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Continuum percolation in colloidal dispersions of
hard nanorods in external axial and planar fields

Ilian Pihlajamaa, * René de Bruijn and Paul van der Schoot

We present a theoretical study on continuum percolation of rod-like colloidal particles in the presence

of axial and planar quadrupole fields. Our work is based on a self-consistent numerical treatment of the

connectedness Ornstein–Zernike equation, in conjunction with the Onsager equation that describes the

orientational distribution function of particles interacting via a hard-core repulsive potential. Our results

show that axial and planar quadrupole fields both in principle increase the percolation threshold. By how

much depends on a combination of the field strength, the concentration, the aspect ratio of the

particles, and percolation criterion. We find that the percolated state can form and break down multiple

times with increasing concentration, i.e., it exhibits re-entrance behaviour. Finally, we show that planar

fields may induce a high degree of triaxiality in the shape of particle clusters that in actual materials may

give rise to highly anisotropic conductivity properties.

1 Introduction

The addition of nanoparticles such as carbon nanotubes,
carbon black, silver nanowires or graphene to common plastics
potentially enhances their electrical and heat conductivity
tremendously.1–9 Indeed, the incorporation of even a relatively
small amount of a carbon nanotube (or graphene) filler into an
insulating polymeric host material increases its electrical con-
ductivity by over ten orders of magnitude.7,10 Not surprisingly,
these polymer composites have stirred up a great interest for
industrial applications in photovoltaics,11,12 optoelectronics,13

gas sensing,14 and liquid crystalline display devices.15

Typically, the large effect that nanoparticles have on the
conductive properties of their insulating host material is seen
in the context of continuum percolation theory.16–18 If added in
sufficient quantities, the nanofillers form a network of particles
that spans the entire material. It is through this network that
electricity (or heat) can be conducted efficiently. The critical
packing fraction associated with the formation of this network
is called the percolation threshold. Percolation theory aims to
find this critical particle concentration. We note that nanofil-
lers need not be connected physically, but transport may be
mediated via, e.g., electron tunnelling.19 This is commonly
modelled by defining particle–particle connections via a dis-
tance criterion.20 Continuum percolation theory, typically, does
not predict the actual conductivity of the resulting nanocom-
posite, as it is solely a geometric framework for establishing
whether a macroscopic, material-spanning network exists. See,

however, the work of Grimaldi and collaborators for a notable
exception.21

Common engineering applications require that the nano-
particle loading in composites is as low as possible in order to
retain the advantageous properties of polymeric materials such
as their optical transparency, mechanical flexibility, and low
manufacturing cost.22 In practice, this requires that the perco-
lation threshold should be as low as possible. It turns out that
this percolation threshold depends strongly on the degree of
anisometry of the dimensions of the nanoparticles,23–25 scaling
with the inverse of the aspect ratio.25,26 While this suggests that
the percolation threshold can be made arbitrarily low by
increasing the aspect ratio of the nanofillers, practical limits
exist, as, for instance, long carbon nanotubes tend to break
during processing.27,28

A major additional challenge has surfaced in recent decades.
It turns out that the percolation threshold is not only very
sensitive to the particle shape, but also to many other factors,
some of which are very difficult to control consistently in
experiments.29 Examples are the particle size polydispersity,30–32

inter-particle interactions33, spatial inhomogeneity of the
dispersion34 as well as any degree of particle alignment
caused35, e.g., by the processing of the composite or the sponta-
neous formation of liquid crystalline states.36 These factors come
into play as almost unavoidable ‘‘imperfections’’, and depend
non-trivially on the relevant production and manufacturing
processes.37 It is not surprising, then, that a large body of
simulation and theoretical literature has emerged, attempting to
deal with such aspects of non-ideality.36,38–46

Specifically, Finner et al. have recently shown that disper-
sions of hard, rod-like particles exhibit a highly complex
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percolation behaviour when subjected to a quadrupole align-
ment field.45 In the dilute limit, the particles cannot create
material-spanning clusters and less so in a alignment field. As
one adds more particles, however, the average network grows,
until its size diverges at the percolation threshold. At even
higher densities, the work of Finner and co-workers shows the
alignment induced by the external field and excluded-volume
interactions can suppress percolation. To restore the percolat-
ing state, one could choose to add even more particles, regain-
ing system-spanning networks. However, testament to the non-
linearity of the interplay between the induced alignment by
these two sources, predictions show that percolation can break
down and form again at even higher densities.45

