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Influence of surface topography on PCL
electrospun scaffolds for liver tissue engineering

Yunxi Gao and Anthony Callanan *

Severe liver disease is one of the most common causes of death globally. Currently, whole organ

transplantation is the only therapeutic method for end-stage liver disease treatment, however, the need

for donor organs far outweighs demand. Recently liver tissue engineering is starting to show promise for

alleviating part of this problem. Electrospinning is a well-known method to fabricate a nanofibre scaffold

which mimics the natural extracellular matrix that can support cell growth. This study aims to investigate

liver cell responses to topographical features on electrospun fibres. Scaffolds with large surface

depression (2 mm) (LSD), small surface depression (0.37 mm) (SSD), and no surface depression (NSD)

were fabricated by using a solvent–nonsolvent system. A liver cell line (HepG2) was seeded onto the

scaffolds for up to 14 days. The SSD group exhibited higher levels of cell viability and DNA content

compared to the other groups. Additionally, the scaffolds promoted gene expression of albumin, with all

cases having similar levels, while the cell growth rate was altered. Furthermore, the scaffold with depressions

showed 0.8 MPa higher ultimate tensile strength compared to the other groups. These results suggest that

small depressions might be preferred by HepG2 cells over smooth and large depression fibres and highlight

the potential for tailoring liver cell responses.

1. Introduction

Approximately 2 million people per year die worldwide due to
liver disease.1 Over 600 000 people in the UK have cirrhosis and
since the 1970s the number of deaths due to liver disease has
increased by 400%.2 A report published by the Lancet Commission
on liver disease in the UK in 2018 indicated that in the future it
could overtake heart disease as the biggest cause of death.3

Unfortunately, the only effective way to treat liver disease still
remains whole liver transplantation, while donor liver demands
far outweigh this supply.2

Liver tissue engineering is modern biotechnology that is
based on combining hepatocyte transplantation with a biomaterial
which can mimic a liver tissue environment.4 This approach can
allow cells to survive long-term and maintain a functional pheno-
type in vitro, which eventually may permit the restoration or
replacement of liver functions in the clinical sector.5–8 Current
research in the field is examining the potential of decellularized
whole organ extracellular matrix as one potential avenue to deal
with organ shortage. The whole human liver can be decellularized
and repopulated with stem cells, which has been shown to exhibit
good viability with some function.9,10 However, decellularization
requires large human or animal resources, which are known to
have a wide batch to batch variation.11

Tissue engineering offers a potential solution to tackle these
variations in natural occurring tissue. New functional tissues
can be generated from polymer scaffolds with 3D porous
structures, designed to support cell attachment, migration,
function and cell-material interactions.12 3D printing, freeze
drying, melt drawing and electrospinning are common techni-
ques which can be used to make a cell scaffold.4,13,14 However,
compared to other methods, electrospinning can fabricate non-
woven fibre mats which can closely mimic the structure of the
natural extracellular matrix (ECM), and allow a lot of control in
the fabrication process.15–24 Polycaprolactone (PCL) is one such
polymer that has shown good biocompatibility, biodegradability
and mechanical properties, which is commonly used in electro-
spinning to make cell scaffolds.25

In recent studies, electrospinning has provided significant
contributions to liver tissue engineering.26–37 In particular one study
combined electrospinning and laparoscope techniques to deliver
nanofibres directly into the liver of a living pig, and the results
showed advantages such as less inflammatory responses and faster
recovery than other traditional methods.34 Also it is an excellent way
to combine other proteins such as liver ECM, collagen, fibronectin
and chitosan to create a tailored scaffold to influence hepatocyte
phenotype.27,32,33 In one scaffold composed of nanoporous
PLLA electrospun fibres coated with type I collagen promoted
liver-specific functions of primary hepatocytes.19 Interestingly, one
highlight from recent studies also confirmed electrospun PCL mats
can exhibit some similar responses to original liver tissue.35
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It has been shown that the morphology of fibres can significantly
effect cell behaviour and growth.2,17 With fibre alignment
publicised to affect cell elongation and orientation.38 Furthermore,
larger fibres have been shown to increase porosity, effecting cell
infiltration and integration.17,39,40 Moreover, fibre topography (the
surface structure of individual fibre) has also been highlighted to
alter cellular responses in vitro. Nanotopographical features such as
grooves, pores, pillars, patterns can significantly alter the adhesion,
proliferation, motility, and orientation of cells compared to a
smooth surface.41–47 Studies on cell responses have indicated
different cell adhesion ability and function on nano/microtopo-
graphic featured scaffolds compared to smooth.27,48–50 These
cellular responses to topography are highly dependent on cell type,
pattern geometry and pattern size. One of these studies has worked
with primary hepatocyte investigating cell spreading, adhesion and
proliferation on fibres with surface pores.27,50 Interestingly, this
study found that the primary hepatocyte on fibres with pores
(270 nm) displayed more hepatic like function, such as albumin
secretion.27

