

the materials to be dissipated rather than simply reflected at the surface.^{150,196} MAMs achieve EM attenuation through a combination of magnetic loss, electric loss and geometry (morphology).^{226,228} Magnetic loss originates from the eddy current effect, natural ferromagnetic resonance and exchange resonance. For ferromagnetic materials, the magnetic loss ability is related to initial permeability (μ_i), as shown in eqn (1), where a and b represent constants relating to the material being used, and λ , k, ξ , M_s and H_c are the wavelength, magnetisation constant, elastic strain parameter of a crystal, saturation magnetisation and coercivity, respectively. Eqn (1) shows that high M_s and low H_c values are required to increase μ_i , to deliver better magnetic loss ability.^{226,232}

$$\mu_{\rm i} = \frac{M_{\rm s}^2}{akH_{\rm c}M_{\rm s} + b\lambda\xi} \tag{1}$$

For electromagnetic wave absorption (EWA) properties, complex permittivity $\varepsilon_{\rm r} = \varepsilon' - j\varepsilon''$ and complex permeability $\mu_{\rm r} = \mu' - j\mu''$ are two critical factors in microwave absorption property determination. The real part (ε' or μ') corresponds to the energy storage whilst the imaginary part (ε'' or μ'') corresponds to the energy dissipation. Dielectric loss and magnetic loss are expressed by $\tan\left(\frac{\varepsilon'}{\varepsilon''}\right)$ and $\tan\left(\frac{\mu'}{\mu''}\right)$, respectively.^{196,226,228}

Reflection loss (RL) is calculated from eqn (2)-(4):^{196,226,228}

$$\operatorname{RL}(\operatorname{dB}) = 20 \log \left| \frac{Z_{\operatorname{in}} - Z_0}{Z_{\operatorname{in}} + Z_0} \right| \tag{2}$$

$$Z_0 = \sqrt{\mu_0/\varepsilon_0} \tag{3}$$

$$Z_{\rm in} = \sqrt{\frac{\mu_{\rm r}}{\varepsilon_{\rm r}}} \tanh\left[j\frac{2\pi}{c}\sqrt{\mu_{\rm r}\varepsilon_{\rm r}ft}\right] \tag{4}$$

where, Z_{in} and Z_0 are the input impedance of the absorber and impedance of free space, ε_0 and μ_0 are vacuum permittivity and permeability, and ε_r , μ_r , f, c and t are the relative complex permittivity, permeability, frequency of the electromagnetic wave, velocity of electromagnetic waves in free space and thickness of the absorber, respectively.²²⁶ Accordingly, thickness plays an important role in the magnitude of RL.^{226,227} RL decreases and the absorption peaks shift to lower frequencies with increasing absorber thickness. Dielectric and magnetic losses also influence RL and are used in combination to improve the microwave absorption performance.²²⁸ Additionally, crosslinking the structure can cause a geometric effect that contributes to RL, as demonstrated with Fe/C cross-linked network structures.²²⁸

Carbon fibres can be equipped with magnetic properties through the addition of MNPs to create EM absorbing materials. The ultimate EM wave absorption capability is a direct result of both the dielectric and magnetic properties, with higher M_s and lower H_c values also contributing to the magnetic wave absorption properties.^{226,228} Notably, NiFe₂O₄/multi-walled carbon nanotubes (MWCNTs)/carbon nanofibrous membranes, with thicknesses of 2–5 mm, have been created as MAMs that achieve high permeability and reflection losses > 20 dB (5.36–18 GHz).¹⁴²

4.2 Separation: pollutant treatment and catalysis

Functional pollutant absorbers and photocatalysts are used extensively in wastewater treatment. However, the challenge on how to avoid secondary pollution of any residual absorber or catalysts remains a significant problem. One method used to address this issue is the incorporation of electrospun NFs with unique magnetic properties. After degradation, these materials are easily recycled by use of a permanent magnet.45,158,166,177,199,200,202,234-247 For example, Liang *et al.*²⁴⁸ prepared multifunctional switchable chemosensors for Hg²⁺ with fluorescent probe 1-benzoyl-3-[2-(2allyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-ylamino)ethyl]-thiourea (BNPTU), PNIPAM copolymer moiety for thermo-responsiveness and on-off photoluminescence and Fe₃O₄ NPs for easy removal. Chang et al. deposited bismuth oxyiodide nanoflakes on α -Fe₂O₃ NFs via the SILAR (successive ion layer absorption and reaction) method.²³⁷ The final product reached a maximum specific surface area of 35.27 m² g⁻¹, rhodamine B degradation efficiency of 98% after 2 hours of visible light irradiation and an M_s value of 0.9 emu g⁻¹, demonstrating its potential for use as practical separable photocatalysts. As these MNPs render the fibres ferromagnetic, or superparamagnetic, they can be attracted to external magnetic fields.239,249-251 In addition to this, it has been shown that under stronger magnetic fields the catalysts can be demulsified and therefore recycled back for reuse.252

4.3 Tissue engineering scaffolds, cell culture and differentiation

Electrospun NFs have been extensively explored as scaffolds for regenerative medicine. Recently, superparamagnetic fibrous scaffolds have been discovered to have a positive effect regarding cell differentiation (Fig. 10). Furthermore, after implanting the scaffold into the human body, the magnetic property enables the device to be manipulated remotely. The most common approach in this area is to combine MNPs, such as γ -Fe₂O₃,^{253–255} Fe₃O₄,^{8,85,256–259} CoFe₂O₄ and bioglass,²⁶⁰ with bio-compatible polymers [such as PVA,^{253–255,260} polycaprolactone (PCL), poly(Llactide), poly(lactic-*co*-glycolic acid) (PLGA), poly(succinimide) and poly(aspartic acid)^{8,85,256–259}] to create flexible composite fibrous mats. These mats have been shown to exhibit enhanced mechanical properties compared to pristine non-magnetic NF mats. NFs with a dense, uniform, surface coverage of MNPs are targeted, however, their production remains a challenge.^{144,242}

Fig. 10 Schematic showing the mechanism and effect of the IONPassembled electrospun scaffold on the cells.¹⁴⁴ Adapted with permission from ref. 144. Copyright (2021) American Chemical Society.

Review

There have been attempts to employ electrospun fibrous templates to create tissue engineering scaffolds, where such methods appear to facilitate better distribution of MNPs on the surface of the NFs. For example, the layer-by-layer assembly technique was used to afford virtually continuous, compact and uniform α -Fe₂O₃ nanoparticle immobilisation on PLGA/PCL electrospun scaffold surfaces.¹⁴⁴ In this example, the superparamagnetic scaffold was found to significantly enhance the differentiation of adipose-derived stem cells for the treatment of osteogenesis. Moreover, the capping layer brings about auxiliary benefits such as hydrophilicity, elasticity of the interface and the affinity for stem cells. In other work, composite Fe₃O₄/silk fibroin NFs were compared to silk fibroin fibrous templates with coated Fe₃O₄ NPs to show the effect of the fabrication method on the final properties of the fabrics. The composite material (electrospun from a single solution) was more effective as a cell scaffold whilst the fibrous mat coated with MNPs was more suitable as a magnetic-sensitive interface.⁸

4.4 Hyperthermia treatment

The treatment of cancer cells includes chemotherapy, radiation therapy and surgery. Whilst these treatments have been used for decades it has been suggested that methods typically used to treat hypothermia could be an effective and ideal approach. This is based on the incorporation of superparamagnetic NFs which can either give out a fatal amount of heat to kill the cancer cells or the raised temperature of targeted tissues can enhance the effects of other therapy (such as drug release as shown in Fig. 11) used to destroy the cancer.^{107,109,145,261,262} Superparamagnetic fibres produce a thermal effect in response

Fig. 11 Design concept for a smart hyperthermia NF system that uses MNPs dispersed in temperature-responsive polymers.¹

to an applied alternating magnetic field. The significant advantage of superparamagnetic NFs is their demagnetisation in the absence of an external field. Non-toxic, biodegradable polymeric matrices¹⁰⁹ serve as carriers to provide mechanical support alongside other performance-enhancing properties, such as inhibiting the overgrowth of malignant tissues.¹⁰⁷ The further merit of NFs in biomedical applications lies with their large surface area-to-volume ratios that lead to faster degradation of the scaffold after they have served their purpose. A large ratio of superparamagnetic NPs relative to polymer is required to provide an adequate number of accessible sites and immobilise the NPs on the NFs.145 There are reports where the number of MNPs on fibres have been quantified. Chen et al. used Fe²⁺ to chelate with alginates before fabricating a crosslinked Fe₃O₄-SA/PVA mat by chemical co-precipitation. Immobilising the NPs on the fibre was then shown to eliminate cytotoxicity effects towards human lung fibroblast cells.^{107,109}

4.5 Drug delivery

Recent developments in nanotechnology have led to polymeric matrices (*e.g.* NFs) being exploited as controllable drug release media.²⁶³ Encapsulating bioactive agents in a polymer matrix is an effective method for preventing drug degradation in potentially hostile environments (*e.g.* high or low pH). Electrospun ultrathin fibres exhibit ideal characteristics such as high porosity, large surface area and diverse controllable morphologies to facilitate the development of electrospun fibrous drug delivery systems.^{88,264}

For example, a core-shell fibrous drug delivery system was produced by coaxial electrospinning using Eudragit S100 as the shell and a core composed of PEO loaded with Gd(DTPA) (gadolinium diethylenetriamine pentaacetate hydrate, magnetic resonance contrast agent) and indomethacin (model therapeutic agent).²⁶⁵ Eudragit is insoluble in acidic environments and when used as oral medication protects the core ingredient as it passes through the stomach. The core materials are only released when the fibres reach the intestinal fluids, enabling this core-shell fibre delivery system to achieve targeted drug delivery to the colon. In another example, PVA/ferritin NF hydrogels with controllable magnetic properties were fabricated by partially unfolding the ferritin protein shell at varied mixing temperatures.¹⁰⁰ The negative image contrast generated by ferritin in the PVA matrix under MRI provided a method for in vivo imaging of the tissueengineered scaffolds.

Meanwhile, magnetic reagents loaded into electrospun fibres have been shown to demonstrate synergistic effects. Sasikala *et al.*²⁶⁶ designed and synthesised an implantable magnetic nanofibrous device for hyperthermia treatment comprised of iron oxide nanoparticles and tumour-triggered controlled drug release (bortezomib). The fibres exhibited a synergistic anticancer effect by applying the hyperthermia treatment and drug delivery simultaneously. In other work, a similar design was employed by embedding MNPs (as heat generators) and DOX (doxorubicin, anticancer drug) inside a temperature responsive copolymer of poly(*N*-isopropylacrylamide)-*co*-(*N*-hydroxymethylacrylamide) [P(NIPAM-*co*-HMAAm)].¹ When placed in an alternating magnetic field, the crosslinked P(NIPAM-*co*-HMAAm) NF mesh showed reversible changes in swelling, which created an 'on-off' response allowing DOX to be released.

Beyond their use in externally triggered controlled release, the addition of MNPs can have a varied effect on drug release rate, depending on how the MNPs impact on the system within which they are placed. Demir et al.²⁶⁷ found that RhodB (hydrophilic dye) loaded in PCL NFs was released faster when MNPs were present due to the magnetic interaction between the nanoparticles and drug. Similarly, Haroosh et al.²⁶⁸ also found that the addition of MNPs increased drug release rate. In this case, the inclusion of the MNPs increased the conductivity of the electrospinning solution and also decreased its viscosity, which led to the production of thinner fibres. The larger specific surface area of the thinner fibres resulted in the increased drug release rate observed. Conversely, Wang et al.¹⁸ found that the release rate of indomethacin and aspirin (model drugs) was not affected by the incorporation of Fe₃O₄ NPs within the cellulose matrix; even when the MNPs occupied nearly 50% of the fibre mass.

In short, MNPs can be incorporated into NFs for controlled, triggered drug delivery, or to enhance the properties of the nanofibrous drug delivery system. In the latter case, caution must be made when designing and fabricating the device, as the incorporation of the magnetic nanoparticles can have variable effects on the drug delivery performance of the system.

4.6 Nanogenerators

The development of wearable electronic devices has created a demand for flexible, lightweight, self-powering and energy scavenging technologies.^{269,270} In 2001, Glynne-Jones *et al.*²⁷¹ introduced the piezoelectric vibration-powered microgenerator before various materials, such as organic materials, metals, textiles and papers were developed for use in nanogenerators.^{234,272–276}

Fabricating PVDF fibrous nanogenerators by electrospinning has been widely researched and is considered a good method to enhance energy generation performance.²⁷⁷⁻²⁸¹ Im et al.²⁸² fabricated Fe₃O₄/PVDF composite NFs for use in a triboelectric nanogenerator device. Incorporating PVDF resulted in an increase in the surface area and preferential formation of the PVDF polar β -phase, which, in turn, enhanced the triboelectric performance of the device. Additionally, increasing the Fe₃O₄ content increased the output voltage initially from 124 to 138 V and enhanced the EMI shielding performance when added in small quantities. However, a decrease in the output voltage (94 V) was then observed due to aggregation when the α -Fe₂O₃ loading was too high (28.3 wt%). Similarly, the tensile strength of the NF initially increased before decreasing, this time due to the dispersion strengthening mechanism. In another example, Wu et al.283 reported a method to synthesise a lead zirconate titanate textile (using PVP as a scaffold) in which the nanowires were parallel to one another. This nanogenerator generated a 6 V output voltage, 45 nA output current and qualified to power common liquid crystal displays and UV sensors. Additionally, the nanowires were soft and flexible, ideal for use in wearable nanogenerators.

In summary, organic materials have been investigated as potentially useful counterparts in magnetic NFs for use as nanogenerators. As demonstrated, incorporating polymers, such as PVDF, into the NFs has resulted in enhancement to the triboelectric performance of such devices. Further advances have also been made to produce soft and flexible materials to be used in wearable nanogenerator devices.