In this paper, we extend the earlier work of Finner and co-
workers by investigating the impact of a so-called disorienting
field.45 A disorienting field is a planar orienting field that aligns
the particles towards a plane perpendicular to the field direc-
tion. It can for instance be the result of the extensional flow
field found in a four-roll-mill setup.47,48 While uniaxial in
orienting fields, the orientational distribution function of
rod-like particles can become biaxial in planar (disorienting)
fields, and, as we shall see, this turns out to have a significant
impact on the percolation threshold. The difference between an
orienting and a planar (disorienting) field makes itself also felt
in the phase behaviour of hard rods, because the isotropic-
nematic binodal ends in a critical point for the former yet in a
tricritial point for the latter. We show that the strongest impact
a quadrupolar field has is near the second order transition line
that ends in the tricritical point. We also find that whilst
corrections for finite particle aspect ratios do introduce a high
density percolation threshold and quantitatively affect our
predictions for the percolation threshold, the topology of the
percolation diagram for low to intermediate concentrations
does not change qualitatively.

The remainder of this paper is subdivided into four parts.
Firstly, for completeness we devote a short section on Onsager
theory in an external quadrupole field. Secondly, we apply
continuum percolation theory to find under what conditions
dispersions of those particles percolate. Thirdly, we investigate
the effect of the aspect ratio by combining the theory presented
in the previous sections with a Scaled Particle Theory. In the
last section, we show that non-percolating clusters can become
significantly triaxial due to the external fields by analysing
correlation lengths.

2 Onsager theory revisited

Hard-core interactions cause rod-like particles to sponta-
neously align along a preferred direction called the director,
if the particle concentration is sufficiently high. This was first
recognised by Lars Onsager, who proposed a second virial
theory to describe the transition from the isotropic to the
uniaxial nematic state.49 In this section, we briefly review
Onsager theory, applied to a dispersion of cylindrical particles
subject to an external field, and summarise our numerical

implementation of it.45,47,50,51 We refer to the works of
Onsager,49 Frenkel,52 Stephen and Straley,53 Odijk54 and Vroege
and Lekkerkerker55 for more complete treatments of the theory.

A central ingredient in Onsager theory is the orientational
distribution function c(u) of uniaxial particles, where the
orientation vector u can be expressed in spherical coordinates
as u = (sin y cosf, sin y sinf, cos y)T with y and f the polar and
azimuthal angle. We model the particles as impenetrable
(sphero)cylinders with length L and diameter D. It makes sense
to introduce a dimensionless concentration c = prL2D/4, which
is equal to the product of the aspect ratio and the hard-core
volume fraction in the slender-particle limit L c D, which is
where the second-virial approximation is believed to become
exact. Here, the number density is given by r = N/V. In the
current and next two sections, we assume that the so-called
Onsager limit holds, i.e., the particles are infinitely slender D/L
- 0, and consequently, we can neglect all effects of the
hemispherical end-caps. In Section 4, we lift this assumption
and consider also the effects of the finite slenderness.

The particles are subject to an external quadrupole field,
which, for simplicity, we assume to be oriented along the z-axis.
It assigns an energy to each particle of the form U/kBT =
�K cos2 y, where kBT is the thermal energy and K is a dimen-
sionless field strength. If K is positive, it is energetically
favourable for the particles to align along the z-axis, and we
call the field orientational or axial. If K is negative, however, the
particles prefer to be aligned in the xy-plane, and we refer to it
as disorientational or planar.

Within Onsager theory, the dimensionless Helmholtz free
energy per particle reads, up to an arbitrary constant,

f ¼ F

NkBT
¼ ln ccðuÞh i þ 4c

p
u� u0j jh ih i0 � K cos2 y

� �
: (1)

Here, we introduce a shorthand notation for the angular
averaging operators h� � �i �

Ð
duð� � �ÞcðuÞ and

h� � �i0 �
Ð
du0ð� � �Þcðu0Þ, where the integrals run over all orienta-

tions on the unit sphere. The first term of the free energy
describes the translational and orientational free energy of
ideal uniaxial particles, whereas second term describes the
excluded volume interactions, in which

u� u0j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos y cos y0 þ sin y sin y0 cosðf� f0Þð Þ2

q
: (2)

An expression for the most probable orientational distribution
function can now be obtained by functionally minimising the
free energy with respect to c(u) while enforcing its normal-
isation. This yields the Onsager equation

cðuÞ ¼ 1

Z
exp K cos2 y� 8c

p
u� u0j jh i0

� �
; (3)

where Z ensures the normalisation condition is met. Eqn (3) is
a nonlinear self-consistent integral equation for c(u) of which
no exact non-trivial solution is known.