These studies highlight that surface topography on polymer
scaffold is a critical feature which can alter cell adhesion,
proliferation and gene expression. However, to date, the
influence of fibre surface depression topographies on hepatic
cellular behaviour hasn’t been well documented. Therefore, the
purpose of our study was to investigate the effects of fibrous
topographic depressions on liver cells. In this paper, PCL fibres
with surface depression were prepared by using binary/ternary
solvent system, and compared with large depressions, small
depressions and smooth surface on hepatocyte. The hepatic
cellular behaviour was investigated on these scaffold systems.

2. Materials and methods
2.1 Scaffold fabrication

Electrospun mats were fabricated by the IME technology
EC-DIG electrospinning system. PCL pellets with an average
molecular weight Mn of 80 000 Da (Sigma Aldrich) were dissolved
in different solvent systems with overnight agitation at room
temperature. The polymer solution was then poured into a 10 ml
syringe with a 0.8 mm diameter needle. All fibres were collected
by a rotating mandrel (diameter = 8 cm) covered with a non-stick
aluminium foil at room temperature. Mandrel rotating speed
was set to 250 rpm, and the distance between needle and
mandrel was set to 24 cm.

The nanoscale surface depressions were fabricated using
systems consisting of solvent (chloroform (CFM, CHCl3, Z99%)
and methanol (MeOH, CH3OH, Z99%)) and non-solvent
(dimethylsulfoxide (DMSO)) at a ratio of 9 : 1 (Table 1). Large

surface depression (LSD) fibre was produced by using 16% w/v
PCL in CFM and MeOH/DMSO (5 : 1) solution system. Small
surface depression (SSD) fibre was produced by using 14% w/v
PCL/CFM/DMSO solution system. The no surface depression
(NSD) fibre was produced by dissolving 16% w/v PCL into CFM/
MeOH (5 : 1) solvent. All scaffolds were dried in the hood for
two days to allow the removal of residual solvent and then were
punched to 10 mm disks.

2.2 Scaffold sterilisation

All scaffolds were sterilized in 70% ethanol for 30 minutes, then
rinsed three times in sterile phosphate-buffered saline (PBS).
Then they were freeze-dried overnight under a vacuum before
plasma treatment. Scaffolds were plasma coated for 30 seconds
using a Harrick Plasma cleaner (PPC-FMG-2, Harrick Plasma).
Oxygen plasma treatment was used to increase the hydrophili-
city of the scaffold surface and improve the cell attachment by
introducing polar functional groups on to the materials without
changing the bulk properties, additionally, this process can
further clean the organic contaminations on the scaffolds.51 A
previously described protocol was used to achieve plasma
treatment.52,53 After plasma treatment, the scaffolds were
immediately immersed into a PBS solution contains 1% v/v
antibiotic/antimycotic for one hour before changing to cell
culture media overnight before seeding.

2.3 Mechanical testing

The scaffold samples were cut with a knife into rectangles with
a gauge length of 20 mm and a width of 5 mm. Thickness
averages ranged from 0.09 mm, 0.12 mm and 0.13 mm for the
LSD, SSD and NSD respectively. Ultimate strength and
incremental Young’s modulus were employed to compare the
variations of mechanical behaviour of the samples. All the
samples (n = 5 for each group) were subjected to monotonic
tensile loading at a strain rate of 50% e min�1 to failure by
using Instron material testing machine (Model 3367, 50N load
cell). The incremental Young’s moduli were taken at five
different strain ranges: 0–5, 5–15, 15–25 and 25–35% e.