4.7 Data storage and transfer

It is well known that modern data storage media function by storing information as binary data (marked as 0 and 1). Magnetic materials are widely used for data storage as they can be magnetised into two opposing directions, which can respectively represent the binary codes, 0 and 1. Both simulations and experiments have shown that nanocylinders or beads that are several hundred nanometres in diameter can form a vortex state under small or vanishing external magnetic fields.²⁸⁴ The magnetisation of these nanostructures rotates in a closed loop and is often referred to as a vortex-core. In a fibre, the magnetisation state of the beads controls the signal to transfer from one side of the beads to another. The vortex-core can be switched between the two orientations using short magnetic field pulses,^{285–287} which can be used to write binary data.

Electrospinning is considered a useful tool to create combinations of nanofibrous mats with embedded beads. The beaded fibres can be fabricated when the polymer solid content in the spinning solution is reduced. Döpke et al.⁵⁰ electrospun PAN/Fe₃O₄/α-Fe₂O₃/ NiO beaded fibres from 14 wt% polymer solution and computer simulated signal transfer in the beaded fibres. Without an applied static magnetic field the signal transferred through the beads in the shape of a snake-like gyrotropic precess from one side to another. Upon applying a static magnetic field, the magnetisation of the bead fully oriented along the direction perpendicular to the fibre and the signal was blocked. This 'on'/'off' state could not only be used for data storage, but also as logic elements (such as AND or NAND) for neuromorphic computing. Blachowicz et al.288 further simulated the magnetisation reversal mechanisms under different local spatial distributions and mutual influences of neighbouring magnetic fibres. They found a tendency towards larger coercive fields as the NFs were distributed at a larger random angle range. Fibre mats consisting of two types of NFs (with and without branches) were also simulated. In this case the magnetisation reversal was found to start at smaller negative magnetic fields and end at larger negative fields compared to that of the single nanofibre.

In general, using electrospun magnetic fibres for data storage and neuromorphic computing is still in its infancy but demonstrates promising results. Of the work currently completed there has been a focus on simulating magnetic properties with respect to complex intra- and inter-fibre electrospun MNFs. Blachowicz *et al.*²⁸⁸ studied the influence of numbers and dimensions of contact points of electrospun NFs, and proposed a scheme to verify the mechanism. However, this application requires further investigation to enable widespread implementation.

5. Summary and future prospects

Current production methods used to make electrospun MNFs can be divided into two categories. The first introduces magnetic

Review

components into the electrospinning precursor solutions to fabricate continuous MNFs. The second method uses electrospun MNFs as templates in order to process them into various morphologies and structures. Despite the fact that the magnetic properties of MNPs have been widely studied, the overall magnetic properties of resultant MNFs cannot be predicted since the interactions between polymers and MNPs are not wellunderstood and are therefore rarely discussed. Many types of MNPs have been added to polymeric materials. In some cases, the MNPs and polymers were simply blended and there were no interactions between them, resulting in a linear trend of M_s with MNP content. However, for many composite systems a non-linear trend is observed. M_s values were often increased, and vet some were attenuated, compared to the simple blended systems. However, to the best of our knowledge, there is no evidence provided to establish the relevant interactions between MNPs and polymer materials and the mechanism behind the non-linear relationship remains unclear. Theoretical modelling is required to predict the relationship between structure and magnetic performance for pure inorganic MNFs. Given that this field is very much in its infancy, novel composite and inorganic magnetic systems have been typically investigated to showcase their unique magnetic performance and are not employed in a given application.

Where specific applications are described there are often challenges that remain to be addressed. Loading magnetic resonance imaging contrast agents via electrospinning was a common method to boost the MRI signal of fibre-based materials for in vivo applications. However, passively imaging the materials is not enough for real medical treatment. Smart or environmentally responsive magnetic fibres are needed not only for location and shape information of the fibres under MRI, but also for linking physiological indices, microenvironment parameters (pH, temperature), degrees of degradation or concentration of bio-factors with MRI signal intensity to provide greater internal body information.

Nanofibres with deposited particles have been found to be useful in wastewater treatment due to their high surface area (as compared with MNFs that have MNPs embedded in the matrix), leading to more catalytically active sites. However, MNPs that have been deposited onto NFs (post-electrospinning) are often detached from the fibrous matrix after several absorption-desorption test cycles, which hampers their viability for long-term use. Therefore, further investigation is needed to identify how MNPs could be adhered to the NFs (to survive hundreds of cyclic tests) would be meaningful work. Sensing technologies for heavy metal ions and toxic gases that can cause ill effect to humans have been summarized elsewhere.251 Integrating existing pollutant removal technologies with advanced nanofibrous systems, alongside in-depth studies on these toxicants would significantly extend their applications.

In summary, advances in electrospinning have allowed a wide range of magnetic nanofibrous materials to be created over the past two decades. These advanced materials have shown huge potential and are set to play a role in smart technologies of the future. To unlock their true potential, significant work is needed to understand the key interactions between the various components in the system to overcome the current drawbacks that have been encountered.

The processing methods of electrospun magnetic composite

NFs and pure inorganic NFs from templates, their properties and related applications have been summarised and discussed throughout this review. Alongside this, key areas for future research have been highlighted with the aim of stimulating advances in the development of electrospun magnetic nanomaterials for a wide range of applications.

Glossary

5	
AR	Acid red 27
BA-a	Bisphenol-A, paraformaldehyde and
	aniline monomer hybrid
(<i>BH</i>)max	Maximum magnetic energy product
BM	Biological microscopy
BNPTU	1-Benzoyl-3-[2-(2-allyl-1,3-dioxo-2,3-dihydro-
	1 <i>H</i> -benzo[<i>de</i>]isoquinolin-6-ylamino)ethyl]-
	thiourea
CA	Cellulose acetate
CMC	Carboxymethyl-cellulose
CMR	Colossal magneto resistance
CNFs	Carbon-based nanofibers
CS	Chitosan
CTMB	Cellulose tris-(4-methylbenzoate)
DCM	Dichloromethane
DMA	N,N-Dimethylacrylamide
DMF	Dimethylformamide
DMS	Diluted magnetic semiconductor
DNA-CTMA	Deoxyribonucleic acid-cetyltrimethyl-
	ammonium chloride
EMI	Electromagnetic interference
EMS	Electromagnetic interference shielding
EWA	Electromagnetic wave absorption
α -Fe ₂ O ₃	Hematite
γ -Fe ₂ O ₃	Maghemite
FESEM	Field emission scanning electron micro-
	scopy
Gd(DTPA)	Gd(m) (diethylenetriamine pentaacetate
	hydrate)
GO	Graphene oxide
$H_{\rm c}$	Coercivity
HPMCP	Dehydroxypropyl methyl cellulose phthalate
$H_{\rm s}$	Saturation field
IONPs	Iron oxide nanoparticles
MADO	P(MMA-co-DMA)
MAMs	Microwave absorption materials
MEK	Methyl ethyl ketone
MGNPs	Magnetic glass ceramic nanoparticles
MMA	Methyl methacrylate
MNF(s)	Magnetic nanofibre(s)
MNP(s)	Magnetic nanoparticle(s)
M _r	Remanent magnetisation
M _s	Saturation magnetisation
MWCNTs	Multi-walled carbon nanotubes
NFs	Nanofibers

Journal of Materials Chemistry C

Souther of Haterials	
NPs	Nanoparticles
P(AN-co-AA)	Poly(acrylonitrile- <i>co</i> -acrylic acid)
P123	Pluronic
PA6	Polyamide-6
PAA	Polyamic acid
PAAm	Polyacrylamide
PAN	Polyacrylonitrile
PANI	Polyaniline
PBT	Poly(butylene terephthalate)
PBZ	Polybenzoxazine
PCL	Polycaprolactone
PDA	Polydopamine
PDLLA	Poly(D,L-lactide)
PDMS	Polydimethylsiloxane
PEI	Polyethyleneimine
PEK-C	Phenolphthalein polyetherketone
PEO	Poly(ethylene oxide)
PET	Poly(ethylene terephthalate)
$PEtO_x$	Poly(2-ethyl-2-oxazoline)
PF–Na	Polyfluorene–Na
PHB	Poly(3-hydroxybutyrate)
PHEMA	Poly(2-hydroxyethyl methacrylate)
PHVB	Poly(3-hydroxybutyrate-co-3-
	hydroxyvalerate)
PI	Polyimide
PLGA	Poly(lactic- <i>co</i> -glycolic acid)
PMMA	Poly(methyl methacrylate)
PNIPAM	Poly(N-isopropylacrylamide)
P(NIPAM-co-HMAAm)	Poly(N-isopropylacrylamide)-co-(N-
	hydroxymethylacrylamide)
POSS	Polyhedral oligomeric silsesquioxane
PS	Polystyrene
PS- <i>b</i> -PI	Poly(styrene- <i>block</i> -isoprene)
PU	Polyurethane
PVA	Poly(vinyl alcohol)
PVAc	Poly(vinyl acetate)
PVDF	Poly(vinylidene fluoride)
PVDF-TrFE	Poly(vinylidene fluoride-trifluoroethylene)
PVP	Polyvinylpyrrolidone
RL	Reflection loss
RT	Room temperature
SAN	Styrene-acrylonitrile random copolymer
SEM	Scanning electron microscopy
SILAR	Successive ion layer absorption and
<i>m</i>	reaction technique
T _B	Blocking temperature
T _c	Curie (transition) temperature
TEM	Transmission electron microscopy
TEOS	Tetraethyl orthosilicate
THF	Tetrahydrofuran
TPEE	Thermoplastic ester elastomer

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

The authors thank the financial support from the National Key R&D Program of China (No. 2017YFC11050003), National Natural Science Foundation of China (No. 51890871 and 21807046), Science and Technology Program of Guangzhou (201907010032), Guangdong Project (2016ZT06C322), National Natural Science Foundation of Guangdong (No. 2018A030310628, 2020A151501744), and the Fundamental Research Funds for the Central Universities (2020ZYGXZR064). HJH thanks W. Joe Homer for support.

References

- 1 Y.-J. Kim, M. Ebara and T. Aoyagi, *Adv. Funct. Mater.*, 2013, 23, 5753–5761.
- 2 O. A. Inozemtseva, Y. E. Salkovskiy, A. N. Severyukhina, I. V. Vidyasheva, N. V. Petrova, H. A. Metwally, I. Y. Stetciura and D. A. Gorin, *Russ. Chem. Rev.*, 2015, **84**, 251–274.
- 3 C.-J. Li, J.-N. Wang, X.-Y. Li and L.-L. Zhang, *J. Mater. Sci.*, 2011, **46**, 2058–2063.
- 4 F. Ahmadi, Y. Sozer, M. J. Donahue and I. Tsukerman, *IET Electr. Power Appl.*, 2020, **14**, 282–290.
- 5 D. Li and Y. Xia, Adv. Mater., 2004, 16, 1151-1170.
- 6 B. Sun, Y. Z. Long, H. D. Zhang, M. M. Li, J. L. Duvail, X. Y. Jiang and H. L. Yin, *Prog. Polym. Sci.*, 2014, **39**, 862–890.
- 7 Y.-Z. Long, M. Yu, B. Sun, C.-Z. Gu and Z. Fan, *Chem. Soc. Rev.*, 2012, **41**, 4560–4580.
- 8 O. Lalegul-Ulker, M. T. Vurat, A. E. Elcin and Y. M. Elcin, J. Appl. Polym. Sci., 2019, **136**, 48040.
- 9 L. Wang, P. D. Topham, O. O. Mykhaylyk, H. Yu, A. J. Ryan,
 J. P. A. Fairclough and W. Bras, *Macromol. Rapid Commun.*,
 2015, 36, 1437–1443.
- 10 K. Suneet, S. Sridhar, P. Agiwal, M. S. Sridhar, K. Sanyal and S. Jain, *Int. J. Hyperthermia*, 2019, **36**, 545–553.
- 11 Y. Song, L. Xu and J. Sui, Therm. Sci., 2019, 23, 2365-2372.
- 12 F. Mohammadkhani, M. Montazer and M. Latifi, *J. Text. Inst.*, 2019, **110**, 989–999.
- 13 L. Mei, H. Chen, Y. Shao, J. Wang and Y. Liu, *High Perform. Polym.*, 2019, **31**, 230–237.
- 14 X. Zhou, Q. Ma, W. Yu, T. Wang, X. Dong, J. Wang and G. Liu, J. Mater. Sci., 2015, 50, 7884–7895.
- 15 S. Niu, L. Zhang, N. Wang, J. Zhu, W. Zhang, Z. Cheng and X. Zhu, *React. Funct. Polym.*, 2013, 73, 1447–1454.
- 16 M. Yang, S. Sheng, Q. Ma, N. Lv, W. Yu, J. Wang, X. Dong and G. Liu, *Mater. Res.-Ibero-Am. J. Mater.*, 2016, 19, 308–313.
- R. Murillo-Ortiz, M. Mirabal-Garcia, J. J. Cruz-Rivera, D. Valdez-Perez, J. R. Martinez, F. Perez-Moreno and A. Lobo-Guerrero, *Mater. Chem. Phys.*, 2019, 234, 151–157.
- 18 L. Wang, M. Wang, P. D. Topham and Y. Huang, RSC Adv., 2012, 2, 2433–2438.
- 19 S. Wang, Q. Liu, Y. Zhang, S. Wang, Y. Li, Q. Yang and Y. Song, *Appl. Surf. Sci.*, 2013, **279**, 150–158.
- 20 S. Wang, Z. Sun, E. Yan, J. Yuan, Y. Gao, Y. Bai, Y. Chen,
 C. Wang, Y. Zheng and T. Jing, *Mater. Sci. Eng.*, B, 2014, 190, 126–132.

