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For Fe2VAl the temperature-dependent Seebeck coefficient S(T) and electrical resistivity r(T) were

calculated within the framework of density functional theory (DFT). The DFT calculations were extended

in terms of a DFT/LDA+U approach with U � J values attributed to Fe-d-like states. For simulating the

general features of the measured data, a large range of U � J values was scanned with U � J = 2.145 eV

as the recommended value. For this value a very small negative indirect gap of E(X) � E(G) = �0.0093 eV is

found, which is significantly reduced as compared to the DFT-GGA value of �0.164 eV. Charge transfer

was derived by Bader’s approach, resulting in a significant transfer of 0.75 electronic charges to each Fe

atom from Al (1.03) and V (0.48). The pseudogap states around the Fermi energy were analyzed in detail in

terms of density of states, band structures and charge density contours. These states almost exclusively

govern S(T) and r(T). They have large dispersions and are centered at G and X. They consist of tails of

localized V and Fe states dangling to the Al site. The dispersion of the band along the k space direction

X–G was modelled in terms of a tight-binding ansatz, resulting in k-dependent matrix elements. From our

DFT study, based on the findings for S(T) and r(T), it appears that Fe2VAl has a very small negative indirect

gap in the electronic structure. By fitting the temperature-dependent Seebeck coefficient within a parabolic

band model, a tiny positive band gap of around 0.003 eV is revealed which qualitatively agrees with the

DFT results.

1 Introduction

Cubic Heusler compounds constitute a large family of binary,
ternary and quaternary materials, exhibiting a variety of inter-
esting properties, both with respect to basic and applied
sciences.1 Fe2VAl is a typical ternary full-Heusler compound
with the face-centered cubic L21 crystal structure, showing
promising thermoelectric properties (compare e.g., ref. 2–7)
due to distinct features of the electronic states. Furthermore,
the robust chemical and mechanical stability of these materials
(at least up to 1300 K8) are well documented (e.g., the bulk
modulus B0 is above 200 GPa9–11) and the chemical elements
needed for sample synthesis are abundant, low-cost and in

general non-toxic. The excellent mechanical stability of this
full-Heusler material, however, goes along with a large value of
the thermal conductivity due to both, the high values of the
sound velocity (%vs E 5260 m s�1) and of the Debye temperature
(yD E 650 to 700 K).7,12

In a series of investigations during the previous two decades,
both with respect to density functional theory (DFT), as well as
to experimental studies, the following picture emerged: Fe2VAl
is a non-magnetic and non-metallic material, exhibiting an
intriguing band structure with a narrow gap or pseudogap.
Depending on the type of DFT calculation, a semimetallic state
results in general, as was already shown by one of the very first
band structure calculations on Fe2VAl by Weinert et al.13

In this calculation, the conduction band minimum around
the high symmetry point X of the Brillouin zone falls below the
valence band maximum at the G point. The Fermi energy EF

is located near the valence band edge, accumulating a very
modest value of the electronic density of states (eDOS) at E = EF.
Overall, the eDOS can be explained as a system with a major
gap of about 0.7 eV, whose edges consist of highly localized Fe
and V-d-like states. Between these highly localized states,
delocalized states with steep dispersive electronic bands appear
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above and below the Fermi energy, representing pseudogap
states. Accordingly, the eDOS at EF is very small for GGA-type
DFT calculations, or a small gap appears when considering
enhanced exchange-correlations. These pseudogap states are
very important for electronic transport properties such as
electrical resistivity r and Seebeck coefficient S. The positive
sign of S for Fe2VAl, observed in the majority of experimental
studies, is one of the signatures of hole-dominated transport.
In addition, studies on the Hall effect also evidence holes as
primary charge carriers with a carrier density of about 4 to 4.8�
1020 cm�3 around room temperature.2,7,14 These values corro-
borate the small but finite electronic density of states at the
Fermi energy.

This overall picture of Fe2VAl also agrees with angle-resolved
photoemission spectroscopy data as reported by Soda et al.15

and with a small value of the Sommerfeld coefficient of the
specific heat g = 14 mJ mol�1 K�2.16,17

Considering the temperature-dependent electrical resistivity
r(T) obtained on a variety of Fe2VAl samples, a distinct non-
metallic behaviour is derived, with room temperature values
around 700 mO cm.7,12,14,16 The absolute resistivity value coin-
cides reasonably well with the small charge carrier density.
Furthermore, the decrease of r(T) with increasing temperature
reminds of a semiconductor-like electronic structure. At high
temperatures, however, the narrowness of the gap as well as
increased electron–phonon scattering leads to a flattening of
the r(T) behaviour.7,12,16 A distinct maximum of the Seebeck
coefficient below room temperature seems to confirm this
scenario.

Above 1000 K, Fe2VAl undergoes two structural second order
phase transitions.8 At T E 1350 K the fully ordered L21

structure transforms into the partially disordered B2 structure,
while at T E 1460 K a transition into the fully disordered
A2 structure occurs. DFT calculations confirm this sequence,
predicting the L21 structure as the most stable one.8

Quite recently, a further remarkable observation was made
from DFT calculations: an opening of the band gap, driven by
Al/V antisite occupations, which increases with temperature.18

Antisite defects in the crystal structure of Fe2VAl will have an
effect on physical properties, involving transport properties
as well. From DFT calculations, Bandaru and Jund19 demon-
strated that the antisite defects AlV, AlFe and VAl have the lowest
formation enthalpies, thus being the most probable ones.
In the first case the resulting electronic structure suggests
p-type transport, whereas n-type transport is suggested for
AlFe- and VAl-type defects.20 In addition, large magnetic
moments are predicted for FeV and VFe antisite occupations.19

However, due to their much larger formation enthalpies com-
pared to the previously mentioned cases, a stable existence is
rather unlikely.

In the calculated DFT energy spectrum an indirect band gap
can be obtained, when enhanced exchange–correlation approxi-
mations are included, either in terms of hybrid functionals
with a sufficient admixture of Hartree–Fock exchange21 or in
terms of a DFT+U approach as applied in ref. 22 and in our
present study.