2.4 Scanning electron microscopy (SEM)

A Hitach TM4000 SEM with 15 kV accelerating voltage was used to
characterize the samples morphology at low magnification (�5000)
and high magnification (�15 000). All scaffolds were coated by
gold–palladium using an Emscope SC500A splutter coater before
SEM to increase the electrical conductivity. The depressions size
was determined by ImageJ software. The diameter of depressions
was taken from the cross-section of each depression and each
sample was measured 20 times.

Table 1 Solvent system for each type of scaffold and electrospinning parameters

Scaffolds Solvent Non-solvent
Solvent/non-solvent
ratio PCL w/v (%)

Needle
diameter (mm)

Flow rate
(ml h�1)

Mandrel
rotation (rpm)

Voltage
(kV)

Mandrel:needle
distance (cm)

LSD CFM : MeOH 5 : 1 DMSO 9 : 1 16 0.8 4 250 +14/�4 23
SSD CFM DMSO 9 : 1 14 0.8 4 250 +14/�4 23
NSD CFM : MeOH 5 : 1 — — 16 0.8 4 250 +14/�4 23
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SEM of osmium stained (cell-seeded) scaffolds was prepared
by fixing samples in 4% glutaraldehyde overnight. Then they were
incubated in 0.1% osmium in deionised water for 30 minutes.
After that, samples were rinsed 4 times in deionised water for
1 minute each and then rinsed in 30%, 50%, 70%, 90% and
100% ethanol for 30 seconds. Then all samples were placed in
hexamethyldisilazane (HMDS) for 1 minute before placing into
fresh HMDS for dehydration. All scaffolds were left to dry over-
night in a fume cupboard before imaging.

2.5 HepG2 cell culture and seeding

HepG2 cells were cultured (371, 5% CO2) in T75 flasks with an
Eagle’s minimum essential media (MEM) supplemented with
1% L-glutamine, 1% antibiotic–antimycotic, 10% foetal bovine
serum and grown to 80% confluence. HepG2 cells were
detached using Trypsin–EDTA and counted using the trypan
blue exclusion method. Sterile scaffolds were removed from
media and placed into 24-well cell culture plates and rinsed
three times with PBS for 10 minutes each. The cell suspension
was seeded onto each scaffold (4.4 � 104 cells in 20 ml media)
and cultured in the incubator for 3 hours to allow cell adhesion
before adding 1.5 ml of media to each well. Scaffolds were
cultured for 24 hours, 7 days and 14 days with media change
2 to 3 times every week. During seeding scaffolds were not
anchored down and no contraction occurred during culture.

2.6 Cell viability assay

Cell viability was evaluated by CellTitre-Blue (CTB) cell viability
assay (Promega). The viable cells can convert a dye (resazurin)
to a fluorescent end product (resorufin), while nonviable cells
rapidly lose their metabolic capacity thus cannot produce
fluorescent signals.54 Scaffolds were placed into new 24-well
plates, and 400 ml media and 100 ml CTB (4 : 1, media: CTB) were
added directly to each scaffold and incubated (371, 5% CO2) for
3 hours covered with aluminium foil to protect samples from
light. After 100 ml of each solution was placed into a black well
plate and fluorescent signal was read using a Modulust II
microplate reader at 560Ex/590Em nm (green filter) (Quant
DNA-BR) for each group (n = 5). A negative control without cells
was used to determine background fluorescence.

2.7 DNA quantification

Scaffolds were freeze-dried overnight before being placed in
papain digest solution which contains 2.5 units per ml papain,
5 mM cysteine, 5 mM ethylenediaminetetraacetic (EDTA) in
DNase-free distilled water. Followed by overnight oven treatment
at 65 1C and periodic mixing using a vortexer. The total DNA
content of the samples was analysed using Quant-iTtPicoGreent
double-stranded DNA (dsDNA) assay kit (ThermoFisher, UK),
according to the manufactures’ protocol. This method is a
fluorometric measurement of nucleic acids which is highly
selective to dsDNA over RNA. Fluorescence was read using
the Modulust II microplate reader (excitation wavelengthEx =
480 nm, emission wavelengthEm = 510–570 nm) for each group
(n = 5).