- Review
- 21 X. Song, G. Cheng, B. Cheng and J. Xing, *J. Mater. Res.*, 2016, **31**, 2662–2671.
- 22 E. Yan, M. Cao, J. Jiang, J. Gao, C. Jiang, X. Ba, X. Yang and D. Zhang, *Solid State Sci.*, 2017, **72**, 94–102.
- 23 A. Marmur, Langmuir, 2003, 19, 8343-8348.
- 24 L. Wang, P. D. Topham, O. O. Mykhaylyk, J. R. Howse,
 W. Bras, R. A. L. Jones and A. J. Ryan, *Adv. Mater.*, 2007, 19, 3544–3548.
- 25 J. Lin, F. Tian, Y. Shang, F. Wang, B. Ding and J. Yu, Nanoscale, 2012, 4, 5316-5320.
- 26 W. Yu, Q. Ma, X. Li, X. Dong, J. Wang and G. Liu, *Mater. Lett.*, 2014, **120**, 126–129.
- 27 L. Wang, X. Dong, G. Gai, L. Zhao, S. Xu and X. Xiao, J. Nanopart. Res., 2015, 17, 91.
- 28 Q. Ma, J. Wang, X. Dong, W. Yu and G. Liu, Adv. Funct. Mater., 2015, 25, 2436–2443.
- 29 P. Jing, J. Du, J. Wang, W. Lan, L. Pan, J. Li, J. Wei, D. Cao, X. Zhang, C. Zhao and Q. Liu, *Nanoscale*, 2015, 7, 14738–14746.
- 30 J. Tian, Q. Ma, X. Dong, W. Yu, M. Yang, Y. Yang, J. Wang and G. Liu, *RSC Adv.*, 2016, 6, 36180–36191.
- 31 R. Patwa, N. Soundararajan, N. Mulchandani, S. M. Bhasney, M. Shah, S. Kumar, A. Kumar and V. Katiyar, *Biopolymers*, 2018, 109, e23231.
- 32 H. Hu, W. Jiang, F. Lan, X. Zeng, S. Ma, Y. Wu and Z. Gu, *RSC Adv.*, 2013, 3, 879–886.
- 33 L. Fan, Q. Ma, J. Tian, D. Li, X. Xi, X. Dong, W. Yu, J. Wang and G. Liu, J. Mater. Sci., 2018, 53, 2290–2302.
- 34 Z. Jiang, L. D. Tijing, A. Amarjargal, C. H. Park, K.-J. An, H. K. Shon and C. S. Kim, *Composites, Part B*, 2015, 77, 311–318.
- 35 L. Yang, Q. Ma, X. Xi, D. Li, J. Liu, X. Dong, W. Yu, J. Wang and G. Liu, *Chem. Eng. J.*, 2019, **361**, 713–724.
- 36 Z. Wang, Q. Ma, X. Dong, D. Li, X. Xi, W. Yu, J. Wang and G. Liu, *Phys. Chem. Chem. Phys.*, 2017, **19**, 118–126.
- 37 C.-H. Park, S.-J. Kang, L. D. Tijing, H. R. Pant and C. S. Kim, *Ceram. Int.*, 2013, **39**, 9785–9790.
- 38 J. Li, X. Chen, D. Xu and K. Pan, *Ecotoxicol. Environ. Saf.*, 2019, **170**, 716–721.
- 39 D. Ponnamma, O. Aljarod, H. Parangusan and M. A. A. Al-Maadeed, *Results Phys.*, 2019, 13, 102130.
- 40 B. J. Tefft, S. Uthamaraj, J. J. Harburn, O. Hlinomaz, A. Lerman, D. Dragomir-Daescu and G. S. Sandhu, J. Magn. Magn. Mater., 2017, 427, 100–104.
- 41 H. Wang, H. Tang, J. He and Q. Wang, *Mater. Res. Bull.*, 2009, 44, 1676–1680.
- 42 N. Sharma, G. H. Jaffari, S. I. Shah and D. J. Pochan, Nanotechnology, 2010, 21, 085707.
- 43 Y. K. Sung, B. W. Ahn and T. J. Kang, J. Magn. Magn. Mater., 2012, 324, 916–922.
- 44 H. Wang, Y. Li, L. Sun, Y. Li, W. Wang, S. Wang, S. Xu and Q. Yang, J. Colloid Interface Sci., 2010, 350, 396–401.
- 45 S. Bharathkumar, M. Sakar, R. K. Vinod and S. Balakumar, *Phys. Chem. Chem. Phys.*, 2015, **17**, 17745–17754.
- 46 K. Jain, S. Pathak and R. P. Pant, *RSC Adv.*, 2016, 6, 70943–70946.

- 47 G. Wang, Q. Ma, J. Tian, L. Fan, D. Li, X. Dong, W. Yu,
 J. Wang and G. Liu, *RSC Adv.*, 2019, 9, 206–214.
- 48 G. Sreenivasulu, J. Zhang, R. Zhang, M. Popov, V. Petrov and G. Srinivasan, *Materials*, 2018, **11**, 18.
- 49 S.-B. Lee, S.-J. Hong, J.-W. Yi, S.-K. Lee, Y.-H. Choa and J.-B. Kim, *Met. Mater. Int.*, 2012, **18**, 165–170.
- 50 C. Doepke, T. Grothe, P. Steblinski, M. Kloecker, L. Sabantina, D. Kosmalska, T. Blachowicz and A. Ehrmann, *Nanomaterials*, 2019, 9, 92.
- 51 H. J. Wang, B. Liu, W. L. Huang, Z. Lin, J. Luo, Y. Li, L. Zhuang, W. Wang and L. L. Jiang, *J. Magn. Magn. Mater.*, 2018, 452, 1–4.
- 52 K. P. Matabola and R. M. Moutloali, *J. Mater. Sci.*, 2013, **48**, 5475–5482.
- 53 V. Beachley and X. Wen, Mater. Sci. Eng., C, 2009, 29, 663-668.
- 54 R. Ghelich, M. K. Rad and A. A. Youzbashi, J. Eng. Fibers Fabr., 2015, 10, 12–19.
- 55 S. Sheng, Q. Ma, X. Dong, N. Lv, J. Wang, W. Yu and G. Liu, J. Mater. Sci.: Mater. Electron., 2014, 25, 2279–2286.
- 56 L. Fan, Q. Ma, J. Tian, D. Li, X. Xi, X. Dong, W. Yu, J. Wang and G. Liu, *RSC Adv.*, 2017, 7, 48702–48711.
- 57 C. Huang, S. J. Soenen, J. Rejman, J. Trekker, C. Liu, L. Lagae, W. Ceelen, C. Wilhelm, J. Demeester and S. C. De Smedt, *Adv. Funct. Mater.*, 2012, 22, 2479–2486.
- 58 Y. Zhong, V. Leung, L. Y. Wan, S. Dutz, F. K. Ko and U. O. Haefeli, *J. Magn. Magn. Mater.*, 2015, 380, 330–334.
- 59 T. I. Shalaby, M. F. El-Kady, A. E. H. M. Zaki and S. M. El-Kholy, *Water Sci. Technol.: Water Supply*, 2017, **17**, 176–187.
- 60 L. Li, F. Wang, Y. Lv, J. Liu, H. Bian, W. Wang, Y. Li and Z. Shao, ACS Omega, 2018, 3, 4220–4230.
- 61 S. Harsojo, A. F. Waluyo, H. Sosiati and K. Triyana, *Adv. Mater. Res.*, 2015, **1123**, 237–240.
- 62 T. Gong, W. Li, H. Chen, L. Wang, S. Shao and S. Zhou, *Acta Biomater.*, 2012, 8, 1248–1259.
- 63 H. Shao, W. Yu, Q. Ma, X. Wang, X. Dong, Z. Liu, J. Wang,
 G. Liu and L. Chang, *RSC Adv.*, 2017, 7, 32850–32860.
- 64 H. Shao, Q. Ma, X. Dong, W. Yu, M. Yang, Y. Yang, J. Wang and G. Liu, *Sci. Rep.*, 2015, 5, 14052.
- 65 J. Tian, Q. Ma, W. Yu, X. Dong, Y. Yang, B. Zhao, J. Wang and G. Liu, *New J. Chem.*, 2017, 41, 13983–13992.
- 66 H. Shao, Q. Ma, W. Yu, X. Wang, X. Dong, Z. Liu, J. Wang,
 G. Liu and L. Chang, *J. Mater. Sci.: Mater. Electron.*, 2017,
 28, 16762–16775.
- 67 J. Li, Q. Ma, X. Dong, D. Li, X. Xi, W. Yu, J. Wang and G. Liu, *RSC Adv.*, 2016, 6, 96084–96092.
- 68 L. Han, Q. Ma and X. Dong, *RSC Adv.*, 2015, 5, 95674–95681.
- 69 X. Zhou, Q. Ma, X. Dong, J. Wang, W. Yu and G. Liu, RSC Adv., 2015, 5, 35948–35957.
- 70 X. Xi, Q. Ma, X. Dong, D. Li, W. Yu, J. Wang and G. Liu, J. Mater. Sci.: Mater. Electron., 2018, 29, 7119–7129.
- 71 B. W. Ahn and T. J. Kang, J. Appl. Polym. Sci., 2012, 125, 1567–1575.
- 72 F. Liu, Q.-Q. Ni and Y. Murakami, Text. Res. J., 2013, 83, 510–518.
- 73 I. Savva, D. Constantinou, O. Marinica, E. Vasile, L. Vekas and T. Krasia-Christoforou, J. Magn. Magn. Mater., 2014, 352, 30–35.

Review

- 75 F. Bi, X. Dong, J. Wang and G. Liu, RSC Adv., 2015, 5, 12571-12577.
- 76 R. Murillo-Ortiz, M. Mirabal-Garcia, J. M. Martinez-Huerta,
 J. G. Cabal Velarde, I. E. Castaneda-Robles and A. Lobo-Guerrero, *J. Appl. Phys.*, 2018, 123, 105108.
- 77 W. S. Khan, R. Asmatulu, S. Davuluri and V. K. Dandin, J. Mater. Sci. Technol., 2014, 30, 854–859.
- 78 N. A. Erfan, N. Barakat and B. J. Muller-Borer, *Colloids Surf.*, A, 2019, 576, 63–72.
- 79 J. Y. Han, W. B. Im, D. Kim, S. H. Cheong, G. Y. Lee and D. Y. Jeon, *J. Mater. Chem.*, 2012, 22, 5374–5381.
- 80 W. Ahmad, L. J. Zhang and Y. S. Zhou, *CrystEngComm*, 2014, 16, 3521–3531.
- 81 K. Diest, J. A. Dionne, M. Spain and H. A. Atwater, *Nano Lett.*, 2009, 9, 2579–2583.
- 82 S. Y. Kim, K. Woo, K. Lim, K. Lee and H. S. Jang, *Nanoscale*, 2013, 5, 9255–9263.
- 83 G. Gai, L. Wang, X. Dong, C. Zheng, W. Yu, J. Wang and X. Xiao, *J. Nanopart. Res.*, 2013, 15, 1539.
- 84 G. Gai, L. Wang, X. Dong and S. Xu, J. Mater. Sci., 2013, 48, 5140–5147.
- 85 K. Lai, W. Jiang, J. Z. Tang, Y. Wu, B. He, G. Wang and Z. Gu, *RSC Adv.*, 2012, 2, 13007–13017.
- 86 Q. Ma, W. Yu, X. Dong, J. Wang and G. Liu, *Nanoscale*, 2014, 6, 2945–2952.
- 87 N. Lv, Q. Ma, X. Dong, J. Wang, W. Yu and G. Liu, ChemPlusChem, 2014, **79**, 690–697.
- 88 D. Zhang, X.-Z. Jin, T. Huang, N. Zhang, X.-D. Qi, J.-H. Yang, Z.-W. Zhou and Y. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 5073–5083.
- 89 J. Meng, Y. Zhang, X. Qi, H. Kong, C. Wang, Z. Xu, S. Xie, N. Gu and H. Xu, *Nanoscale*, 2010, 2, 2565–2569.
- 90 H. M. Khanlou, B. C. Ang, S. Talebian, M. M. Barzani, M. Silakhori and H. Fauzi, *Measurement*, 2015, 70, 179–187.
- 91 J. Zhu, S. Wei, X. Chen, A. B. Karki, D. Rutman, D. P. Young and Z. Guo, *J. Phys. Chem. C*, 2010, **114**, 8844–8850.
- 92 Z. Zhou, L. Yang, J. Gao and X. Chen, *Adv. Mater.*, 2019, 31, 1804567.
- 93 Z. X. Jiang, Y. Zhao and P. Yang, *Mater. Chem. Phys.*, 2018, 214, 1–7.
- 94 I. H. Chen, C.-C. Wang and C.-Y. Chen, *Carbon*, 2010, **48**, 604–611.
- 95 Q. Wang, Y. Geng, J. Li, M. Yin, Y. Hu, Y. Liu and K. Pan, *Nanotechnology*, 2018, **29**, 135702.
- 96 R. Goncalves, P. Martins, X. Moya, M. Ghidini, V. Sencadas, G. Botelho, N. D. Mathur and S. Lanceros-Mendez, *Nanoscale*, 2015, 7, 8058–8061.
- 97 D. Ghanbari, M. Salavati-Niasari, F. Beshkar and O. Amiri, J. Mater. Sci.: Mater. Electron., 2015, 26, 8358–8366.
- 98 X. Chen, S. Wei, C. Gunesoglu, J. Zhu, C. S. Southworth, L. Sun, A. B. Karki, D. P. Young and Z. Guo, *Macromol. Chem. Phys.*, 2010, 211, 1775–1783.
- 99 P. Gupta, R. Asmatulu, R. Claus and G. Wilkes, J. Appl. Polym. Sci., 2006, 100, 4935–4942.