Kristanovski et al.23 made use of the dynamical mean field
theory including strongly correlated Fe- and V-d states, arguing
that the gap formation might be not of a conventional band-
insulating semiconductor-type. Weht and Pickett24 tried to
rationalize the puzzling electronic properties by introducing
excitonic correlations, by which the single-particle Kohn–Sham
levels were renormalized. It was also shown that spin–orbit
coupling reduces the carrier density, but Fe2VAl remains
metallic. Singh and Mazin25 suggested that Fe2VAl behaves like
a spin glass for small concentrations of Fe and V antisites.
In an extensive study on hybdrization-induced band gaps in
transition-metal aluminides, a remarkable finding was reported
by Weinert and Watson.13 They claimed that both hybridization
between the transition metal atoms and Al and the lack of d–d
hybridization between the transition metal atoms and d-less Al
atoms are important in the formation of hollows (i.e. pseudogaps)
in the DOS, as it is the case for Fe2VAl.

The ambiguity concerning the existence or non-existence of
a gap with Eg 4 0 in the electronic structure is discussed in DFT
studies in ref. 22 and 26. The former presents results of
calculations including effects of strongly correlated Fe- and
V-d states in by making use of a DFT+U approach. This
technique allows for an electronic gap of 0.55 eV and its
influence on the Seebeck coefficient is investigated.

The studies in ref. 22 and 26 on correlated narrow-gap
insulators also hint at long-range coupling of local magnetic
moments effects in off-stochiometric samples. A recent com-
parative study using different types of exchange–correlation
functionals (PBEsol or SCAN)11 confirmed earlier work by
Al-Yamani and B. Hamad9 where the absolute values of the
Seebeck coefficient obtained for Fe2VAl and Fe2V0.75M0.25Al
(M = Mo,Nb,Tb) are quite realistic, but the respective tempera-
ture dependencies do not entirely comply with experimental
results. However, when using the mBJ functional, a transition
from a semimetallic (PBEsol: Eg = �0.20 eV) towards a semi-
conducting structure (mBJ: Eg = 0.22 eV) is observed.

A fundamental understanding of ternary Fe2VAl is pre-
requisite to optimize the thermoelectric performance of this
full-Heusler compound by so-called bandstructure and phonon-
engineering. Such tasks were already tackled previously by
means of substitutions, doping, or off-stoichiometric sample
preparation as already reported in literature.2,4,27–33 Most
successful studies with respect to the thermoelectric
performance, expressed by the dimensionless figure of merit
ZT = S2/(rl), where T is the absolute temperature, S is the
Seebeck coefficient, r the electrical resistivity and l is the
thermal conductivity, have been undertaken by substituting Al
by Si or Ge, V/W and V/Mo. ZT values of up to about 0.2 have
been obtained. Severe plastic deformation in Fe2VAl0.95Ta0.05

caused a further increase of ZT to ZT = 0.3.34 Quite recently,
we have further improved, by co-doping, the figure of merit of
Fe2V0.95Ta0.05Al0.9Si0.1, obtaining ZT = 0.34.35

The aim of the present study is to compare the temperature-
dependent Seebeck coefficient and electrical resistivity of
Fe2VAl, as obtained by first principles DFT+U calculations, with
respective experimental data. A distinct focus is laid to
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electronic states of Fe2VAl near to the Fermi energy. Based on
the specific ansatz of Dudarev et al.,36 correlated Fe-3d states
are taken into consideration, revealing the eDOS and band
structure as a profound basis.

In this work – as it is done in many other related studies – a
fully ordered L21 structure as well as ideal stoichiometry for
Fe2VAl is assumed. Initially, we explicitly explore the nature
and properties of the dispersive pseudogap states of Fe2VAl.
Secondly, we derive the temperature-dependent Seebeck coeffi-
cient and electrical resistivity from the DFT-based electronic
structure, including also renormalization of the single-particle
Kohn–Sham energy spectrum using a DFT+U approach. Such
corrections are necessary, because the measured Seebeck
coefficient12 is significantly different from the GGA results.
Thirdly, we employ a simplified parabolic band model with a
reasonably small number of bands to account for the
temperature-dependent Seebeck coefficient of Fe2VAl in the
entire temperature range. This allows comparisons with the
essential electronic structure features of the DFT calculations,
as well as with the proposed temperature-dependent electronic
transport properties.

In most cases, first principles calculations of the temperature
dependent Seebeck coefficient, S(T), are carried out in terms of
Boltzmann’s transport theory, assuming a constant relaxation
time. We will follow the same approach. All previous authors
reported a very small Seebeck coefficient for GGA type
calculations, noticing the canceling effect between states below
and above the Fermi energy, as for example shown in ref. 20, 22,
33 and 37. The study of ref. 22 considered enhanced exchange–
correlation effects by applying the GGA+U method including
strongly localized onsite Coulomb correlations. Their results
and the discussion of previously published papers with enhanced
functionals revealed an increase of S(T), when enhanced
functionals are applied with properly chosen parameters.

2 Computational aspects

For the DFT calculations the Vienna ab initio simulation
package (VASP)38,39 with the projector augmented wave potential
(PAW)40,41 construction was applied. For approximating the
exchange–correlation functional of standard DFT calculations
we used the semi-local generalized gradient approximation of
ref. 42, denoted by GGA–PBE.

For the construction of the pseudopotentials the semi-core
3s2 and 3p6 states for V and Fe were treated as valence states,
resulting in 13 and 16 valence states in total, respectively. For Al the
three valence states 3s2 and 3p1 were considered. A plane wave basis
cutoff of 600 eV was chosen ensuring highly-converged results.

As a large number of k points is needed for the calculation of
thermoelectric properties, a dense grid of 483 k-points corres-
ponding to 2769 symmetry reduced k points in the fcc Brillouin
zone was constructed. For the derivation of local properties
such as l-projected densities of states, atomic spheres of radius
2.0 Å for Fe, 2.3 Å for V, and 2.65 Å for Al were chosen to
circumscribe each corresponding atomic position.

For more profound considerations of exchange–correlation
interactions, DFT+U method is applied for the 3d orbitals of Fe.
The DFT+U calculations were done by making use of the
simplified, rotationally invariant approach of Dudarev et al.36

This approach, which in the following is abbreviated by LUD,
uses only the difference U� J. Otherwise, the ad hoc parameters
U and J have to be chosen independently, which enormously
increases the effort of finding reasonable values for simulating
the experiments. Furthermore, in order to minimize the
number of ad hoc parameters only Fe-d states are included in
the DFT+U calculations, as they are the most strongly localized.