2.8 Scaffold staining

Fluorescent imaging scaffolds were washed three times with
PBS for 10 minutes each and fixed with 10% formalin. After
fixation for one night, the scaffolds were washed three times
with PBS and stored at 4 1C before staining. Scaffolds were
permeabilised with 0.2% Triton X-100 solution for 10 minutes
before washing 3 times with PBS for 10 minutes each. Samples
were stained with 1000� Phalloidin-iFluorTM514 conjugate in
PBS with 1% bovine serum albumin (1 : 1000) for 30 minutes at
room temperature (plate wrapped in foil). Then the scaffolds
were washed 3 times with PBS for 10 minutes each. Samples
were then stained with 40,6-diamidino-2-phenylindole (DAPI)
for 15 minutes at room temperature (plate wrapped in foil),
then rinsed 3 times with PBS for 10 minutes each. Stained
samples were stored in PBS and kept in the fridge wrapped in
foil before being transferred to glass slides for imaging.

2.9 Gene expression analysis

RNA was extracted from scaffolds using a Trizol (Fisher
Scientific) method and stored at �80 1C before preparing
complementary DNA (cDNA) [2]. The cDNA was prepared
according to the Promega InProm-II Reverse Transcription kit
protocol. Quantitative real-time polymerase chain reaction
(qRT-PCR) was performed using the LightCyclers 480 Instru-
ment II (Roche Life Science) and Sensifastt SYBRs High-ROX
(Bioline) system. Results were compared to the housekeeping
gene Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) to
normalise the gene expression level. Controls for gene expression
were respective HepG2 cells cultured on a cell culture plate for
24 hours. The 2 � DDCt method4,55 was used to analyse the
relative mRNA levels of albumin, collagen I alpha 1 (Col1A1) and
Cytochrome P450 Family 3 Subfamily A Polypeptide 4 (cyp3A4),
n = 5.

2.10 Statistical analysis

Statistics analyse was performed using one-way ANOVA and
Tukey post hoc test with Minitab 18 software, the difference is
considered statistically significant with p-values of o0.05* and
o0.01**. Error bars indicate standard deviations. All results
were expressed as mean � standard deviation.

3. Results
3.1 Scaffold characterisation

PCL fibre mats were punched to small discs with a 10 mm
diameter and their SEM images were shown accordingly in
Fig. 1. It is clear that the samples with different depressions
have different architectures. The cross-section images show the
solid interior without internal pores on all samples. The size of
fibre diameter and depressions were determined by using
ImageJ software analysis of the SEM images. Notably, the
same fibre size was maintained for samples with different
depressions. The fibre diameters only had a 4% difference
between the groups. The diameters of LSD and SSD were
2.14 � 0.62 mm and 0.37 � 0.10 mm, respectively (Table 2).
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The evaluated mechanical properties of the manufactured
scaffolds are shown in Table 2. Tensile properties were altered by
the changing of depressions which was achieved by the addition
of a non-solvent (DMSO). For both the LSD and SSD the ultimate
tensile strength and Young’s modulus were significantly larger
than the NSD (Fig. 2). Furthermore, only small differences in
ultimate tensile strain and Young’s modulus are noted between
the SSD and LSD (Table 2). Notably, the SSD has the highest
Young’s modulus compared with other groups and this was
apparent for all the strain ranges examined.

3.2 Cell viability and DNA quantification

Fig. 3A shows the cell viability, with the LSD group significantly
lower than the other two groups. The cell viability of SSD kept
increasing from 24 hours to 14 days, however, the other two
groups were increased at 7 days but dropped after 14 days.
Although the cell viability of NSD group was slightly higher

than SSD group on day 7, it becomes lower after 14 days of
culture. Additionally the LSD significantly different to the SSD
and NSD groups on day 7 and 14.

DNA quantification shows similar results to cell viability
(Fig. 3B). DNA content per cell is absolute, therefore indicating
the cell number per scaffold so that we can understand the cell
attachment and proliferation.39,56 All groups showed an
upward trend on day 7 compared to 24 hours, while the SSD
and NSD groups showed a slight decrease on day 14. Moreover
the SSD group shows the highest DNA content on days 7 and 14.
There are significant differences between the SSD and NSD
groups between 24 hours and day 14. Furthermore, the SSD and
LSD groups also have a significant difference on both day 7 and
14. Cell viability was normalized to DNA content, as shown in
Fig. 3C. No significant difference is observed when comparing
between scaffold groups within the same time point. However a
consistent reduction is observed across all scaffold groups