- 100 M. K. Shin, S. I. Kim, S. J. Kim, S. Y. Park, Y. H. Hyun, Y. Lee, K. E. Lee, S.-S. Han, D.-P. Jang, Y.-B. Kim, Z.-H. Cho, I. So and G. M. Spinks, *Langmuir*, 2008, 24, 12107–12111.
- 101 T. Song, Y. Z. Zhang, T. J. Zhou, C. T. Lim, S. Ramakrishna and B. Liu, *Chem. Phys. Lett.*, 2005, **415**, 317–322.
- 102 S. Hatamie, F. Mohamadyar-Toupkanlou, S. Mirzaei, M. M. Ahadian, S. Hosseinzadeh, M. Soleimani, W.-J. Sheu, Z. H. Wei, T.-F. Hsieh, W.-C. Chang and C.-L. Wang, *Spin*, 2019, **9**, 1940011.
- 103 X. Chen, K. M. Unruh, C. Ni, B. Ali, Z. Sun, Q. Lu, J. Deitzel and J. Q. Xiao, *J. Phys. Chem. C*, 2011, **115**, 373–378.
- 104 Y. Wang, C. Dong, Y. Chuai and Y. Wang, J. Wuhan Univ. Technol., Mater. Sci. Ed., 2015, 30, 1–5.
- 105 Z. Zhang, Z. Li, J. Zhang, H. Bian, T. Wang, J. Gao and J. Li, *Ceram. Int.*, 2019, **45**, 457–461.
- 106 R. E. Lu, K. G. Chang, B. Fu, Y. J. Shen, M. W. Xu, S. Yang, X. P. Song, M. Liu and Y. D. Yang, *J. Mater. Chem. C*, 2014, 2, 8578–8584.
- 107 A. Amarjargal, L. D. Tijing, C.-H. Park, I.-T. Im and C. S. Kim, *Eur. Polym. J.*, 2013, **49**, 3796–3805.
- 108 Q.-Z. Yu, Mater. Sci. Eng., B, 2010, 167, 26-30.
- 109 Y.-H. Chen, C.-H. Cheng, W.-J. Chang, Y.-C. Lin, F.-H. Lin and J.-C. Lin, *Mater. Sci. Eng.*, *C*, 2016, **62**, 338–349.
- 110 F. Hong, C. Yan, Y. Si, J. He, J. Yu and B. Ding, ACS Appl. Mater. Interfaces, 2015, 7, 20200–20207.
- 111 C. Han, Q. Ma, X. Dong, W. Yu, J. Wang and G. Liu, *J. Mater. Sci.: Mater. Electron.*, 2015, **26**, 2457–2465.
- 112 R. Zhao, X. Li, Y. Li, Y. Li, B. Sun, N. Zhang, S. Chao and C. Wang, J. Colloid Interface Sci., 2017, 505, 1018–1030.
- 113 L. Wu, W. Sui, C. Dong, C. Zhang and C. Jiang, Appl. Surf. Sci., 2016, 384, 368–375.
- 114 Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu, X. Zhou and J. Meng, J. Phys. Chem. C, 2008, 112, 15171–15175.
- 115 Z. Wang, X. Liu, M. Lv, P. Chai, Y. Liu and J. Meng, *J. Phys. Chem. B*, 2008, **112**, 11292–11297.
- 116 P. Jing, J. Du, J. Wang, J. Wei, L. Pan, J. Li and Q. Liu, *Sci. Rep.*, 2015, 5, 131.
- 117 C. J. Luo, E. Stride and M. Edirisinghe, *Macromolecules*, 2012, **45**, 4669–4680.
- 118 J. Xue, T. Wu, Y. Dai and Y. Xia, *Chem. Rev.*, 2019, **119**, 5298–5415.
- 119 P. Jing, J. Du, C. Jin, J. Wang, L. Pan, J. Li and Q. Liu, *J. Mater. Sci.*, 2016, **51**, 885–892.
- 120 N. S. Hansen, D. Cho and Y. L. Joo, Small, 2012, 8, 1510–1514.
- 121 I. Abdalla, J. Shen, J. Yu, Z. Li and B. Ding, *Sci. Rep.*, 2018, 8, 12402.
- 122 J. Xiang, Y. Chu, X. Zhang and X. Shen, *Appl. Surf. Sci.*, 2012, **263**, 320–325.
- 123 X. L. Zhang, W. W. Pan, J. Dong, Q. F. Liu and J. B. Wang, J. Mater. Sci., 2015, 50, 7218–7226.
- 124 J. Xiang, X. Zhang, J. Li, Y. Chu and X. Shen, *Chem. Phys. Lett.*, 2013, **576**, 39–43.
- 125 D. Li, Q. Ma, Y. Song, X. Xi, X. Dong, W. Yu, J. Wang and G. Liu, *Phys. Chem. Chem. Phys.*, 2016, 18, 27536–27544.
- 126 P. P. Jing, M. T. Liu, Y. P. Pu, Y. F. Cui, Z. Wang, J. B. Wang and Q. F. Liu, *Sci. Rep.*, 2016, **6**, 37701.

- 127 Y. Ji, X. B. Zhang, Y. J. Zhu, B. Li, Y. Wang, J. C. Zhang and Y. Feng, *Mater. Res. Bull.*, 2013, **48**, 2426–2429.
- 128 X. Y. Zhang, Y. Liu, J. Li and X. J. Yang, *Mater. Res.* Innovations, 2013, 17, 436-439.
- 129 W. Zhang, H. P. Li and W. Pan, in *High-Performance Ceramics Vii, Pts 1 and 2*, ed. W. Pan and J. H. Gong, 2012, vol. 512–515, pp. 1438–1441.
- 130 W. Zhang, H. P. Li and W. Pan, *J. Mater. Sci.*, 2012, 47, 8216–8222.
- 131 W. Pan, R. Han, X. Chi, Q. Liu and J. Wang, J. Alloys Compd., 2013, 577, 192–194.
- 132 Z. Chen, Y. Gu, P. Aprelev, K. Kornev, I. Luzinov, J. Chen and F. Peng, *J. Am. Ceram. Soc.*, 2016, **99**, 1504–1511.
- 133 S. H. Xie, J. Y. Li, R. Proksch, Y. M. Liu, Y. C. Zhou, Y. Y. Liu, Y. Ou, L. N. Lan and Y. Qiao, *Appl. Phys. Lett.*, 2008, **93**, 222904.
- 134 J. Guo, Y. Yang, W. Yu, X. Dong, J. Wang, G. Liu and T. Wang, *RSC Adv.*, 2016, **6**, 111447.
- 135 J. C. Fu, J. L. Zhang, C. H. Zhao, Y. Peng, X. D. Li, Y. M. He, Z. X. Zhang, X. J. Pan, N. J. Mellors and E. Q. Xie, *J. Alloys Compd.*, 2013, 577, 97–102.
- 136 J. Xiang, X. Shen, F. Song, M. Liu, G. Zhou and Y. Chu, *Mater. Res. Bull.*, 2011, **46**, 258–261.
- 137 C. Gao, Z. Pui, C. Zhang and Q. Gao, *Mater. Res. Express*, 2019, **6**, 025049.
- 138 X. Q. Shen, M. Q. Liu, F. Z. Song and X. F. Meng, J. Sol-Gel Sci. Technol., 2010, 53, 448–453.
- 139 M. Sakar, S. Balakumar, P. Saravanan and S. N. Jaisankar, *Mater. Des.*, 2016, **94**, 487–495.
- 140 S. Xie, F. Ma, Y. Liu and J. Li, Nanoscale, 2011, 3, 3152–3158.
- 141 X. Qu, N. Kobayashi and T. Komatsu, *ACS Nano*, 2010, 4, 1732–1738.
- 142 I. Abdalla, J. Yu, Z. Li and B. Ding, *Composites, Part B*, 2018, 155, 397–404.
- 143 P. Li, F. Lv, L. Liu, L. Ding and Y. Zhang, J. Magn. Magn. Mater., 2016, 414, 105–110.
- 144 H. Chen, J. Sun, Z. Wang, Y. Zhou, Z. Lou, B. Chen, P. Wang, Z. Guo, H. Tang, J. Ma, Y. Xia, N. Gu and F. Zhang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 44279–44289.
- 145 T.-C. Lin, F.-H. Lin and J.-C. Lin, *Acta Biomater.*, 2012, 8, 2704–2711.
- 146 P. Wang, L. Cheng, Y. Zhang and L. Zhang, J. Alloys Compd., 2017, 716, 306–320.
- 147 M. Hussain, S. S. Batool, Z. Imran, M. Ahmad, K. Rasool, M. A. Rafiq and M. M. Hasan, *Sens. Actuators, B*, 2014, 192, 429–438.
- 148 Q. Yu, H. Chen, P. Chen, Q. Wang, C. Lu and C. Jia, *J. Mater. Sci.: Mater. Electron.*, 2017, **28**, 2769–2774.
- 149 S. Koombhongse, W. Liu and D. H. Reneker, *J. Polym. Sci., Part B: Polym. Phys.*, 2001, **39**, 2598–2606.
- 150 M. Bayat, H. Yang, F. K. Ko, D. Michelson and A. Mei, *Polymer*, 2014, 55, 936–943.
- 151 H. Ziyadi, A. Heydari and S. M. Rezayat, *Ceram. Int.*, 2014, 40, 5913–5919.
- 152 L. Zou, Q. Wang, X. Shen, Z. Wang, M. Jing and Z. Luo, *Appl. Surf. Sci.*, 2015, **332**, 674–681.

- 153 J. Dong, Y. Zhang, X. Zhang, Q. Liu and J. Wang, *Mater. Lett.*, 2014, **120**, 9–12.
- 154 J. Lee, J. Kim, D. Kim, G. Lee, Y.-B. Oh, T.-Y. Hwang, J.-H. Lim, H.-B. Cho, J. Kim and Y.-H. Choa, ACS Appl. Mater. Interfaces, 2019, 11, 26222–26227.
- 155 L. N. Pan, F. M. Gu, D. R. Cao, P. P. Jing, J. N. Li, J. B. Wang and Q. F. Liu, *Appl. Phys. A: Mater. Sci. Process.*, 2016, 122, 583.
- 156 F. Bi, X. Dong, J. Wang and G. Liu, *J. Mater. Sci.: Mater. Electron.*, 2014, **25**, 4259–4267.
- 157 G. Sreenivasulu, M. Popov, R. Zhang, K. Sharma, C. Janes,
 A. Mukundan and G. Srinivasan, *Appl. Phys. Lett.*, 2014,
 104, 052910.
- 158 K. N. Kim, H. R. Jung and W. J. Lee, *J. Photochem. Photobiol.*, *A*, 2016, **321**, 257–265.
- 159 J. X. Zhao, Y. L. Cheng, X. B. Yan, D. F. Sun, F. L. Zhu and Q. J. Xue, *CrystEngComm*, 2012, 14, 5879–5885.
- 160 Y. Cheng, B. Zou, J. Yang, C. Wang, Y. Liu, X. Fan, L. Zhu, Y. Wang, H. Ma and X. Cao, *CrystEngComm*, 2011, 13, 2268–2272.
- 161 C. Han, Q. Ma, Y. Yang, M. Yang, W. Yu, X. Dong, J. Wang and G. Liu, J. Mater. Sci.: Mater. Electron., 2015, 26, 8054–8064.
- 162 Q. Gao, J. Luo, X. Wang, C. Gao and M. Ge, *Nanoscale Res.* Lett., 2015, 10, 176.
- 163 C. Eid, D. Luneau, V. Salles, R. Asmar, Y. Monteil, A. Khoury and A. Brioude, *J. Phys. Chem. C*, 2011, **115**, 17643–17646.
- 164 P. Jing, J. Li, L. Pan, J. Wang, X. Sun and Q. Liu, J. Hazard. Mater., 2015, 284, 163–170.
- 165 X. Li, Z. Hou, P. A. Ma, X. Zhang, C. Li, Z. Cheng, Y. Dai, J. Lian and J. Lin, *RSC Adv.*, 2013, 3, 8517–8526.
- 166 Y. Zhou, W. Song, L. Zhang and S. Tao, J. Mater. Chem. A, 2018, 6, 12298–12307.
- 167 Z. Wang, L. Zhao, P. Wang, L. Guo and J. Yu, J. Alloys Compd., 2016, 687, 541–547.
- 168 Q. Gao, J. Takizawa and M. Kimura, *Polymer*, 2013, 54, 120–126.
- 169 N. A. M. Barakat, B. Kim and H. Y. Kim, *J. Phys. Chem. C*, 2009, **113**, 531–536.
- 170 L. Pan, X. Zhang, J. Wang and Q. Liu, *Ceram. Int.*, 2017, 43, 1236–1241.
- 171 W.-Y. Lee, H. J. Yun and J.-W. Yoon, *J. Alloys Compd.*, 2014, 583, 320–324.
- 172 B. Mordina, R. K. Tiwari, D. K. Setua and A. Sharma, *RSC Adv.*, 2015, 5, 19091–19105.
- 173 J.-G. Zhao, W.-Y. Zhang, E.-Q. Xie, X.-Y. An, J.-C. Fu, Z.-J. Liu, Z.-L. Liu, Y.-J. Zhang, Y.-F. Chen and C.-Y. Zhang, *NANO*, 2014, 9, 1450026.
- 174 U. Kurtan, D. Dursun, H. Aydin, M. S. Toprak, A. Baykal and A. Bozkurt, *Ceram. Int.*, 2016, **42**, 18189–18195.
- 175 J. Bhagwan, S. Rani, V. Sivasankaran, K. L. Yadav and Y. Sharma, *Appl. Surf. Sci.*, 2017, **426**, 913–923.
- 176 Y. Lu, X. C. Yang, J. L. Zhu, F. Z. Song and X. Q. Shen, *Adv. Mater. Res.*, 2012, **399–401**, 736–740.
- 177 H. Liu, Z.-G. Zhang, X.-X. Wang, G.-D. Nie, J. Zhang, S.-X. Zhang, N. Cao, S.-Y. Yan and Y.-Z. Long, *J. Phys. Chem. Solids*, 2018, **121**, 236–246.