The electronic transport properties were calculated using
the GGA-PBE- and LUD-derived energy spectrum and applying
an adapted version of the package BoltzTrap.43 For these
calculations, the number of k-points of the VASP calculations
was refined to 1 727 797 k points in the total Brillouin zone for
interpolating the VASP data.

3 Results and discussion
3.1 Equilibrium properties

For all calculations, the volume was relaxed by minimizing the
total energy with a stress-tensor technique as implemented in
VASP. For our GGA–PBE calculation, the equilibrium lattice
parameter of 5.688 Å agrees well with the value of 5.699 Å of
ref. 9. The deviation of the calculation to the measured value of
5.766 Å is less than 1.5%, and it is usually attributed to
the approximations of the exchange–correlation functional.
However, including the improved DFT+U method for Fe
orbitals does not resolve the discrepancy. The results of our
LUD calculation with U � J = 2.145 eV yields 5.687 Å, which is
almost the same as for the standard GGA–PBE calculation. This
significant inconsistency is not yet fully understood and might
be worthwhile investigating.

The DFT+U approach for Fe2VAl modifies the energy spectrum,
although the Fe and V atoms do have a zero local magnetic
moment. Nevertheless, its application influences the electronic
structure and the possible occurrence of a gap by shifting the
energy levels of localized states and concomitantly the position of
the special gap states as discussed later on. This effect must be
ascribed to the double-counting term in the ansatz of ref. 36 and
related works.

3.2 Electronic structure

Focusing on charge transfer, atomic volumes and charges were
computed by analyzing the charge density in terms of the
quantum theory of atoms in molecules by Bader et al.44–47 This
concept utilizes the gradient of the DFT-derived charge density
by searching for surfaces of zero flux, without falling back to
any assumptions based on free atoms and ad hoc-chosen
atomic spheres. By applying Bader’s method, one obtains
space-filling atomic volumes and the sum of atomic charges
is equal to the total valence charge. The shapes of the Bader
volumes are not spherical and therefore no decomposition into
s-, p- or d-like atomic charges can be made.

This journal is The Royal Society of Chemistry 2021 J. Mater. Chem. C, 2021, 9, 2073�2085 | 2075
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3.2.1 Charge transfer. For deriving a meaningful charge
transfer, we calculated the atomic Bader charges qscf

at for the
self-consistently derived charge density and the Bader charges
qsup

at for the superposed atomic charge densities. The difference
Dqat = qscf

at � qsup
at is defined as the charge transfer for each atom

as listed in Table 1.48 Choosing free atoms as a reference, the
charge transfer Dqfree

at = qscf
at � qfree

at is much larger (see Table 1)
and seems much less reasonable. The differences of Bader
charges Dqat reflect the change of the charge density after
switching on the Schrödinger equation, i.e. after chemical
bonding has been established.

On the other hand, the atomic Bader charges qsup
at , corres-

ponding to the charge density constructed by purely super-
posing free atom charge densities, are also not equal to the
charges of the free atoms. This is due to the partial overlap of
densities of neighbouring atoms with atomic densities at the
central site. Therefore, the deviation of qsup

at from the perfect
charge of the free atom is a geometrical effect. Table 1 shows an
appreciable transfer of electronic charge to both Fe atoms,
namely �0.75 in units of the proton charge. As expected, most
of the charge is transferred from Al, which is about 2/3 of the
total transfer. V contributes the remaining 1/3 of the trans-
ferred charge.

The ionicities are reflected by the change of volumes, when
compared to atomic volumes of the charge neutral atoms,
Vneutr. These volumes are derived from the experimental cubic
lattice parameters acub of the elemental solids. For bcc-Fe
with acub = 2.87 Å, the corresponding volume per atom is
Vneutr = 11.82 Å3, for bcc-V with acub = 3.02 Å, the volume is
Vneutr = 13.77 Å3 and for fcc-Al with acub = 4.05 Å, the volume is
Vneutr = 16.61 Å3. Compared to the Bader derived atomic
volumes Vat in Table 1 for Fe, the atomic volume Vneutr

increases by 27% due to the charge transfer of 0.75 electrons
towards Fe. On the other hand, because of the loss of
1.03 electrons, the Al-atom is now positively charged and Vneutr

shrinks by 65%. The positively charged V-atom in the
compound looses 27% of Vneutr due to its charge depletion by
0.48 electrons. The last line of Table 1 lists the radii of spheres
with its volumes corresponding to Vat.

3.2.2 Density of states. The DOS of the artificial case of
four non-polarized Fe atoms with bcc structure compares quite
well with the DOS of Fe2VAl (see ESI†). In particular, the
possible occurrence of a pseudogap in Fe2VAl is already indi-
cated for the pure Fe case, as EF falls into a deep minimum of
the DOS when the charge transfer to Fe is taken into account.

For the DOS of Fe2VAl new additional features are found due
to the hybridization of Fe states with V and Al states. Now, the
minimum near EF is deepened and nearly becomes a real
indirect gap. Like previously mentioned, it becomes a real band
gap, when extended exchange–correlation interactions (in terms
of the LDA+U approach with sufficiently large values of U and J, or
hybrid functionals with a sufficient admixture of Hartree–Fock
exchange21,23) are included. The involved parameters, such as U
and J, or the amount of mixing of Hartree–Fock exchange are not
defined, but have to be chosen ad hoc. It is remarkable that sizable
direct gaps of several tenths of an eV are also present for all k
points in the case of the standard GGA–PBE functional, as
mentioned in ref. 13 and manifested in Fig. 4.

We found that the LUD approach with U � J = 2.145 eV for
Fe-d states results in a reasonable temperature-dependent
Seebeck coefficient when compared to the measurements.
Therefore, we focus on results of the DOS and electronic bands
which were calculated with the implemented value U� J = 2.145 eV,
as shown in Fig. 2, 3 and 4.

For the GGA–PBE calculation, the DOS at EF is very small but
finite, N(EF) = 0.25 states per eV and formula unit, making
Fe2VAl a bad metal. The corresponding value of the Sommerfeld
coefficient for the specific heat would result in about
0.6 mJ mol�1 K�2. However, upon applying the LUD approach
with U� J = 2.145 eV, N(EF) is reduced to about 0.0273 states per
eV and formula unit.