Fig. 1 SEM images of electrospun fibres show the PCL scaffolds with different surface topographical features (A); the cross-section SEM images of large,
small and no surface depression fibres (B).
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Table 2 Physical properties and mechanical properties of the PCL scaffolds

Strain range (%) Large surface depression Small surface depression No surface depression

Fibre diameter (mm) — 3.03 � 0.32 3.10 � 0.29 3.14 � 0.28
Depression diameter (mm) — 2.14 � 0.62 0.37 � 0.10 N/A
Thickness of disc (mm) — 0.09 � 0.02 0.12 � 0.01 0.13 � 0.01
Ultimate tensile strength (MPa) — 1.54 � 0.17 1.67 � 0.26 0.81 � 0.09
Rapture strain (%e) — 585.72 � 16.63 568.9 � 54.07 766.36 � 42.6
Young’s modulus (MPa) 0–5 5.56 � 0.56 6 � 1.25 2.83 � 0.42

5–15 1.55 � 0.33 1.95 � 0.44 0.74 � 0.09
15–25 0.7 � 0.17 0.85 � 0.15 0.36 � 0.08
25–35 0.45 � 0.04 0.58 � 0.16 0.22 � 0.07

Fig. 2 Stress versus strain curve (a) and Young’s modulus (b) of each scaffold sample, measured by tensile testing.

Fig. 3 (A) Cell viability results for HepG2 on separate scaffold groups, measured via Cell Titre Blue assay. (B) HepG2 dsDNA quantity, measured
via Picogreen assay, N = 5, error bars � SD. (C) Cell viability normalized to DNA content. Statistics performed: one-way ANOVA Tukey post hoc test,
* = p value o0.05, ** = p value o0.01.
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when comparing across time points. The reduction is statistically
significant when comparing between 24 hours and day 7 for
SSD and NSD and statistically significant for all groups when
comparing between 24 hours and day 14.

3.3 Gene expression of HepG2 cells

Q-PCR results show the regulations in the expression of liver
genes, albumin, collagen 1A1 and Cytochrome P450 3A4
(Cyp3A4) (Fig. 4). Fig. 4A shows all groups have an upregulation
at 24 hours and day 14, and a much higher gene expression
level at day 14. However, lower gene expression for large
depression and no depression groups at day 7 compared
to the other time points, even a downregulation shown in
the SSD group. There is a significant difference between
24 hours and 14 days in the NSD group. The collagen 1A1 gene
level of all groups was upregulated at 24 hours and days 7,
however, the NSD group had a downregulation in expression at
day 14. Downregulation of CYP3A4 was noted for all three
scaffolds between 24 hour and 14 days. Conversely, all three
scaffold types displayed relatively similar gene expression
trends.

3.4 Cell morphology on each type of scaffold

HepG2 cells had different reactions on each type of scaffold
(Fig. 5). There is no noticeable difference in the images between
all groups in 24 hours. Cells spreading is notable on day 7 on
the SSD and NSD scaffolds, and they tended to form a mono-
layer at day 14. In contrast, the LSD scaffold shows very poor
cell attachment on days 7 and 14, which in part matches the
cell viability and DNA quantification results.

Representative DAPI and Phalloidin fluorescence staining
images (Fig. 6) of the scaffolds revealed cell attached at all-time
points. The qualitative assessment indicates that the SSD and
NSD had larger amounts attached and abundant fibronectin
production on day 14 compared to the LSD group.

4. Discussion

Electrospun cell scaffolds have been highlighted in liver tissue
engineering with some studies using PCL due to its good
biocompatibility.57,58 Although PCL is a hydrophobic material,
plasma coating can significantly improve its hydrophilicity, thus
improving cell attachment.38,59 More recently alteration to the
nanotopography of electrospun fibre architecture has shown
potential in tissue engineering applications.60,61 One method
to achieve this is through vapour induced phase separation
which can effectively generate surface structures.62,63 Another
method to achieve this is through non-solvent induce phase
separation, a technique that can drive the formation of
topographical depressions.64–67 This technique has produced
fibres with surface depressions ranging between 0.1–0.8 mm,
using a DMSO system.68 In this study, we successfully used
DMSO and achieved a depression range of 0.37–2.14 mm
(Table 2). Controlling this formation process allows unique
surface features to be created as highlighted in the SEM images
(Fig. 1).