- 178 X. Q. Shen, J. C. Zheng, X. F. Meng and Q. R. Liang, J. Wuhan Univ. Technol., Mater. Sci. Ed., 2011, 26, 384–387.
- 179 R. Yensano, S. Pinitsoontorn, V. Amornkitbamrung and S. Maensiri, *J. Supercond. Novel Magn.*, 2014, **27**, 1553–1560.
- 180 Y. Zhang, W. W. Pan, J. Dong, Z. K. Wang, Q. F. Liu and J. B. Wang, J. Phys. D: Appl. Phys., 2013, 46, 105001.
- 181 Q. R. Liang, X. Q. Shen, F. Z. Song and M. Q. Liu, J. Mater. Sci. Technol., 2011, 27, 996–1000.
- 182 W. Ponhan and S. Maensiri, *Solid State Sci.*, 2009, **11**, 479–484.
- 183 O. Saensuk, S. Phokha, A. Bootchanont, S. Maensiri and E. Swatsitang, *Ceram. Int.*, 2015, 41, 8133–8141.
- 184 S. Maensiri, M. Sangmanee and A. Wiengmoon, *Nanoscale Res. Lett.*, 2009, 4, 221–228.
- 185 P. Kidkhunthod, S. Nilmoung, S. Mahakot, S. Rodporn, S. Phumying and S. Maensiri, *J. Magn. Magn. Mater.*, 2016, 401, 436–442.
- 186 Y.-W. Ju, J.-H. Park, H.-R. Jung, S.-J. Cho and W.-J. Lee, *Compos. Sci. Technol.*, 2008, **68**, 1704–1709.
- 187 C. Luo, X. Wang, J. Wang and K. Pan, *Compos. Sci. Technol.*, 2016, **133**, 97–103.
- 188 Y. Zhu, J. C. Zhang, J. Zhai and L. Jiang, *Thin Solid Films*, 2006, **510**, 271–274.
- 189 N. N. Liu, P. C. Du, P. Zhou, R. G. Tanguturi, Y. J. Qi, T. J. Zhang and C. Q. Zhuang, *Appl. Surf. Sci.*, 2020, **532**, 147440.
- 190 R. Nakhowong and R. Chueachot, *J. Alloys Compd.*, 2017, 715, 390–396.
- 191 W. Ponhan and S. Maensiri, presented in part at the 3rd IEEE International Nanoelectronics Conference, City University Hong Kong, Hong Kong, 2010.
- 192 A. K. Das, M. Kar and A. Srinivasan, *Phys. B*, 2014, 448, 112-114.
- 193 W. Ponhan, E. Swatsitang and S. Maensiri, *Mater. Sci. Technol.*, 2010, 26, 1298–1303.
- 194 Y. W. Ju, J. H. Park, H. R. Jung, S. J. Cho and W. J. Lee, *Mater. Sci. Eng.*, *B*, 2008, **147**, 7–12.
- 195 J. Li, Y. Wu, M. Yang, Y. Yuan, W. Yin, Q. Peng, Y. Li and X. He, J. Am. Ceram. Soc., 2017, 100, 5460–5470.
- 196 T. Zhang, D. Huang, Y. Yang, F. Kang and J. Gu, *Mater. Sci. Eng.*, *B*, 2013, **178**, 1–9.
- 197 Y. Yang, Z. Guo, H. Zhang, D. Huang, J. Gu, Z. Huang, F. Kang, T. A. Hatton and G. C. Rutledge, *J. Appl. Polym. Sci.*, 2013, **127**, 4288–4295.
- 198 M. Bayat, H. Yang and F. Ko, Polymer, 2011, 52, 1645-1653.
- 199 C. Lu, Z. Bao, C. Qin, L. Dai and A. Zhu, *RSC Adv.*, 2016, 6, 110155.
- 200 C.-J. Li, J.-N. Wang, B. Wang, J. R. Gong and Z. Lin, *Mater. Res. Bull.*, 2012, 47, 333–337.
- 201 P. Jing, L. Pan, J. Du, J. Wang and Q. Liu, Phys. Chem. Chem. Phys., 2015, 17, 12841–12848.
- 202 B. Y. Ren, W. Shen, L. Li, S. Z. Wu and W. Wang, *Appl. Surf. Sci.*, 2018, **447**, 711–723.
- 203 G. George and S. Anandhan, *Mater. Sci. Semicond. Process.*, 2015, **32**, 40–48.
- 204 B. Tarus, N. Fadel, A. Al-Oufy and M. El-Messiry, *Alexandria Eng. J.*, 2016, 55, 2975–2984.

- 205 V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar,
 L. C. du Toit and V. M. K. Ndesendo, *J. Nanomater.*, 2013,
 2013, 789289.
- 206 J. Lee, T.-Y. Hwang, M. K. Kang, H.-B. Cho, J. Kim, N. V. Myung and Y.-H. Choa, *Front. Chem.*, 2018, **6**, 18.
- 207 Q. Yang, Q. Xu, M. Sobhan, Q. Ke, F. Anariba, K. P. Ong and P. Wu, *Phys. Status Solidi RRL*, 2014, **8**, 653–657.
- 208 C.-J. Li, B. Wang and J.-N. Wang, J. Magn. Magn. Mater., 2012, 324, 1305–1311.
- 209 M. Liu, X. Shen, F. Song, J. Xiang and X. Meng, *J. Solid State Chem.*, 2011, **184**, 871–876.
- 210 O. Saensuk, S. Maensiri, A. Bootchanont and E. Swatsitang, *Microelectron. Eng.*, 2014, **126**, 158–164.
- 211 J. Xiang, X. Shen, F. Song and M. Liu, J. Solid State Chem., 2010, 183, 1239–1244.
- 212 C.-J. Li, B.-N. Huang and J.-N. Wang, *J. Mater. Sci.*, 2013, **48**, 1702–1710.
- 213 M. Mansour, M. Bechelany, R. Habchi and C. Eid, *Phys. Lett. A*, 2017, **381**, 658–662.
- 214 M. S. Cortes, A. Martinez-Luevanos, L. A. Garcia-Cerda, O. S. Rodriguez-Fernandez, A. F. Fuentes, J. Romero-Garcia and S. M. Montemayor, *J. Alloys Compd.*, 2015, 653, 290–297.
- 215 J. Xiang, Y. Q. Chu, X. Q. Shen, G. Z. Zhou and Y. T. Guo, J. Colloid Interface Sci., 2012, 376, 57–61.
- 216 W. Pan, F. Gu, K. Qi, Q. Liu and J. Wang, *Mater. Chem. Phys.*, 2012, **134**, 1097–1101.
- 217 G. D. Nie, X. F. Lu, J. Y. Lei, Z. Q. Jiang and C. Wang, J. Mater. Chem. A, 2014, 2, 15495–15501.
- 218 J. M. Li, X. L. Zeng, G. Q. Wu and Z. A. Xu, *CrystEngComm*, 2012, **14**, 525–532.
- 219 J. X. Sui, X. X. Wang, C. Song, Q. Liu, F. Yuan and Y. Z. Long, *J. Magn. Magn. Mater.*, 2018, **467**, 74–81.
- 220 S. Sonsupap, P. Kidkhunthod, N. Chanlek, S. Pinitsoontorn and S. Maensiri, *Appl. Surf. Sci.*, 2016, **380**, 16–22.
- P. Mohanapriya, C. I. Sathish, R. Pradeepkumar, H. Segawa,
 K. Yamaura, K. Watanabe, T. S. Natarajan and N. V. Jaya, *J. Nanosci. Nanotechnol.*, 2013, 13, 5391–5400.
- 222 M. C. Maldonado-Orozco, M. T. Ochoa-Lara, J. E. Sosa-Marquez, R. P. Talamantes-Soto, A. Hurtado-Macias, R. Lopez Anton, J. A. Gonzalez, J. T. Holguin-Momaca, S. F. Olive-Mendez and F. Espinosa-Magana, *J. Am. Ceram. Soc.*, 2019, 102, 2800–2809.
- 223 S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song and X. Hu, J. Magn. Magn. Mater., 2012, 324, 2070–2074.
- 224 C. Eid, E. Assaf, R. Habchi, P. Miele and M. Bechelany, *RSC Adv.*, 2015, 5, 97849–97854.
- 225 N. A. M. Barakat, M. F. Abadir, K. T. Nam, A. M. Hamza, S. S. Al-Deyab, W.-I. Baek and H. Y. Kim, *J. Mater. Chem.*, 2011, **21**, 10957–10964.
- 226 F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu, S. Zuo, D. Yan, R. Zhuo, J. Feng and P. Yan, *Carbon*, 2018, 134, 264–273.
- 227 J. Zhang, P. Wang, Y. Chen, G. Wang, D. Wang, L. Qiao, T. Wang and F. Li, *J. Electron. Mater.*, 2018, 47, 4703–4709.
- 228 Y. Jiang, X. Fu, Z. Zhang, W. Du, P. Xie, C. Cheng and R. Fan, *J. Alloys Compd.*, 2019, **804**, 305–313.

- Review
- 229 I. Abdalla, A. Salim, M. Zhu, J. Yu, Z. Li and B. Ding, *ACS Appl. Mater. Interfaces*, 2018, **10**, 44561–44569.
- 230 A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B. P. Singh,
 A. P. Singh, S. K. Dhawan and S. R. Dhakate, ACS Appl. Mater. Interfaces, 2016, 8, 10600–10608.
- 231 F. M. Oliveira and R. Gusmão, ACS Appl. Electron. Mater., 2020, 2, 3048-3071.
- 232 T. Wang, H. Wang, X. Chi, R. Li and J. Wang, *Carbon*, 2014, 74, 312–318.
- 233 F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo and Y. Gogotsi, *Science*, 2016, **353**, 1137–1140.
- 234 M. An, J. Cui and L. Wang, J. Phys. Chem. C, 2014, 118, 3062–3068.
- 235 W. Song, Z. Z. Yang, F. Q. Ma, M. Q. Chi, B. Zhao and X. F. Lu, *RSC Adv.*, 2017, 7, 40334-40341.
- 236 H. Zhao, L. Zhang, X. Gu, S. Li, B. Li, H. Wang, J. Yang and J. Liu, *RSC Adv.*, 2015, **5**, 10951–10959.
- 237 M.-J. Chang, H. Wang, H.-L. Li, J. Liu and H.-L. Du, *J. Mater. Sci.*, 2018, **53**, 3682–3691.
- 238 A. M. El-Rafei, A. S. El-Kalliny and T. A. Gad-Allah, *J. Magn. Magn. Mater.*, 2017, **428**, 92–98.
- 239 W. Wang, N. Li, Y. Chi, Y. Li, W. Yan, X. Li and C. Shao, *Ceram. Int.*, 2013, **39**, 3511–3518.
- 240 Y.-N. Feng, H.-C. Wang, Y.-D. Luo, Y. Shen and Y.-H. Lin, *J. Appl. Phys.*, 2013, **113**, 146101.
- 241 R. Yang, H. Sun, J. Li and Y. A. Li, *Ceram. Int.*, 2018, 44, 14032–14035.
- 242 V. Pongsorrarith, C. Srisitthiratkul, K. Laohhasurayotin and N. Intasanta, *Mater. Lett.*, 2012, **67**, 1–4.
- 243 K. Y. A. Lin, M. T. Yang, J. T. Lin and Y. C. Du, *Chemosphere*, 2018, **208**, 502–511.
- 244 Z. Zhang, Y. Jiang, M. Chi, Z. Yang, G. Nie, X. Lu and C. Wang, *Appl. Surf. Sci.*, 2016, **363**, 578–585.
- 245 E. Ghasemi, H. Ziyadi, A. M. Afshar and M. Sillanpaa, *Chem. Eng. J.*, 2015, **264**, 146–151.
- 246 D. Chen, Y. Li, M. Bao, Y. Hou, J. Jin, Z. Yin and Z. Wang, ACS Sustainable Chem. Eng., 2019, 7, 13786–13795.
- 247 J. J. Du and C. Y. Jing, J. Phys. Chem. C, 2011, 115, 17829-17835.
- 248 F.-C. Liang, Y.-L. Luo, C.-C. Kuo, B.-Y. Chen, C.-J. Cho, F.-J. Lin, Y.-Y. Yu and R. Borsali, *Polymers*, 2017, **9**, 136.
- 249 S. Zhan, D. Zhu, G. Ren, Z. Shen, M. Qiu, S. Yang, H. Yu and Y. Li, *ACS Appl. Mater. Interfaces*, 2014, **6**, 16841–16850.
- 250 S. Al-Meer, Z. K. Ghouri, K. Elsaid, A. Easa, M. T. Al-Qahtani and M. S. Akhtar, *J. Alloys Compd.*, 2017, **723**, 477–483.
- 251 M. Venkatesan, L. Veeramuthu, F.-C. Liang, W.-C. Chen, C.-J. Cho, C.-W. Chen, J.-Y. Chen, Y. Yan, S.-H. Chang and C.-C. Kuo, *Chem. Eng. J.*, 2020, **397**, 125431.
- 252 P. Zhou, F. Liang, Y. Liu, R. Deng, H. Yang, Q. Wang, X. Qu and Z. Yang, *Sci. China Mater.*, 2015, **58**, 961–968.
- 253 N. H. A. Ngadiman, A. Idris, M. Irfan, D. Kurniawan, N. M. Yusof and R. Nasiri, *J. Mech. Behav. Biomed. Mater.*, 2015, **49**, 90–104.
- 254 J. Meng, B. Xiao, Y. Zhang, J. Liu, H. Xue, J. Lei, H. Kong, Y. Huang, Z. Jin, N. Gu and H. Xu, *Sci. Rep.*, 2013, 3, 2655.
- 255 N. H. A. Ngadiman, N. Mohd Yusof, A. Idris, D. Kurniawan and E. Fallahiarezoudar, J. Bioact. Compat. Polym., 2017, 32, 411–428.