A magnified image of the DOS (see Fig. 2) shows that the
electronic structure of Fe2VAl near EF is best described as a
pseudogap system, with a major gap of 0.7 eV (GGA-PBE) to
about 1 eV (LUD). The band edges for the respective electronic
structures have been marked by A(G,U)1 and B(G,U)1. Highly
dispersive in-gap states occur within this major gap, which
predominantly shape the Seebeck coefficient and electrical
resistivity up to high temperatures, as indicated by the energy
derivative of the Fermi–Dirac distribution function in Fig. 3 and
4. Remarkably, there appear no Al-like states near EF as
elaborated in an extensive study on transition-metal aluminum
compounds by Weinert and Watson.13 Fig. 1 shows that the
Al-like DOS amplified by a factor 10 is almost zero in the
pseudogap, apart from minor contributions above the Fermi
energy which, however, have no true atomic Al-like character.
The reason for such finite values of the Al-like DOS is the large
atomic radius of Al (E2.65 Å), as chosen in the VASP calculation.
Applying Bader’s concept, a much smaller radius of 1.12 Å is
derived from the volume of 5.83 Å3 in Table 1, which much better
represents the positive Al ion according to the discussed charge
transfer. Detailed discussions of the electronic structure of Fe2VAl
in terms of a d–d hybridization and Al states are also presented in
ref. 24 and 25.

Firstly, referring to the GGA–PBE results (upper panel of
Fig. 2), there are two significant features, BG1 and BG2, below
the Fermi energy. At BG1 there occurs a kink, which marks the
transition point at which the DOS steeply increases with
decreasing energy. Above this kink, the DOS is small and nearly
linear in energy. A sharp peak at BG2 arises, which is due to
localized Fe-d states. Above EF at AG1 the DOS experiences a

Table 1 Bader charge analysis of Fe2VAl for the standard GGA-PBE
calculation. Charge transfers Dqat and Dqfree

at (see text) in units of the
proton charge. Bader’s atomic volume Vat in units of Å3 and radius Rat in Å
of a sphere with volume Vat

Fe V Al

Dqat �0.75 0.48 1.03
Dqfree

at �1.25 0.80 1.70
Vat 15.06 10.03 5.83
Rat 1.53 1.34 1.12
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strong uprise, until a further kink at AG2 appears. Both kinks
are due to localized Fe-d states. At 0.75 to 0.8 eV above EF two
peaks of Fe-d and two peaks of V-d character occur, which
signify the hybridization of Fe-d and V-d states.

However, when performing LUD calculations with U � J =
2.145 eV for Fe-d states (lower panel), the DOS near EF experi-
ences significant changes compared to the GGA–PBE calcula-
tion (upper panel). The marked points below the Fermi energy
BU1 and BU2 are now shifted further downwards in energy by
about 0.15 eV. Above EF, there is a much larger shift upwards
for AU1 (E0.45 eV) compared to AG1. This results in a much
larger energy range, where the small DOS below the kink is
maintained corresponding to an opening of the major gap. The
peak at AG1 has no counterpart as it merges with V-d-like DOS
features due to the large shift in energy.

Fig. 3 shows the enlarged DOS of the lower panel in Fig. 2.
The energy derivative of the Fermi–Dirac function centered
at EF, �qfFD(E)/qE, is sketched in order to visualize the
energy range, which contributes to the transport properties
(see Section 3.3.1).

The value of the DOS at the Fermi energy is small but finite
due to the small overlap of conduction bands with the three
valence bands, centered at the X and G points, respectively. This
can easily be seen in Fig. 4, which shows the band structure of
Fe2VAl. For the LUD calculations, the negative gap between the
single-particle Kohn–Sham states is almost zero, as it amounts
to E(X) � E(G) = �0.0093 eV. This is a significant change as
compared to the standard GGA–PBE calculation, which yields
�0.164 eV.

It is possible to reasonably approximate the DOS in the
vicinity of EF by simple polynomials. Below EF the DOS is

Fig. 1 Total and atom-projected density of states N(E) for the standard
GGA-PBE calculations of Fe2VAl. The values of the local DOS for Al are
multiplied by 10.

Fig. 2 Density of states N(E) near the Fermi energy for GGA-PBE calcula-
tions of Fe2VAl (upper panel) and calculations with the LDA+U approach of
Dudarev et al. with the parameter U � J = 2.145 eV for the 3d states of Fe
(lower panel). Significant features of the DOS are marked A,B (above,
below the Fermi energy) and labelled by G,U (GGA–PBE,LUD).

Fig. 3 Density of states N(E) of Fe2VAl near the Fermi energy for the LUD
calculation with U � J = 2.145 eV for the 3d states of Fe. Significant
features are marked as in Fig. 2. In addition, the energy derivative of the
Fermi–Dirac function �qfFD(E)/qE is sketched for temperatures of 200 K
and 750 K.

Fig. 4 Electronic band structure of Fe2VAl for the LUD calculation with
U� J = 2.145 eV for the 3d states of Fe. In addition, the energy derivative of
the Fermi–Dirac function is sketched for 200 K and 750 K.

This journal is The Royal Society of Chemistry 2021 J. Mater. Chem. C, 2021, 9, 2073�2085 | 2077
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satisfactorily fitted to N(E) p (E(G) � E)1.75 with E(G) being the
valence band maximum. Transforming

Ð
NðEÞdE into the isotropic

k space integration
Ð
k2dk, one arrives at |E(G) � E(k)| p �

|k � G|1.1 as the average power law for the dispersion of the
three valence bands centered at the G point. It should be noted
that due to the sampling over the k space, the above power law
only applies to directionally averaged dispersions.

Fig. 3 also shows that the DOS is distinctly larger in the
energy range from �0.3 eV to below EF than the DOS from
above EF to 0.7 eV. This is a result of the smaller band
dispersion and group velocities of the valence bands, compared
to those of the conduction bands.

Above EF, a decent polynomial fit is given by N(E) p

(E � E(X))2 with E(X) being the bottom of the conduction band.
The power law for the band centered at X dispersing above EF is
then |E � E(X)| p (|k � X|)1, indicating a possible linear
behavior in the energy region 0.2 o E o 0.6 eV. Again, this
linear power law only applies to a directionally averaged dis-
persion assuming an isotropic behaviour for the k space
integration.

A detailed analysis of such features is mandatory when it
comes to understanding electronic transport, as the
temperature-dependent interplay between the DOS and band
velocities plays a crucial role in the behaviour of S(T) and r(T)
as discussed later on.