The manufacture method presented in this article for the
depression fibres is based on solvent/non-solvent systems.65 In
our case we take advantage of the miscibility of polymers in
solvents, specifically PCL is dissolvable in CFM, while only
partially in MeOH and completely insoluble DMSO.69 MeOH
and DMSO have relatively higher dielectric constant than CFM
with values of 32.6, 46.7 and 4.8 respectively, giving them a
larger electrostatic field, which supports stable jet formation.69

However, during the spinning process, because of the high
boiling point of DMSO (189 1C), which is three times higher
than CFM (61 1C) and MeOH (64.7 1C), these two solvents will
evaporate from the fibres, before the solvent/non-solvent ratio
changes and phase separation occurs.70 The remaining DMSO
forms droplets on the fibre surface, where the small depression
appears after complete drying. In the CFM/MeOH/DMSO

Fig. 4 Q-PCR results showing changes in expression of major liver genes (A) albumin, (B) collagen 1, (C) Cyp3A4, results normalized to GAPDH and
relative to tissue culture plates. Statistics performed: one-way ANOVA Tukey post hoc test, * = p value o0.05, ** = p value o0.01.
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solvent system, as MeOH and DMSO are miscible with each
other along with water, this allows the moisture from the air to
mix with them (water is non-solvent for PCL), and therefore

spread on the surface of the fibre leading to large depressions
being formed.70 This allows us to create a distinctive set of
controlled fibre variations.

Fig. 5 Osmium staining scaffolds at time points of 24 hours, 7 days and 14 days (small magnification and big magnification).
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The mechanical properties of a scaffold structure play a role
in cellular performances. Our finding show that the mechanical
properties were significantly altered by the addition of the non-
solvent. As shown in the results (Table 2), the ultimate tensile
strength and Young’s modulus of depression samples were
significantly increased than non-depression samples, similar
results can be seen in a previous study.71 It was explained by the
crystallization process of the polymer and the orientation of
molecular chains.72 PCL is the semi-crystalline polymer that
consists of soft phase and hard phase, which is related to the
amorphous phase and crystalline phase.73,74 The polymer jet
can be stretched to a greater extent due to the higher dielectric
constant of DMSO (e = 46.7). A greater crystalline region and a
higher orientation of macromolecular chains formed in the
depression samples can be partly attributed to the enhanced
tensile properties of fibres.72,75

The addition of surface features on electrospun fibres has
been widely shown to influence cellular activities in vitro.60,61,76

Herein we have revealed a similar outcome, demonstrated by
the LSD and SSD scaffolds which influenced cell viability and
DNA content of HepG2 cells. This is highlighted further by the
different cellular behaviours at all-time points (Fig. 3). HepG2
cells had a significantly higher survival rate (cell viability) on
SSD than on the LSD scaffolds. Additionally the SSD group had a
growing trend in cell viability during 14 days culture, meanwhile
the other two groups both dropped on day 14. Similarly, SSD had
significant higher DNA content than the LSD scaffolds at day 14

(Fig. 3B). In Fig. 3C a statistically significant reduction of the cell
viability normalized to the DNA content is observed across time
points. As shown in Fig. 3A and B the increase in cell viability is
smaller than the respective change in DNA content which leads
to the reduction in the normalisation data. This may be expected
as Cell Titre Blue is linked to metabolic activity of the cells and is
only an approximation for viability.77,78 While if we consider that
DNA content per cell, this should remain stable across the
experimental timeline with each cell’s metabolic activity being
altered as a result of growth conditions. These changes are
influenced by the cells’ life cycle and its immediate environment
resulting in the observed shift across the normalisation
data.79–82 These results are in part corroborated by the osmium
stained SEM and the immunofluorescent cell-seeded scaffolds
(Fig. 5 and 6). One consideration to note during osmium
staining is that there is potential to lose cells, as part of the
multiple washing steps, therefore some of the images may not
represent the actual cell numbers. The results suggesting that
changing the surface topography has a noticeable impact on
hepatocyte cell performance, with SSD achieving marginally
higher results to NSD.