- 256 R. K. Singh, K. D. Patel, J. H. Lee, E.-J. Lee, J.-H. Kim, T.-H. Kim and H.-W. Kim, *PLoS One*, 2014, **9**, e91584.
- 257 Q. Cai, Y. Shi, D. Shan, W. Jia, S. Duan, X. Deng and X. Yang, *Mater. Sci. Eng.*, C, 2015, 55, 166–173.
- 258 J. T. Kannarkat, J. Battogtokh, J. Philip, O. C. Wilson and P. M. Mehl, *J. Appl. Phys.*, 2010, **107**, 09B307.
- 259 A. Jedlovszky-Hajdu, K. Molnar, P. M. Nagy, K. Sinko and M. Zrinyi, *Colloids Surf.*, A, 2016, **503**, 79–87.
- 260 N. Shankhwar, M. Kumar, B. B. Mandal and A. Srinivasan, *Mater. Sci. Eng.*, C, 2016, 69, 1167–1174.
- 261 J. Jose, R. Kumar, S. Harilal, G. E. Mathew, D. G. T. Parambi, A. Prabhu, M. S. Uddin, L. Aleya, H. Kim and B. Mathew, *Environ. Sci. Pollut. Res.*, 2020, 27, 19214–19225.
- 262 H. P. Kok, P. Wust, P. R. Stauffer, F. Bardati, G. C. van Rhoon and J. Crezee, *Radiat. Oncol.*, 2015, **10**, 196.
- 263 X. Feng, J. Li, X. Zhang, T. Liu, J. Ding and X. Chen, J. Controlled Release, 2019, 302, 19-41.
- 264 S. Thakkar and M. Misra, *Eur. J. Pharm. Sci.*, 2017, **107**, 148–167.
- 265 M. Jin, D.-G. Yu, C. F. G. C. Geraldes, G. R. Williams and S. W. A. Bligh, *Mol. Pharmaceutics*, 2016, 13, 2457–2465.
- 266 A. R. K. Sasikala, A. R. Unnithan, Y.-H. Yun, C. H. Park and C. S. Kim, *Acta Biomater.*, 2016, **31**, 122–133.
- 267 H. Zhang, J. Xia, X. Pang, M. Zhao, B. Wang, L. Yang, H. Wan, J. Wu and S. Fu, *Mater. Sci. Eng.*, C, 2017, 73, 537–543.
- 268 H. J. Haroosh, Y. Dong and G. D. Ingram, *J. Polym. Sci., Part B: Polym. Phys.*, 2013, **51**, 1607–1617.
- 269 M. R. Hasan, S. H. Baek, K. S. Seong, J. H. Kim and I. K. Park, *ACS Appl. Mater. Interfaces*, 2015, 7, 5768–5774.
- 270 F.-R. Fan, Z.-Q. Tian and Z. Lin Wang, *Nano Energy*, 2012, 1, 328–334.
- 271 P. Glynne-Jones, S. Beeby and N. White, *IEE Proc.-A: Sci., Meas. Technol.*, 2001, **148**, 68–72.
- 272 X. Chen, Y. Wu, A. Yu, L. Xu, L. Zheng, Y. Liu, H. Li and Z. Lin Wang, *Nano Energy*, 2017, 38, 91–100.
- 273 K. Dong, J. Deng, Y. Zi, Y.-C. Wang, C. Xu, H. Zou, W. Ding,
 Y. Dai, B. Gu, B. Sun and Z. L. Wang, *Adv. Mater.*, 2017,
 29, 1702648.
- 274 G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu and Z. L. Wang, *Nano Lett.*, 2012, **12**, 4960–4965.
- 275 Z. L. Wang, ACS Nano, 2013, 7, 9533-9557.
- 276 W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang and X.-M. Tao, *Adv. Mater.*, 2014, **26**, 5310–5336.
- 277 Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong and X. Wang, *Adv. Energy Mater.*, 2014, **4**, 1301624.
- 278 Z. Pi, J. Zhang, C. Wen, Z.-B. Zhang and D. Wu, *Nano Energy*, 2014, 7, 33–41.
- 279 S. Cheon, H. Kang, H. Kim, Y. Son, J. Y. Lee, H.-J. Shin, S.-W. Kim and J. Cho, *Adv. Funct. Mater.*, 2017, 28, 1703778.
- 280 R. A. Whiter, V. Narayan and S. Kar-Narayan, *Adv. Energy Mater.*, 2014, 4, 1400519.
- 281 D. Ponnamma, O. Aljarod, H. Parangusan and M. A. Al-Maadeed, *Mater. Chem. Phys.*, 2020, 239, 122257.
- 282 J.-S. Im and I.-K. Park, *ACS Appl. Mater. Interfaces*, 2018, **10**, 25660–25665.

- 283 W. Wu, S. Bai, M. Yuan, Y. Qin, Z. L. Wang and T. Jing, *ACS Nano*, 2012, **6**, 6231–6235.
- 284 A. Ehrmann and T. Blachowicz, J. Magn. Magn. Mater., 2019, 475, 727.
- 285 N. Kikuchi, S. Okamoto, O. Kitakami, Y. Shimada, S. G. Kim, Y. Otani and K. Fukamichi, *J. Appl. Phys.*, 2001, **90**, 6548–6549.
- 286 B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Faehnle, H. Brueckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back and G. Schuetz, *Nature*, 2006, 444, 461–464.
- 287 M. Weigand, B. Van Waeyenberge, A. Vansteenkiste, M. Curcic,
 V. Sackmann, H. Stoll, T. Tyliszczak, K. Kaznatcheev,
 D. Bertwistle, G. Woltersdorf, C. H. Back and G. Schuetz, *Phys. Rev. Lett.*, 2009, **102**, 077201.
- 288 T. Blachowicz, C. Dopke and A. Ehrmann, *Nanomaterials*, 2020, **10**, 738.
- 289 H.-R. Kim, B.-S. Kim and I.-S. Kim, *Mater. Chem. Phys.*, 2012, **135**, 1024–1029.
- 290 E. Fallahiarezoudar, M. Ahmadipourroudposht, N. M. Yusof and A. Idris, *Int. J. Polym. Mater. Polym. Biomater.*, 2015, **64**, 15–24.
- 291 A. F. Lubambo, L. Ono, V. Drago, N. Mattoso, J. Varalda, M. R. Sierakowski, C. N. Sakakibara, R. A. Freitas and C. K. Saul, *Carbohydr. Polym.*, 2015, **134**, 775–783.
- 292 L. Hou, W. M. R. N. Udansawa, A. Pochiraju, W. Dong,
 Y. Zheng, R. J. Linhardt and T. J. Simmons, *ACS Biomater. Sci. Eng.*, 2016, 2, 1905–1913.
- 293 L. Li, F. Wang, Y. Lv, J. Liu, D. Zhang and Z. Shao, *Appl. Clay Sci.*, 2018, **161**, 225–234.
- 294 T.-C. Lin, F.-H. Lin and J.-C. Lin, *J. Biomater. Sci., Polym. Ed.*, 2013, **24**, 1152–1163.
- 295 J. G. Duran-Guerrero, M. A. Martinez-Rodriguez, M. A. Garza-Navarro, V. A. Gonzalez-Gonzalez, A. Torres-Castro and J. R. De La Rosa, *Carbohydr. Polym.*, 2018, 200, 289–296.
- 296 Y. Wei, X. Zhang, Y. Song, B. Han, X. Hu, X. Wang, Y. Lin and X. Deng, *Biomed. Mater.*, 2011, **6**, 055008.
- 297 T. Huang, P. Song, L. Jiang, Y. Peng, S. Feng and J. Wang, *Electrophoresis*, 2016, **37**, 2050–2053.
- 298 D. Navarathne, Y. Ner, M. Jain, J. G. Grote and G. A. Sotzing, *Mater. Lett.*, 2011, 65, 219–221.
- 299 A. GhavamiNejad, A. R. K. Sasikala, A. R. Unnithan, R. G. Thomas, Y. Y. Jeong, M. Vatankhah-Varnoosfaderani, F. J. Stadler, C. H. Park and C. S. Kim, *Adv. Funct. Mater.*, 2015, 25, 2867–2875.
- 300 J. Guo, X. Ye, W. Liu, Q. Wu, H. Shen and K. Shu, *Mater. Lett.*, 2009, 63, 1326–1328.
- 301 M. S. A. Darwish, A. Bakry, L. M. Al-Harbi, M. M. Khowdiary, A. A. El-Henawy and J. Yoon, *J. Dispersion Sci. Technol.*, 2020, 41, 1711–1719.
- 302 M. S. A. Darwish, A. Bakry, O. Kolek, L. Martinova and I. Stibor, *Polym. Compos.*, 2019, **40**, 296–303.
- 303 R. Mincheva, O. Stoilova, H. Penchev, T. Ruskov, I. Spirov, N. Manolova and I. Rashkov, *Eur. Polym. J.*, 2008, 44, 615–627.

- 304 D. Zhang, A. B. Karki, D. Rutman, D. R. Young, A. Wang, D. Cocke, T. H. Ho and Z. Guo, *Polymer*, 2009, **50**, 4189–4198.
- 305 B. Wang, Y. Sun and H. Wang, J. Appl. Polym. Sci., 2010, 115, 1781–1786.
- 306 A. Sindelo and T. Nyokong, Heliyon, 2019, 5, e02352.
- 307 Z. Wang, Q. Ma, X. Dong, D. Li, X. Xi, W. Yu, J. Wang and G. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 26226–26234.
- 308 S. Cavaliere, V. Salles, A. Brioude, Y. Lalatonne, L. Motte, P. Monod, D. Cornu and P. Miele, *J. Nanopart. Res.*, 2010, 12, 2735–2740.
- 309 D. Li, Y. Gu, X. Xu, Y. Feng, Y. Ma, S. Li and C. Yao, *Microchim. Acta*, 2019, **186**, 542.
- 310 X.-Y. Ye, Z.-M. Liu, Z.-G. Wang, X.-J. Huang and Z.-K. Xu, *Mater. Lett.*, 2009, **63**, 1810–1813.
- 311 N. Sabzroo, T. R. Bastami, M. Karimi, T. Heidari, S. Agarwal and V. K. Gupta, *J. Ind. Eng. Chem.*, 2018, **60**, 237–249.
- 312 H. Bagheri, M. N. Mobara, A. Roostaie and M. Y. Baktash, J. Sep. Sci., 2017, 40, 3857–3865.
- 313 H. Bagheri, P. Khanipour and S. Asgari, *Anal. Chim. Acta*, 2016, **934**, 88–97.
- 314 P. Tiwari, S. Agarwal, S. Srivastava and S. Jain, J. Biomed. Mater. Res., Part B, 2018, 106, 40–51.
- 315 W. Xue, Y. Hu, F. Wang, X. Yang and L. Wang, *Colloids Surf.*, A, 2019, **564**, 115–121.
- 316 D. Demir, D. Gures, T. Tecim, R. Genc and N. Bolgen, *Appl. Nanosci.*, 2018, 8, 1461–1469.
- 317 B. Wang, H. Zheng, M.-W. Chang, Z. Ahmad and J.-S. Li, *Colloids Surf., B*, 2016, **145**, 757–767.
- 318 S. Wu, B. Wang, Z. Ahmad, J. Huang, M.-W. Chang and J.-S. Li, *Mater. Lett.*, 2017, 204, 73–76.
- 319 M. Hadjian, D. Semnani and J. Varshosaz, *Polym. Adv. Technol.*, 2019, **30**, 2729–2741.
- 320 Q. Yu, M. Ma, P. Chen, Q. Wang, C. Lu, Y. Gao, R. Wang and H. Chen, *Polym. Eng. Sci.*, 2017, **57**, 1186–1192.
- 321 A. Wang, H. Singh, T. A. Hatton and G. C. Rutledge, *Polymer*, 2004, **45**, 5505–5514.
- 322 I. Savva, O. Marinica, C. A. Papatryfonos, L. Vekas and T. Krasia-Christoforou, *RSC Adv.*, 2015, **5**, 16484–16496.
- 323 L. Burke, C. J. Mortimer, D. J. Curtis, A. R. Lewis, R. Williams,
 K. Hawkins, T. G. G. Maffeis and C. J. Wright, *Mater. Sci. Eng.*,
 C, 2017, **70**, 512–519.
- 324 D. Guo, Z. Sun, L. Xu, Y. Gao, M. Dai, S. Wang, Q. Chang, C. Wang and D. Ma, *Mater. Lett.*, 2015, **159**, 159–162.
- 325 E. Korina, O. Stoilova, N. Manolova and I. Rashkov, J. Mater. Sci., 2014, 49, 2144–2153.
- 326 M.-H. Ho, S.-Y. Li, C.-Y. Ciou and T.-M. Wu, *J. Appl. Polym. Sci.*, 2014, **131**, 41070.
- 327 S. T. Tan, J. H. Wendorff, C. Pietzonka, Z. H. Jia and G. Q. Wang, *ChemPhysChem*, 2005, 6, 1461–1465.
- 328 M. Kumar, D. Unruh, R. Sindelar and F. Renz, *Nano Hybrids*, 2017, **14**, 39–47.
- 329 D. Shan, Y. Shi, S. Duan, Y. Wei, Q. Cai and X. Yang, *Mater. Sci. Eng.*, *C*, 2013, **33**, 3498–3505.
- 330 X. Xi, W. Yu, Q. Ma, D. Li, X. Dong, J. Wang and G. Liu, RSC Adv., 2018, 8, 31608–31617.