3.2.3 Bands and states. For further discussions of Fig. 4,
we refer to the bands in the pseudogap as X band for the steeply
uprising conduction band centered at X and as G bands for the
downward sloping valence bands centered at G. All these bands
have large dispersions as also manifested in the DOS.

The states of the X band are formed by tails of otherwise
strongly localized V-d states stretching towards Al positions.
They have 3x2 � z2, 3y2 � z2 and 3z2 � z2 orbital character and
form a hollow sphere around the Al position (see ESI†). For Al at
the origin, the next-nearest six V atoms are situated at the
distances rAl–V = {(�a/2,0,0),(0,�a/2,0),(0,0,�a/2)}, with a being
the lattice parameter.

Following the nearest-neighbour tight-binding concept of
Slater and Koster,49 the dispersive band consisting of a con-
stant Al–V matrix element m along direction k = (k,0,0) with
2p/a r k r 0 may be expressed by

EðkÞ ¼ m
X6
n¼1

exp ikrAl�V
n

� �
¼ 2m cos xþ 4m (1)

with the dimensionless quantity x = ka/2 and its range 0 r xr p.
The constant value 4m appears because four of the six rAl–V vectors
are orthogonal to the direction of k. Placing the zero energy level
at the X point (x = p) the dispersion is now

E(x) = a(1 + cosx), (2)

in which a = E(G) = E(0)/2 = 0.782 eV. The result is shown in
Fig. 5 and compared to the VASP-derived band, which we traced
through all the band crossings, starting at about 0.7 eV above EF

(see Fig. 4).

Clearly, there is only moderate agreement with the VASP-
derived data, although both bands start and end at the same
energies. Coming from X, the VASP band starts with a steeper
slope and ends with a less steep one at G. The different
slopes are manifested by the different band velocities squared,
(d(E)/dx)2 as shown in Fig. 5. The band velocities are of great
importance for transport properties as they appear explicitly in
the calculation of the Seebeck coefficient and electrical resis-
tivity (see eqn (3)). The cosine-like band can be optimized by
adding a x- or k-dependent correction 0.023(x � p)2x2.6, which
reduces the maximum deviation from the VASP results to less
than 2 � 10�4 eV. The introduction of k-dependent corrections
to the constant matrix elements indicates that the kinetic
energy dominates the bond energy, which might suggest that
the involved electronic states are of a confined-electron-gas-like
character.

Whereas the E2-like character of the DOS (as discussed
above) suggests bands linear in k, the analytic form of the
discussed X band in Fig. 5 has a more complicated character.

The G bands in Fig. 4 originate from tails of xy, xz, and yz
orbitals of Fe dangling towards the nearest Al. Sitting at the Al
site, the nearest Fe atoms are found at the distances rAl–Fe =
{(�a/4, �a/4, �a/4)} forming the corners of a cube. The formation
of the bonding tails surrounding Al is similar to the X band, but
more diffuse, as the xy, xz, and yz orbitals do not point directly at the
origin of the cube. These bands start to cross other band manifolds
at �0.3 eV, much earlier than the crossing of the X band.

Nevertheless, the parts of the G bands with large dispersions
in combination with the X band are nearly exclusively respon-
sible for the electronic transport properties up to high tem-
peratures of at least 750 K.

In order to illustrate the previously mentioned situation where
tails of the wave function of Fe and V dangle towards the Al site, we
show contours of constant charge density. This is done for one of
the threefold-degenerate G bands (Fig. 6) and for the X band (Fig. 7).
The selected constant charge density is very small and in both cases
attributed to 3d-like states that are strongly localized at the Fe or V
sites, respectively.

Fig. 5 X band according to Fig. 4 versus dimensionless parameter x. VASP
results combined with two fits for the bands as well as band velocities
(dE/dx)2.
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Concerning the G band, the Fe site is surrounded by four
tetrahedrally coordinated Al and four tetrahedrally coordinated
V nearest-neighbours. Fig. 6 shows a deformation of the charge
density towards the Al neighbours. At the energy of the dis-
cussed state, there is no Al-like state available for a possible
bonding with the Fe-3d-like state. Small patches of the constant
charge density are clustered around the V positions. The
analysis of the orbital-like character of this state shows that it
is formed equally by Fe-dxz and -dyz orbitals with a sizeable
amount of charge in the large Al sphere of radius 2.65 Å, which
is a consequence of the 3d wave function, dangling into the Al
sphere. When moving away from G, the G bands have negative
dispersion. This is indicated by the deformation of tails towards
Al and simulates fictitious Al–Fe bonds as discussed above.

A more detailed view in terms of charge density contours is
provided in the ESI.†

The lowest state of the X band is of V-3d-like character and is
strongly localized at the V site.

Fig. 7 shows very small charge density clouds at the Fe
positions, although the eight Fe atoms are nearest-neighbours
to V. Again, the density is deformed in direction to the Al at
rAl–V = {(�a/2, 0, 0),(0, �a/2, 0),(0, 0, �a/2)} and no directional
V–Al bonds are visible. Concerning the dispersion, the situation
is reversed with respect to the G bands. Starting at the X point,
the dispersion is now positive.

3.3 Transport properties

3.3.1 Theoretical aspects. For calculating the electronic
transport properties within the semiclassical Boltzmann’s
transport theory, one can write the transport integrals Kn,ij,
with i, j = 1,2,3 over the first Brillouin zone as

Kn;ij ¼
1

4p3�h

ð
tðkÞviðkÞvjðkÞðEðkÞ � mÞn � @f

FD

@EðkÞ

� �
dk; (3)

where vi(k)vj (k) is the tensor product of the band velocities

vðkÞ ¼ @EðkÞ
@k

; (4)

t(k) is the electron relaxation time, m the chemical potential and
f FD the Fermi–Dirac distribution function given by

f FDðEðkÞ;T ; mÞ ¼ exp
EðkÞ � m
kBT

� �
þ 1

� ��1
: (5)

The components of the electrical conductivity tensor sij are
expressed by

sij = e2K0,ij, (6)

and the components of the Seebeck tensor Sij by

Sij ¼
K1;ij

eTK0;ij
: (7)

In the case of cubic symmetry, like for the present study, the
Seebeck tensor becomes diagonal and has three equal diagonal
components

Sii ¼
K1;ii

eTK0;ii
: (8)

Similarly, the conductivity tensor then also consists of three
equal components

sii = e2K0,ii. (9)

Assuming a constant relaxation time, the components of the
Seebeck coefficient Sii become independent of t, whereas a free
constant relaxation time remains for the resistivity. Furthermore,
the products of band velocity components vivi are always positive
in the case of cubic symmetry. Therefore, changes of sign of Sii

only result from the expression (E(k) � m)1, yielding a positive
Seebeck coefficient for states below the chemical potential E(k) o
m and a negative Seebeck coefficient for states above the chemical
potential E(k) 4 m.