Topography has been used previously in research to control
some cell response.31,32 Interestingly, You et al. developed
similar topographic features to our study, where they fabricated
patterned substrates with pitches of 400, 1400 and 4000 nm,
and revealed 400 nm pitch pattern enhanced albumin
expression and cell junction formation of primary hepatocytes.49

Fig. 6 DAPI (blue = cell nuclei) and phalloidin (green = actin filaments) staining of HepG2 cultures attached to the separate scaffold groups.
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These patterns are in similar size scale to our depression
features (370 and 2140 nm). Also, in Wang et al.’s study, they
found that nanopores of 270 nm on PLLA fibres result in the
formation of a hepatocyte monolayer, and showed more hepatic
like functions.27 These results corroborate our findings that
surface topography plays an important role in hepatic cell
responses. This maybe in part due to the porous features
providing additional attachment points, once adhesion occurs.
Notably, on the contrary Lubasová et al. investigation on primary
hepatocytes indicated that survival was increased on smooth
fibres, with a notable decrease on their porous type.50 These
studies highlight intrinsically different responses to topographic
feature types, which are in part due to cell phenotype,
differentiation, source and cellular senescence, but are also
influenced by the substrate base size. These parameters are
extremely variable, highlighting the need to tune scaffold
architecture to the individual needs of a specific cell type.

Albumin is a specific marker for liver, its level can be used to
show the response of hepatocytes to a scaffold environment.83

Collagen 1A1 gene provides major instructions for the synthesis
of type I collagen, its regulation is important in supporting
hepatic function.84 Gene expression showed that scaffolds
influenced albumin and collagen 1A1 gene expression, while
CPY3A4 was not altered. Similarly, a study by Nicholas et al.,85

found that fibres with surface pits could be used to alter gene
expression in macrophages, which in part corroborates our
findings. Notably all the presented fibre topographies seem to
provide an environment where deposited HepG2 cells can
maintain their typical genetic functionality while altering the
growth rate.

Previous studies on similar electrospun fibres have shown
that different cell types can respond in a comparable manner,
and co-culture can initiate other functions.37,56,86,87 As the liver
is a complex organ, a layer of liver tissue is usually composed of
hepatocytes, epithelial cells, Kupffer cells, stellate cells, and
liver sinusoidal endothelial cells. How to design or to use a
potential scaffold depends on what function is required. In the
literatures, HepG2s have been shown to be bioactive on similar
types of scaffold in comparison to ours, but it is worthy to note
that previous studies have also shown preference for extremely
different fibre sizes.53,88,89 Besides this, co-culture has been shown
to influence cell bioactivity, for example hepatocytes co-cultured
with HUVECs on a multiscale fibre scaffold recapitulated a
liver tissue-like structure, and significantly increased function
in vitro.90,91 Therefore, tissues within an organ might require
different surfaces to optimise function, especially in the liver
which has numerous and varied functions. Consequently future
scaffold developments with more than one cell type would require
optimisation.

While our study shows some key influences on hepatic cells,
they are not without shortcomings. The cell type used, HepG2 is
an immortal cell line derived from hepatocellular carcinoma
tissue.92 It is a commonly used liver cell as an in vitro model
system for hepatotoxicity.4 This is in part due to it’s virus-free
nature, high proliferation rate and it’s ability to perform many
hepatic specific functions such as albumin secretion.93–95

However, because it is relatively stable in vitro culture, it does
not give a true reflection of primary culture. Future work is
needed to access primary or stem cells derived hepatocytes to
verify the effect of scaffolds on long-term in vitro culture while
ensuring that variables such as fibre base size and pore size
are taken into count. Though for consideration is the rare
accessibility of human primary cells, which would make the
use of rat primary hepatocytes a stepping stone in understanding
the full potential of these scaffolds.96 Additionally, aspects such
as fibre orientation would need to be examined to get a true cell
response.

5. Conclusion

Herein we successfully fabricated large and small surface
depressions on electrospun scaffolds by using different solvent
systems. The biological testing revealed small depression fibre
had better cell viability and DNA content than the other groups.
These results have shown that electrospun fibres with surface
depressions could be used to control cellular reactions in
HepG2 cells. This work highlights the possibilities of electro-
spun scaffolds at controlling hepatic function, and may have
potential in the development of liver tissue-mimicking
platforms.
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