- Review
- 331 H. Shao, Q. Ma, X. Dong, W. Yu, M. Yang, Y. Yang, J. Wang and G. Liu, *Phys. Chem. Chem. Phys.*, 2015, 17, 21845–21855.
- 332 J. Tian, Q. Ma, W. Yu, D. Li, X. Dong, G. Liu and J. Wang, *RSC Adv.*, 2019, 9, 10679–10692.
- 333 Y. Xie, Q. Ma, H. Qi, Y. Song, J. Tian, M. A. Musa, W. Yu,
 X. Dong, D. Li and G. Liu, *RSC Adv.*, 2019, 9, 30890–30904.
- 334 Y. Xie, Q. Ma, H. Qi, Y. Song, J. Tian, W. Yu, X. Dong, D. Li,G. Liu and J. Wang, *Nanotechnology*, 2019, **30**, 435602.
- 335 X. Xi, W. Yu, D. Li, Q. Ma, X. Dong, J. Wang and G. Liu, *New J. Chem.*, 2018, **42**, 18708–18716.
- 336 Q. Ma, J. Wang, X. Dong, W. Yu and G. Liu, *Chem. Eng. J.*, 2015, **260**, 222–230.
- 337 J. Tian, Q. Ma, W. Yu, D. Li, X. Dong, G. Liu and J. Wang, *Mater. Des.*, 2019, **170**, 107701.
- 338 D. Yin, Q. Ma, X. Dong, N. Lv, J. Wang, W. Yu and G. Liu, *ChemPlusChem*, 2015, **80**, 568–575.
- 339 S.-R. Huang, K.-F. Lin, T.-M. Don, W.-Y. Chiu and M.-F. Lin, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 2152–2162.
- 340 A. Feizbakiish and S. Ehteshami, J. AOAC Int., 2017, 100, 198–205.
- 341 B. Song, J. Zhu and H. Fan, *Mar. Pollut. Bull.*, 2017, **120**, 159–164.
- 342 S. Wang, C. Wang, B. Zhang, Z. Sun, Z. Li, X. Jiang and X. Bai, *Mater. Lett.*, 2010, 64, 9–11.
- 343 X. Huang, R. Wang, T. Jiao, G. Zou, F. Zhan, J. Yin, L. Zhang, J. Zhou and Q. Peng, *ACS Omega*, 2019, 4, 1897–1906.
- 344 E. Korina, O. Stoilova, N. Manolova and I. Rashkov, J. Environ. Chem. Eng., 2018, 6, 2075–2084.
- 345 O. Chiscan, I. Dumitru, P. Postolache, V. Tura and A. Stancu, *Mater. Lett.*, 2012, 68, 251–254.
- 346 T. Zheng, Z. Yue, G. G. Wallace, Y. Du, P. Martins, S. Lanceros-Mendez and M. J. Higgins, *Nanotechnology*, 2017, 28, 065707.
- 347 V. Kalra, J. Lee, J. H. Lee, S. G. Lee, M. Marquez, U. Wiesner and Y. L. Joo, *Small*, 2008, 4, 2067–2073.
- 348 Y. Liu, Q. Ma, X. Dong, W. Yu, J. Wang and G. Liu, *Phys. Chem. Chem. Phys.*, 2015, 17, 22977–22984.
- 349 Y. Liu, Q. Ma, M. Yang, X. Dong, Y. Yang, J. Wang, W. Yu and G. Liu, *Chem. Eng. J.*, 2016, **284**, 831–840.
- 350 B. Wang, P.-p. Zhang, G. R. Williams, C. Branford-White, J. Quan, H.-l. Nie and L.-m. Zhu, *J. Mater. Sci.*, 2013, 48, 3991–3998.
- 351 X. Xi, Q. Ma, X. Dong, J. Wang, W. Yu and G. Liu, *IEEE Trans. Nanotechnol.*, 2015, **14**, 243–249.
- 352 D. Yin, Q. Ma, X. Dong, N. Lv, J. Wang, W. Yu and G. Liu, J. Mater. Sci.: Mater. Electron., 2015, 26, 2658–2667.
- 353 X. Xi, Q. Ma, X. Dong, D. Li, W. Yu, J. Wang and G. Liu, *J. Mater. Sci.: Mater. Electron.*, 2018, **29**, 10284–10300.
- 354 H. Chen, Q. Ma, J. Tian, X. Li, D. Li, X. Dong, W. Yu, J. Wang and G. Liu, New J. Chem., 2019, 43, 7984–7996.
- 355 K. Nasouri and A. M. Shoushtari, *J. Thermoplast. Compos. Mater.*, 2018, **31**, 431-446.
- 356 C.-R. Lin, T.-C. Tsai, M. Chung and S.-Z. Lu, *J. Appl. Phys.*, 2009, **105**, 07B509.
- 357 S. Sheng, Q. Ma, X. Dong, N. Lv, J. Wang, W. Yu and G. Liu, *J. Mater. Sci.: Mater. Electron.*, 2014, **25**, 1309–1316.

- 358 J. Choi, J. Kim, H. Yang, F. K. Ko and K. H. Kim, *J. Magn.*, 2015, **20**, 215–220.
- 359 M. Chen, H. Qu, J. Zhu, Z. Luo, A. Khasanov, A. S. Kucknoor, N. Haldolaarachchige, D. R. Young, S. Wei and Z. Guo, *Polymer*, 2012, **53**, 4501–4511.
- 360 J. Dankova, M. Buzgo, J. Vejpravova, S. Kubickova, V. Sovkova, L. Vyslouzilova, A. Mantlikova, A. Necas and E. Amler, *Int. J. Nanomed.*, 2015, **10**, 7307–7317.
- 361 L. Li, G. Yang, J. Li, S. Ding and S. Zhou, *Mater. Sci. Eng.*, C, 2014, 34, 252–261.
- 362 N. Hernandez, V. A. Gonzalez-Gonzalez, I. B. Dzul-Bautista, N. Ornelas-Soto, J. M. Barandiaran and J. Gutierrez, *Eur. Polym. J.*, 2018, **109**, 336–340.
- 363 T. Song, Y. Z. Zhang and T. J. Zhou, J. Magn. Magn. Mater., 2006, 303, E286–E289.
- 364 Z. Thompson, S. Rahman, S. Yarmolenko, J. Sankar, D. Kumar and N. Bhattarai, *Materials*, 2017, 10, 937.
- 365 M. Asadi, S. Shahabuddin, A. Mollahosseini, J. Kaur and R. Saidur, J. Inorg. Organomet. Polym. Mater., 2019, 29, 1057–1066.
- 366 B.-R. Koo, I.-K. Park and H.-J. Ahn, J. Alloys Compd., 2014, 603, 52–56.
- 367 C.-J. Li, B. Wang and J.-N. Wang, J. Nanosci. Nanotechnol., 2012, 12, 2522–2528.
- 368 C.-J. Li and J.-N. Wang, Mater. Lett., 2010, 64, 586-588.
- 369 G.-F. Liu, Z.-D. Zhang, F. Dang, C.-B. Cheng, C.-X. Hou and S.-D. Liu, *J. Magn. Magn. Mater.*, 2016, 412, 55–62.
- 370 F. Bi, X. Dong, J. Wang and G. Liu, J. Mater. Sci., 2015, 50, 1679–1687.
- 371 X. Xi, Q. Ma, M. Yang, X. Dong, J. Wang, W. Yu and G. Liu, J. Mater. Sci.: Mater. Electron., 2014, 25, 4024–4032.
- 372 X. Xu, Q. Wang, H. C. Choi and Y. H. Kim, *J. Membr. Sci.*, 2010, **348**, 231–237.
- 373 T.-I. Yang and S.-H. Chang, *Nanotechnology*, 2017, 28, 055601.
- 374 V. Guarino, G. Ausanio, V. Iannotti, L. Ambrosio and L. Lanotte, *eXPRESS Polym. Lett.*, 2018, **12**, 318–329.
- 375 R. Brito-Pereira, D. M. Correia, C. Ribeiro, A. Francesko, I. Etxebarria, L. Perez-Alvarez, J. L. Vilas, P. Martins and S. Lanceros-Mendez, *Composites, Part B*, 2018, 141, 70–75.
- 376 I. Munaweera, A. Aliev and K. J. Balkus Jr, ACS Appl. Mater. Interfaces, 2014, 6, 244–251.
- 377 O. Nakhaei, N. Shahtahmassebi, M. R. Roknabadi and M. Behdani, *Appl. Phys. A: Mater. Sci. Process.*, 2016, 122, 537.
- 378 K. Nasouri and A. M. Shoushtari, *Compos. Sci. Technol.*, 2017, **145**, 46–54.
- 379 K. Nasouri, A. M. Shoushtari and M. R. M. Mojtahedi, J. Polym. Res., 2016, 23, 71.
- 380 K. Nasouri, A. M. Shoushtari and M. R. M. Mojtahedi, *Polym. Compos.*, 2017, 38, 2026–2034.
- 381 M. Chowdhury and G. Stylios, J. Mater. Sci., 2011, 46, 3378-3386.
- 382 S. B. Lee, S. J. Hong, J. W. Yi, S. K. Lee, Y. H. Choa and J. B. Kim, *Met. Mater. Int.*, 2012, **18**, 165–170.
- 383 Z. Zhu, Y. Xu, B. Qi, G. Zeng, P. Wu, G. Liu, W. Wang, F. Cui and Y. Sun, *Environ. Sci.: Nano*, 2017, 4, 302–306.

- 384 Z.-d. Zhang, H. Wang, C. Qin, S. Chen, X. Ji, K. Sun, M. Chen, R.-h. Fan and X. Han, *Mater. Des.*, 2016, 89, 543–548.
- 385 N. Cai, M. Chen, M. Liu, J. Wang, L. Shen, J. Wang, X. Feng and F. Yu, *J. Mol. Liq.*, 2019, **289**, 111060.
- 386 X. Meng and S. Dong, J. Alloys Compd., 2019, 810, 151806.
- 387 K.-Y. A. Lin, J.-T. Lin, X.-Y. Lu, C. Hung and Y.-F. Lin, *J. Colloid Interface Sci.*, 2017, **505**, 728–735.
- 388 H.-Y. Mi, X. Jing, H. Xie, H.-X. Huang and L.-S. Turng, *Chem. Eng. J.*, 2018, **337**, 541–551.
- 389 N. A. M. Barakat, B. Kim, S. J. Park, Y. Jo, M.-H. Jung and H. Y. Kim, *J. Mater. Chem.*, 2009, **19**, 7371–7378.
- 390 N. A. M. Barakat, B. Kim, C. Yi, Y. Jo, M.-H. Jung, K. H. Chu and H. Y. Kim, *J. Phys. Chem. C*, 2009, **113**, 19452–19457.
- 391 J. Yu, D.-H. Nam, Y.-J. Lee and J. Y. Chang, *J. Microelectron. Electron. Packag.*, 2016, 23, 57–63.
- 392 S.-R. Huang, K.-F. Lin, C.-F. Lee and W.-Y. Chiu, *J. Polym. Sci., Part A: Polym. Chem.*, 2014, **52**, 848–856.
- 393 D. Li, L. Luo, Z. Pang, L. Ding, Q. Wang, H. Ke, F. Huang and Q. Wei, *ACS Appl. Mater. Interfaces*, 2014, **6**, 5144–5151.
- 394 T. Ren, Y. Si, J. Yang, B. Ding, X. Yang, F. Hong and J. Yu, J. Mater. Chem., 2012, 22, 15919–15927.
- 395 R. K. Sadasivam, S. Mohiyuddin and G. Packirisamy, ACS Omega, 2017, 2, 6556–6569.
- 396 X. Huang, Y. Chen, J. Yu, J. Zhang, T. Sang, G. Tao and H. Zhu, J. Mater. Sci.: Mater. Electron., 2015, 26, 3474–3478.
- 397 Y. Yuan, Y. Feng, X. Zhao, M. Yang, H. Lu, J. Li, Y. Du, Y. Li and X. He, *Ceram. Int.*, 2018, 44, 6673–6680.
- 398 Y. Si, T. Ren, Y. Li, B. Ding and J. Yu, *Carbon*, 2012, **50**, 5176–5185.
- 399 J. Wu, N. Wang, Y. Zhao and L. Jiang, *Nanoscale*, 2015, 7, 2625–2632.
- 400 Z. Ying, C. Z. Jing, Z. Jin, M. Z. Yong, F. Lin and J. Lei, *ChemPhysChem*, 2006, 7, 336-341.
- 401 R. Guo, T. Jiao, R. Xing, Y. Chen, W. Guo, J. Zhou, L. Zhang and Q. Peng, *Nanomaterials*, 2017, 7, 317.
- 402 N. A. M. Barakat, J. Mater. Sci., 2012, 47, 6237-6245.
- 403 F. Mou, J.-g. Guan, W. Shi, Z. Sun and S. Wang, *Langmuir*, 2010, 26, 15580–15585.
- 404 W. W. Pan, Q. F. Liu, R. Han, X. Chi and J. B. Wang, Appl. Phys. A: Mater. Sci. Process., 2013, 113, 755–761.
- 405 G. George and S. Anandhan, RSC Adv., 2014, 4, 62009–62020.
- 406 H. K. Kim, W. Honda, B. S. Kim and I. S. Kim, *J. Mater. Sci.*, 2013, **48**, 1111–1116.
- 407 A. Garcia-Marquez, S. Glatzel, A. Kraupner, K. Kiefer, K. Siemensmeyer and C. Giordano, *Chem. Eur. J.*, 2018, 24, 4895–4901.
- 408 J. Zhu, S. Wei, D. Rutman, N. Haldolaarachchige,
 D. R. Young and Z. Guo, *Polymer*, 2011, 52, 2947–2955.
- 409 N. A. M. Barakat, M. F. Abadir, M. S. Akhtar, M. El-Newehy, Y.-S. Shin and H. Y. Kim, *Mater. Lett.*, 2012, 85, 120–123.
- 410 A. Baranowska-Korczyc, A. Reszka, K. Sobczak, B. Sikora,
 P. Dziawa, M. Aleszkiewicz, L. Klopotowski, W. Paszkowicz,
 P. Dluzewski, B. J. Kowalski, T. A. Kowalewski, M. Sawicki,
 D. Elbaum and K. Fronc, *J. Sol-Gel Sci. Technol.*, 2012, 61, 494–500.