3.3.2 Temperature-dependent Seebeck coefficient. Fig. 8
compares the measured temperature-dependent Seebeck coef-
ficient S(T) of Fe2VAl with GGA–PBE results, including constant
manual shifts of the calculated conduction bands. The experi-
mental curve has two basic features, namely a positive peak at
200 K of about 73 mV K�1 and a crossover to negative values at
760 K. We try to reproduce these features by making use of the
calculated Kohn–Sham energies of the DFT calculations.
No corrections are made in terms of temperature-dependent
electron–phonon interactions and a constant relaxation time is
assumed. For the metallic clathrate Ba8Au6Ge40 it was shown,50

Fig. 6 Charge density contours at G for one of the states of the G band.
Contours for a density value of 0.005�3. Fe and nearest-neighbour Al
atoms in tetrahedral coordination to Fe are plotted.

Fig. 7 Charge density contours for the X band. Contours for a density
value of 0.005-3. V and nearest-neighbour Al atoms in octahedral coordi-
nation to V are connected.
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that a non-constant t(E) p E1/2 yields only small changes
of S(T). Although for Fe2VAl a very small gap might appear,
the renormalization effects on the Kohn–Sham energies close
to the Fermi energy are expected to be small because of
the delocalized nature of the involved electronic states. Never-
theless, renormalization is mimicked by the manual constant
shift of the conduction band spectrum in Fig. 8 and more
physically in terms of the LUD approach in Fig. 9.

Inspecting Fig. 8, it can be clearly seen that the GGA-PBE
calculations result in a far too small |S(T)| over the whole
temperature range, which is due to the cancellation of band
contributions from below and above EF owing to the previously
established overlap of X and G bands E(X) � E(G) = �0.164 eV.
By manually shifting the conduction bands upwards in Fig. 8,
the measured S(T) is nicely reproduced for a DE = 0.12 eV,
corresponding to a still negative band gap of �0.044 eV.
Increasing the shift up to 0.164 eV (or a positive gap of

0.8 meV), a large maximum of S(T) = 130 mV K�1 is reached
and the calculated S(T) still shows the same basic features.
An abrupt change to large negative values of S(T) occurs for a
further very small change of DE by 0.001 eV to 0.165 eV.
Interestingly, S(T) for DE = 0.164 eV compares favourably with
the LUD results for U � J = 2.145 eV in Fig. 9, which also show
a sensitive dependency on the choice of the parameter U � J,
i.e. the gap size.

The rather abrupt crossover from positive to negative values
is typical for S(T) at a fixed temperature, when the chemical
potential m (note EF = m(0)), residing in the valence band regime,
increases and passes through a gap, residing then in the
conduction band regime. In the study above, this crossover of
S(T) happens, when a gap begins to form. At DE = 0.164 eV
the gap is zero and becomes positive for larger shifts; for DE =
0.165 eV it is 0.001 eV. Inspecting eqn (3) and the definition of
S(T) according to eqn (7), one realizes that states with energies
EðkÞom give a positive and states with EðkÞ4 m a negative
contribution to S(T). Summing now over all states by integrat-

ing over the entire ~k-space, the sign of the total S(T) depends on
the weight of each electronic state multiplied by the respective
band velocities vi(k)vj (k) (which for cubic symmetry is positive
definite). In our case, the sign of S(T) becomes negative when
changing from DE = 0.164 eV to DE = 0.165 eV which is
accompanied by a small jump of m amounting to Dm = 27
meV at 300 K. The chemical potential is now moved into the
conduction band regime, because the DOS at energies below EF

is larger than above EF as shown in Fig. 2. At T 4 0 the Fermi–
Dirac function is symmetrically smeared out around m and
becomes smaller than 1 for states with energies below the
chemical potential (states are lost) and larger than 0 for states
with energies above (states are gained). Because of charge
neutrality, gains and losses must be of the same size, and for
that, more states above EF are needed than below EF. Therefore
EF shifts to the larger value of m at the given temperature and
S(T) becomes negative.

Fig. 9 shows results for the calculated temperature-
dependent Seebeck coefficient S(T) for a standard GGA–PBE
calculation and a set of LUD calculations with selected U � J
parameters, in comparison with measured values. Compared to
the present measurement, it is clearly apparent that the GGA–
PBE calculation results in a far too small S(T) at T o 500 K.
While the experimental S(T) becomes negative at 730 K, the
GGA–PBE-calculated curve changes its sign at 773 K.

Searching for improvement of the calculated data of S(T), we
applied a large number of LUD calculations, scanning the U � J
parameter range for Fe from 0 to 4 eV. Fig. 9 shows that
approaching U � J = 2.145 eV from lower energies broadens
the positive narrow peak with its maximum below 200 K until
2.145 eV is reached.

We suggest to accept this value as the best choice in
comparison to the present experiment, as the corresponding
calculated S(T) has important features, which agree with the
measured values, namely a maximum at 200 K and a change
of sign at 730 K. Even small deviations of U � J from 2.145 eV
(for example U � J = 2.15 and 2.139 eV) lead to significant

Fig. 8 Calculated Seebeck coefficient (tensor component Sxx for cubic
Fe2VAl) versus temperature for GGA–PBE calculation and selected manual
band shifts. Experimentally measured values are denoted by circles.

Fig. 9 Calculated Seebeck coefficient (tensor component Sxx for cubic
Fe2VAl) versus temperature for the GGA–PBE calculation and several U � J
parameters of the LUD approach. Experimentally measured values are
denoted by circles.
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modifications, which indicate the extreme sensitivity of S(T) on
the relative position of the G bands and the X band. For
the choice of U � J = 2.145 eV, the band gap E(X) � E(G) =
�0.0093 eV is still negative but close to zero.

Here, it should be noted that three decimal digits for the
U � J value do not mean that the presented procedure results in
such a precise U � J. The value U � J = 2.145 eV should rather
indicate that tiny variations in the U � J value may lead to
sizeable changes of S(T) as indicated in Fig. 9.

For the optimized U � J = 2.145 eV, the disagreement with
experiment is considerably high and the calculated maximum
value of S is almost twice as large. One should be aware that
the applied LUD approach is the most simplest concept for
including strong correlation effects, going beyond DFT for Fe-d
states. V-d states, which are presumably less but still strongly
localized, are not included. Doing that, a second U � J para-
meter is introduced, which would largely increase the number
of DFT calculations, scanning now for two parameters. We
propose further investigations along this line and also by
including more elaborate functionals and many-body interac-
tions, for deriving the thermoelectric properties of Fe2VAl.
Furthermore, the constant-relaxation time approach as defined
in eqn (3), may cause deviations of the calculated values from
the experimental ones, particularly at larger temperatures,
at which also the influence of lattice vibrations may become
important.

From the extensive DFT analysis of the temperature-
dependent Seebeck coefficient S(T), varying the U � J para-
meters and applying manual band shifts, we conclude that the
electronic structure of Fe2VAl should have a very small
negative gap.

Fig. 10 shows the decomposition of the total Seebeck
coefficient into the contributions from below and above the
Fermi energy S(T) = Sabove + Sbelow. As established in eqn (7),
Sabove is of negative sign for all temperatures, whereas Sbelow is
always positive. Concerning the GGA–PBE calculation, this
splitting yields two nearly linear curves of opposite sign, which
almost cancel each other out, thus resulting in a very small total
S(T).

The behaviour of S(T) is drastically changed when the
parameter U � J = 2.145 eV is taken into account. Both
contributions now exhibit a more complex behaviour with
maxima around 100–300 K, which determine the maximum at
T E 200 K of the total Seebeck coefficient. Additionally, Sabove

decreases faster than Sbelow at higher temperatures which leads
to the change of sign of the total S(T) at E770 K.

3.3.3 Temperature-dependent resistivity. Fig. 11 shows the
calculated electrical resistivity r(T) for the GGA–PBE calculation
as well as for manually shifted conduction bands similar to the
shifts in Fig. 8. The otherwise arbitrary constant relaxation time
was determined such that all results agree with the measure-
ment at 280 K. As is seen in Fig. 11, the general experimental
trend of a decreasing resistivity with increasing temperatures is
reproduced by all curves above the crossing point at 280 K.
The situation is different for lower temperatures, at which the
measured values steeply increase with decreasing temperatures.

Only for shifts of 0.10 and 0.12 eV such an increase is observed on
a much smaller scale. These results correspond to a still negative
gap of around �0.06 to �0.03 eV, respectively. In all other cases
however, maxima arise.

Employing a phenomenological two-band model based on a
rectangular density of states (for details see ref. 12), one can
model the experimental data quite accurately. The solid line in
Fig. 11 is a least squares fit to the experimental data, where the
gap of the box-like density of states is evaluated as DE = 0.057 eV.
This value, although positive, is sufficiently small to be compar-
able to the present DFT results.

Fig. 12 compares the experimentally measured resistivity
r(T) to several calculated LUD results. The relaxation time
in the calculations was again chosen such that the obtained
values are equal to the measured resistivity value at T = 280 K.

Fig. 10 Calculated Seebeck coefficient (tensor component Sxx for cubic
Fe2VAl) derived by the GGA–PBE (dashed lines) and the LUD approach with
U � J = 2.145 eV for Fe 3d states (full lines). The total S(T) is splitted into
contributions from below (Sbel) and above (Sabo) Fermi energy.

Fig. 11 Calculated resistivity (component rxx for cubic Fe2VAl) derived by
the GGA–PBE calculation (dashed lines) and the selected manual energy
shifts. All calculations are set equal to the measured value at 280 K.
Experimental values are indicated by open circles. The solid line is the
result of a least squares fit according to the phenomenological model of
ref. 12, with a gap width DE = 0.057 eV.
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Above 280 K the calculated data describe the experimental
trend of a decreasing r(T) reasonably well. At T o 280 K the
calculated resistivities vary strongly with the parameter U � J.
The recommended value U � J = 2.145 eV yields significantly
lower values of r than the other two shown LUD results with U
� J = 2.5 eV and 2.138 eV, respectively.

The standard GGA–PBE calculation shows the least agree-
ment and particularly deviates from the experimental data at
elevated temperatures. Nevertheless, the general trend of a
decreasing r(T) with increasing T is present in all calculations,
which is quite unusual for a metallic system. In all cases the
DFT-derived gaps are negative and close to zero.

As already noted, the above-mentioned modeling of
the temperature-dependent resistivity has some limitations.
Considering a temperature and frequency-dependent relaxa-
tion time t0 in eqn (10) could give further corrections to the
DFT derived behaviour of r(T). For example, the interaction of
electrons with long-wave length acoustic phonons, as already
discussed Bardeen and Shockley,51 results in t0 p T�3/2. The
scattering due to alloying and disorder in the crystal, on the
other hand, yields t0 p T�1/2 (compare e.g., ref. 52). In fact, a
recent study53 shows that the temperature-dependent Hall
mobility of Fe2VAl at T 4 300 K can be quite accurately
modelled by considering these types of scattering mechanisms.

3.3.4 Parabolic band modelling of the temperature-
dependent Seebeck coefficient. Besides first principles descrip-
tions of electronic and thermal transport based on DFT results,
an approximation based on a simplified electronic band struc-
ture – assuming parabolic bands – may be employed.

In general, the temperature-dependent electronic transport
of semiconducting-like materials can be quite accurately
modeled by considering only a few parabolic bands. Theoretical
expressions for quantities like the Seebeck coefficient, the
Lorentz number, the carrier density, the Hall factor or the
electrical conductivity based on a single parabolic band have
previously been developed (see e.g. ref. 54).

Within this framework, scattering processes are accounted
for by a distinct scattering exponent l in the context of the
energy-dependent relaxation time, which can be expressed by a
power law

t = t0El–1/2. (10)

Here, t0 is a material dependent constant and E is the
electron energy. l = 0 for acoustic phonon scattering and
l = 1/2 for scattering of electrons on neutral impurities as well
as grain boundaries.