- 411 X. Huang and S. W. Or, Mater. Lett., 2019, 238, 271-274.
- 412 R. Zhang, H. Wu, D. D. Lin and W. Pan, *J. Am. Ceram. Soc.*, 2010, **93**, 605–608.
- 413 P. Mohanapriya and N. V. Jaya, J. Nanosci. Nanotechnol., 2015, 15, 2226–2233.
- 414 X. Y. Li, J. N. Wang, L. L. Zhang and C. J. Li, *J. Mater. Sci.*, 2012, 47, 465–472.
- 415 G. G. Philip, A. Senthamizhan, T. S. Natarajan, G. Chandrasekaran and H. A. Therese, *Ceram. Int.*, 2015, 41, 13361–13365.
- 416 J. Xiang, G. Z. Zhou, X. Q. Shen, Y. Q. Chu and Y. T. Guo, J. Sol-Gel Sci. Technol., 2012, 62, 186–192.
- 417 Z. Zhu, C. Ji, L. Zhong, S. Liu, F. Cui, H. Sun and W. Wang, J. Mater. Chem. A, 2017, 5, 18071–18080.
- 418 Y. Hou, Y. Zhang, X. Du, Y. Yang, C. Deng, Z. Yang, L. Zheng and L. Cheng, *RSC Adv.*, 2018, 8, 33574–33582.
- 419 N. A. M. Barakat, K. A. Khalil, I. H. Mahmoud, M. A. Kanjwal, F. A. Sheikh and H. Y. Kim, *J. Phys. Chem. C*, 2010, **114**, 15589–15593.
- 420 N. A. M. Barakat, K. A. Khalil and H. Y. Kim, *Mater. Res.* Bull., 2012, **47**, 2140–2147.
- 421 K. R. Sapkota, P. Gyawali, A. Forbes, I. L. Pegg and J. Philip, *J. Appl. Phys.*, 2012, **111**, 123906.
- 422 J. Lee, T.-Y. Hwang, M. K. Kang, G. Lee, H.-B. Cho, J. Kim and Y.-H. Choa, *Appl. Surf. Sci.*, 2019, **471**, 273–276.
- 423 N. A. M. Barakat, A. A. Elzatahry and K. A. Khalil, *Mater. Res. Bull.*, 2014, **49**, 503–508.
- 424 H. P. Li, X. L. Qin, W. Zhang and W. Pan, J. Am. Ceram. Soc., 2012, 95, 217–222.
- 425 C. J. Li and G. R. Xu, Mater. Sci. Eng., B, 2011, 176, 552–558.
- 426 P. Moradipour, L. Rajabi and F. Dabirian, *J. Aust. Ceram. Soc.*, 2018, **54**, 23–32.
- 427 Y. Luo, S. Nartker, M. Wiederoder, H. Miller, D. Hochhalter, L. T. Drzal and E. C. Alocilja, *IEEE Trans. Nanotechnol.*, 2012, 11, 676–681.
- 428 W. Sun, X. Lu, Y. Xue, Y. Tong and C. Wang, *Macromol. Mater. Eng.*, 2014, **299**, 361–367.
- 429 W. Pan, Z. Ma, J. Liu, Q. Liu and J. Wang, *Mater. Lett.*, 2011, 65, 3269–3271.
- 430 S. Nilmoung, P. Kidkhunthod, S. Pinitsoontorn, S. Rujirawat, R. Yimnirun and S. Maensiri, *Appl. Phys. A: Mater. Sci. Process.*, 2015, **119**, 141–154.
- 431 J. D. Starr, M. A. K. Budi and J. S. Andrew, *J. Am. Ceram. Soc.*, 2015, **98**, 12–19.
- 432 J. Fu, J. Zhang, Y. Peng, J. Zhao, G. Tan, N. J. Mellors, E. Xie and W. Han, *Nanoscale*, 2012, 4, 3932–3936.
- 433 F. Bi, X. Dong, J. Wang and G. Liu, *New J. Chem.*, 2015, **39**, 3444–3451.
- 434 Z. Zhang, G. Yang, J. Wei, H. Bian, J. Gao, J. Li and T. Wang, *J. Cryst. Grow.*, 2016, **445**, 42–46.
- 435 P. D. Prasad and J. Hemalatha, *Mater. Res. Express*, 2019, 6, 094007.
- 436 M. J. Bauer, X. Wen, P. Tiwari, D. P. Arnold and J. S. Andrew, *Microsyst. Nanoeng.*, 2018, 4, 37.
- 437 S.-H. Xie, J. Li, Y. Qiao, Y. Liu, L. Lan, Y. Zhou and S. Tan, *Appl. Phys. Lett.*, 2008, **92**, 062901.

- Review
- 438 L. N. Pan, D. R. Cao, P. P. Jing, J. B. Wang and Q. F. Liu, *Nanoscale Res. Lett.*, 2015, **10**, 131.
- R. Lu, M. Xu, B. Fu, Y. Zhang, C. Zhou, Y. Zeng, S. Yang,
 X. Song and X. Zhou, *ChemistrySelect*, 2016, 1, 1510–1514.
- 440 J. Dai, C. Cheng, Z. Li and W. Feng, *Mater. Res. Express*, 2019, **6**, 086116.
- 441 E. Santala, M. Kemell, M. Leskela and M. Ritala, *Nano*technology, 2009, 20, 035602.
- 442 J. Zhang, J. Fu, G. Tan, F. Li, C. Luo, J. Zhao, E. Xie, D. Xue,
 H. Zhang, N. J. Mellors and Y. Peng, *Nanoscale*, 2012, 4, 2754–2759.
- 443 D. Li, T. Herricks and Y. N. Xia, *Appl. Phys. Lett.*, 2003, **83**, 4586–4588.
- 444 J. Zhang, S. Zhu, J. Ming, L. Qiao, F. Li, A. Karim, Y. Peng and J. Fu, *Nanoscale*, 2019, **11**, 13824–13831.
- 445 J. Zhang, R. Kurosawa, H. Suematsu, T. Nakayama and S. S. Kim, *Met. Mater. Int.*, 2012, **18**, 505–508.
- 446 X. K. Zhang, J. Xiang, Z. P. Wu, L. Gong, X. Chen,
 G. G. Guan, Y. Wang and K. Y. Zhang, *J. Alloys Compd.*, 2018, 764, 691–700.
- 447 Y. M. Ren, H. Y. Zhang, H. Z. An, Y. Zhao, J. Feng, L. L. Xue, T. Z. Luan and Z. J. Fan, *J. Colloid Interface Sci.*, 2018, 526, 347–355.
- 448 H.-R. Jung, K. N. Kim and W.-J. Lee, *Korean J. Chem. Eng.*, 2019, **36**, 807–815.
- 449 P. Wang, T. Dong, M. Li and P. Yang, J. Nanosci. Nanotechnol., 2019, 19, 4474-4480.
- 450 J. Yan, S. Gao, C. Wang, B. Chai, J. Li, G. Song and S. Chen, *Mater. Lett.*, 2016, **184**, 43–46.
- 451 X. Huang, J. Zhang, S. Xiao, T. Sang and G. Chen, *Mater. Lett.*, 2014, **124**, 126–128.
- 452 C. Wang, X. Tan, J. Yan, B. Chai, J. Li and S. Chen, *Appl. Surf. Sci.*, 2017, **396**, 780–790.
- 453 J. Xie, Q. Wu and D. Zhao, Carbon, 2012, 50, 800-807.
- 454 M. Arias, V. M. Pantojas, O. Perales and W. Otano, *J. Magn. Magn. Mater.*, 2011, **323**, 2109–2114.
- 455 X. G. Huang, J. Zhang, S. R. Xiao and G. S. Chen, *J. Am. Ceram. Soc.*, 2014, **97**, 1363–1366.
- 456 J. Fu, J. Zhang, Y. Peng, C. Zhao, Y. He, Z. Zhang, X. Pan, N. J. Mellors and E. Xie, *Nanoscale*, 2013, 5, 12551–12557.
- 457 Z. Hou, J. Xiang, X. Zhang, L. Gong, J. Mi, X. Shen and K. Zhang, *J. Mater. Sci.: Mater. Electron.*, 2018, **29**, 12258–12268.
- 458 J.-H. Nam, Y.-H. Joo, J.-H. Lee, J. H. Chang, J. H. Cho, M. P. Chun and B. I. Kim, *J. Magn. Magn. Mater.*, 2009, 321, 1389–1392.
- 459 N. Ghazi, H. M. Chenari and F. E. Ghodsi, *J. Magn. Magn. Mater.*, 2018, **468**, 132–140.
- 460 M. Li, H.-Y. Bai, Z.-L. Da, X. Yan, C. Chen, J.-H. Jiang, W.-Q. Fan and W.-D. Shi, *Cryst. Res. Technol.*, 2015, 50, 244–249.
- 461 C. J. Li, J. N. Wang, B. Wang, J. R. Gong and Z. Lin, J. Nanosci. Nanotechnol., 2012, 12, 2496–2502.
- 462 J.-M. Li and X.-L. Zeng, Appl. Phys. Lett., 2017, 110, 083107.
- 463 A. Karaphun, S. Kaewmala, N. Meethong, S. Hunpratub and E. Swatsitang, *J. Supercond. Novel Magn.*, 2018, **31**, 1909–1916.

- 464 F. Song, X. Shen, M. Liu and J. Xiang, J. Solid State Chem., 2012, 185, 31–36.
- 465 F. Song, X. Shen, M. Liu and J. Xiang, J. Nanosci. Nanotechnol., 2011, 11, 6979–6985.
- 466 M. Q. Liu, F. Z. Song, X. Q. Shen and Y. W. Zhu, J. Sol-Gel Sci. Technol., 2010, 56, 39–46.
- 467 F.-Z. Mou, J.-G. Guan, Z.-G. Sun, X.-A. Fan and G.-X. Tong, J. Solid State Chem., 2010, 183, 736–743.
- 468 J. Liu, C. Gong and G. Fan, J. Sol-Gel Sci. Technol., 2012, 61, 185–191.
- 469 J. Zhang, J. Fu, F. Li, E. Xie, D. Xue, N. J. Mellors and Y. Peng, ACS Nano, 2012, 6, 2273–2280.
- 470 J. Xiang, Z. Hou, X. Zhang, L. Gong, Z. Wu and J. Mi, J. Alloys Compd., 2018, 737, 412-420.
- 471 J. S. Im, J. G. Kim, S.-H. Lee and Y.-S. Lee, *Mater. Chem. Phys.*, 2010, **124**, 434–438.
- 472 B. Li, C. Wang, W. Zhang, C. Hang, J. Fei and H. Wang, *Mater. Lett.*, 2013, 91, 55–58.
- 473 D. Q. Zhang, J. Y. Cheng, J. X. Chai, J. J. Deng, R. Ren, Y. Su,
 H. Wang, C. Q. Ma, C. S. Lee, W. J. Zhang, G. P. Zheng and
 M. S. Cao, *J. Alloys Compd.*, 2018, 740, 1067–1076.
- 474 X. Zhou, J. Xue, D. Zhou, Z. Wang, Y. Bai, X. Wu, X. Liu and J. Meng, *ACS Appl. Mater. Interfaces*, 2010, **2**, 2689–2693.
- 475 J. Zheng, K. Du, D. Xiao, Z.-Y. Zhou, W.-G. Wei, J.-J. Chen, L.-F. Yin and J. Shen, *Chin. Phys. Lett.*, 2016, **33**, 097501.
- 476 W. Ponhan, V. Amornkitbamrung and S. Maensiri, *J. Alloys Compd.*, 2014, **606**, 182–188.
- 477 M. Q. Liu, X. Q. Shen, F. Z. Song, J. Xiang and R. J. Liu, J. Sol-Gel Sci. Technol., 2011, 59, 553–560.
- 478 J. Dai, Y. Dai, Z. Wang and H. Gao, *J. Exp. Nanosci.*, 2015, 10, 249–257.
- 479 P. Mohanapriya, R. Pradeepkumar, N. V. Jaya and T. S. Natarajan, *Appl. Phys. Lett.*, 2014, **105**, 022406.
- 480 M. Liu, H. Liu, S. Sun, X. Li, Y. Zhou, Z. Hou and J. Lin, Langmuir, 2014, **30**, 1176–1182.
- 481 Y. T. Wei, L. Zhong, D. Li, Q. L. Ma and X. T. Dong, *Opt. Mater.*, 2019, **95**, 109261.
- 482 D. Li, Q. L. Ma, Y. Song, X. Xi, X. T. Dong, W. S. Yu, J. X. Wang and G. X. Liu, *RSC Adv.*, 2016, 6, 113045.
- 483 D. Li, Q. L. Ma, X. Xi, X. T. Dong, W. S. Yu, J. X. Wang and G. X. Liu, *Chem. Eng. J.*, 2017, **309**, 230–239.
- 484 J. Chen, Y. Song, D. Li, Q. Ma, X. Dong, W. Yu, X. Wang, Y. Yang, J. Wang and G. Liu, *J. Lumin.*, 2019, 206, 509–517.
- 485 R. Tao, C. Shao, X. Li, X. Li, S. Liu, S. Yang, C. Zhao and Y. Liu, *J. Colloid Interface Sci.*, 2018, **529**, 404–414.
- 486 M. Sobhan, Q. Xu, Q. Yang, F. Anariba and P. Wu, *Appl. Phys. Lett.*, 2014, **104**, 051606.
- 487 S. H. Xie, J. Y. Li, R. Proksch, Y. M. Liu, Y. C. Zhou, Y. Y. Liu, Y. Ou, L. N. Lan and Y. Qiao, *Appl. Phys. Lett.*, 2008, 93, 222904.
- 488 S. You, C. Liu, H. Liu, X. Yu, S. Li, W. Liu, S. Guo and X. Zhao, *Mater. Lett.*, 2014, **130**, 157–159.
- 489 K. Prashanthi and T. Thundat, Scanning, 2014, 36, 224–230.
- 490 Y. W. Zhao, H. Q. Fan, G. C. Liu, Z. Y. Liu and X. H. Ren, J. Alloys Compd., 2016, 675, 441-447.
- 491 E. A. Duarte, P. A. Quintero, M. W. Meisel and J. C. Nino, *Phys. C*, 2013, **495**, 109–113.

- 492 F. C. Lu, K. Yin, K. X. Fu, Y. N. Wang, J. Ren and Q. Xie, *Ceram. Int.*, 2017, **43**, 16101–16106.
- 493 B. Li, C. Wang, W. Liu, M. Ye and N. Wang, *Mater. Lett.*, 2013, **90**, 45-48.
- 494 T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu and C. K. Chan, *ACS Appl. Mater. Interfaces*, 2017, **9**, 21773–21780.
- 495 X. Li, F. Guo, S. Y. Wang, X. Wang, X. L. Xu, J. Gao and W. F. Liu, *Appl. Phys. Lett.*, 2015, **107**, 062903.
- 496 D. Baiyila, X. Wang, X. Li, B. Sharileaodu, X. Li, L. Xu, Z. Liu,
 L. Duan and J. Liu, *J. Mater. Chem. A*, 2014, 2, 12304–12310.
- 497 V. D. M. Schiefferdecker, G. M. O. Barra, S. D. A. S. Ramoa and C. Merlini, *Front. Mater.*, 2019, **6**, 193.