In this scope, the Seebeck coefficient of an individual
parabolic band, Si can be expressed as

Si ¼
kB

e

ðlþ 2ÞFlþ1ðZÞ
ðlþ 1ÞFlðZÞ

� Z
� �

; (11)

where kB is the Boltzmann constant, e the electron charge and Z

is the reduced electrochemical potential Z ¼ EF

kBT
. Fj (Z) is the

Fermi integral,

FjðZÞ ¼
ð1
0

xjdx
1þ expðx� ZÞ: (12)

In the case of Fe2VAl, we showed that one conduction band
at X and multiple valence bands at G contribute to the electro-
nic transport. The total Seebeck coefficient for a general
number of N bands can be expressed as a sum of its single-
band contributions Si weighted by the respective electrical
conductivities si

S ¼

PN
i¼1

Sisi

PN
i¼1

si

: (13)

By least squares fitting eqn (13) to the experimental data,
parameters like the relative Fermi energy, the band gap and the
relative effective masses can be obtained, allowing one to
construct a simplified picture of the band structure.

Fig. 13 shows the temperature-dependent Seebeck coeffi-
cient for Fe2VAl evaluated within a parabolic three-band (3PB)
model. Based on Fig. 4, a set of two valence bands (corres-
ponding to states around G) and one conduction band (corres-
ponding to states around X) are selected. Least squares fits
of eqn (11) to (13) (solid line) to the experimental data (open
and closed circles) were obtained, using the software package
Mathematica, revealing convincing agreement. The deduced
relative Fermi energy is located about 0.04 eV below the top of
the valence band and the band gap between the two G valence
bands and the X conduction band is calculated as 0.003 eV. If
the energy separation between the two valence bands is not
confined to the purely degenerate case of DEv = 0, the value of
the gap can become slightly negative, down to �0.03 eV, as
shown in ref. 53. This substantiates an almost zero or slightly
negative band gap for Fe2VAl and affirms the recommended
DFT+U-derived value of�0.0093 eV. A tiny positive band gap for
Fe2VAl of the order of 0.03 eV was recently evaluated from a

Fig. 12 Calculated resistivity (component rxx for cubic Fe2VAl) derived by
the GGA–PBE calculation (dashed lines) and three LUD approaches (solid
lines). All calculations are set equal to the measured value at 280 K.
Experimental values are indicated by open circles.
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parabolic two-band model by Anand et al.,55 allowing to fairly
well trace the temperature-dependent Seebeck coefficient in a
limited temperature range. As a valuable advance, the presently
applied 3PB model allows to accurately fit the experimental S(T)
data in the entire temperature range.

Another qualitative agreement with the DFT band structure
in Fig. 4 is apparent when comparing the relative effective
masses. Assuming the effective mass of the first parabolic
valence band is 1 me, the effective mass of the second valence
band is calculated as 0.6 me and m* = 0.22 me is found for the
conduction band, with me being the free electron mass.

The steeper slope of the DOS below the Fermi energy (see
Fig. 3) corroborates the heavier and flatter valence bands, while
the less steep slope of the DOS above EF (Fig. 3) indicates a
larger dispersion, which corresponds to the narrower parabolic
conduction band. In the context of both, the DFT calculations
and the parabolic band model, one may conclude that Fe2VAl is
located right at the border between a semimetal and an indirect
semiconductor. Slight shifts in stoichiometry of real samples,
as well as antisite occupations of the various constituting
elements on the four different sublattices of the cubic L21

Heusler phase can cause distinct modifications of the real band
structure, too.

4 Summary and conclusion

In order to evaluate and understand the electronic structure
and transport properties of Fe2VAl and its pseudogap states,
extensive DFT-based calculations were performed. The nature
of the band gap – pseudo- or real indirect gap – has brought up
lots of questions in the past and many ambiguous results have
been reported so far. There are numerous theoretical studies on

Fe2VAl enforcing a real gap by applying parameter-dependent
approaches such as DFT+U methods and advanced hybrid
functionals. By employing the DFT+U approach of Dudarev
et al.,36 we argue, on the basis of our modeling of S(T), that it
is mandatory to have a very small negative or almost zero gap in
the renormalized Kohn–Sham energy spectrum. The large
negative gap of �0.164 eV found by standard GGA–PBE calcula-
tions cannot explain the temperature-dependent transport
properties such as the Seebeck coefficient S(T) and the elec-
trical resistivity r(T). These properties are nearly exclusively
governed by the pseudogap states. By extensively scanning
values of U � J for Fe-d-like states within the mentioned DFT+U
approach, a value of U� J = 2.145 eV is suggested, resulting in a
very small negative gap of E(X) � E(G) = �0.0093 eV. This very
small negative gap might be even further reduced when spin–
orbit coupling is taken into account.24 We found that the
derived transport properties are very sensitive on the choice
of the parameter U � J, i.e., the E(X) � E(G) separation.

We propose an understanding of the nature of the pseudo-
gap states in Fe2VAl. Firstly, there is a remarkable electronic
charge transfer of 0.75 electronic charges per Fe atom from Al
and to a lesser extent from V to the Fe atoms, as derived by
Bader’s approach.44–47 Secondly, a sizeable major gap of about
0.7 eV appears in the DOS between highly localized states.
Thirdly, within this major gap, there arise peculiar pseudogap
states with large dispersions that govern the temperature-
dependent transport. These pseudogap states are created by
tails of otherwise strongly localized Fe- and V-d states dangling
towards the Al site. A set of four bands of such character
appears, featuring three bands centered at G with a downward
dispersion and one band centered at X with an upward disper-
sion. As an example, we formulated a tight-binding-based
energy dispersion with k-dependent matrix elements for the
pseudogap state band dispersing from X to G.

The calculated Seebeck coefficient and resistivity resulting
from this DFT-picture of the band structure agree reasonably
well with the key features of the measured S(T) and r(T) data.
Our conclusions are also reinforced by phenomenological
models that were least squares fitted to the experimental
data. We anticipate that our work will grant new insights
regarding the interplay between the band structure and the
temperature-dependent transport properties within this type
of compounds.
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Fig. 13 Temperature-dependent Seebeck coefficient for Fe2VAl simu-
lated within a parabolic three-band (3PB) model. The open and closed
circles are the experimental data. The solid line is a least squares fit and the
inset sketches the band structure as derived from the fit parameters of the
3PB model.
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