We solve eqn (3) numerically by recursive iteration, mon-
itoring convergence by evaluating if the maximal element-wise
difference between two subsequent iterations of the discretised
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orientational distribution function is smaller than 10�8. This
procedure is known to be highly convergent when applied to
the Onsager equation, and typically terminates within 10–30
iterations.56 We approximate the spherical integrals using a
131st order Lebedev quadrature, which ensures that all poly-
nomials up to 131st order are integrated exactly.57,58 We find
that this yields higher accuracy with fewer grid points than
trapezoidal rules.45,51,59

For sufficiently weak external fields, a coexistence region
exists between a low-density disordered phase and a high-
density ordered phase. For these phases to be in thermal
equilibrium, the pressures p = �(qF/qV)N,T and chemical poten-
tials m = (qF/qN)V,T must be equal in both phases.46,60 For a fixed
field strength, we can solve the resulting coupled set of equa-
tions, of which the results are shown as a function of K in Fig. 1.
Our numerical results agree quantitatively with earlier obtained
numerical values.50,51,59

We can distinguish between six distinct regions in Fig. 1. If
the external field K is equal to zero, and the particle dispersion
is sufficiently dilute (c o 3.290), then the orientational dis-
tribution function takes a constant value c(u) = 1/4p and the
canonical (scalar) nematic order parameter Q � 3hcos2 yi/2 � 1/
2 takes on the value Q = 0. This is the isotropic phase, not
indicated in the figure. If the mean concentration falls in the
range c A (3.290, 4.191), the particles spontaneously separate
into an isotropic domain of density c = 3.290 and a high-density
nematic domain where c = 4.191 and Q = 0.7922. For c 4 4.191,

only the nematic phase survives. The location of the binodals
we find is consistent with their literature values to at least three
decimal places.55

If the external field strength is sufficiently weak, the phase
transition remains first order albeit that the coexistence region
shrinks as the field becomes stronger. In the case of a orienting
field (K 4 0), the binodals end in a critical point at K = 0.255,
whereas for a planar field, they end in a tricritical point at K =
�1.2, c = 2.9, Q = �0.25, Z = 0.05. For K o �1.2, we have a
second order transition between an antinematic phase and a
biaxial nematic that we pinpoint by evaluating the location of
the discontinuity in the derivative of the order parameter Z �
hsin y cos 2fi.47 For the antinematic phase, we have Q o 0 and
Z = 0, while in the biaxial nematic phase we have Q o 0† and
Z 4 0.

For weak orienting fields, 0 o K o 0.255, we have coex-
istence between a dilute paranematic phase (Q 4 0, Z = 0) and a
concentrated nematic phase (Q 4 0, Z = 0). If the field is
sufficiently strong, however, the first order phase transition
between the paranematic and the nematic phase vanishes. The
region in which this distinction is lost, may perhaps be called
superparanematic (Q 4 0, Z = 0). The corresponding critical
point is located at K = 0.255, c = 3.2, and Q = 0.44.50

Fig. 1 (a) Phase diagram of infinitely slender rod-like particles in an external quadrupolar field as a function of the dimensionless concentration c and
external field strength K. Indicated are the different states, separated by dotted vertical lines. The isotropic state, which occurs at on the vertical line K = 0,
c o 3.290, is not indicated. For sufficiently weak external fields, the dispersion separates in a high-density and a low-density phase. The region in which
this occurs is enclosed by the binodals, which are indicated by solid lines. We find a critical point (solid circle) at K = 0.255 and a tricritical point (open
circle) at K =�1.2. At the tricritical point, the binodals converge, and form a continuous phase transition (dashed line) between the antinematic and biaxial
nematic phase. (b) The orientational distribution function c(u) in the isotropic, antinematic, nematic, and biaxial nematic phases. The external field axis
was chosen along the z-axis. The paranematic and superparanematic states have similar symmetries as the nematic and are therefore not drawn
independently. The colours indicate the value of c(u), red and blue respectively denoting a high and low probability of finding a rod with the
corresponding orientation.

† The order parameter, here, is defined with respect to the field direction, which
for the biaxial phase is perpendicular to the director.
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3 Geometric percolation

To describe the percolation behaviour of a dispersion, we first
need a criterion that establishes whether or not two particles
are connected. To this end, we model each particle as being
surrounded by a so-called connectivity shell with thickness l/2.
If the connectivity shells of two particles overlap, we consider
them connected. This corresponds to the criterion that the
surface-to-surface distance between particles is smaller than l.
For homogeneously dispersed rod-like particles, we can now
express the weight averaged connectedness structure factor
S+(q), in which q is a wave vector, as61,62

SþðqÞ ¼ 1þ r
ð
dr expð�iq � rÞhhPðr; u; u0Þii0; (4)

where P(r, u, u0) is the pair connectedness function, which
quantifies the likelihood of finding two connected particles
with a relative position vector r and orientations u and u0. We
identify the percolation threshold with the density at which the
cluster size S = S+(|q| - 0) diverges.

The common way to make headway here, is to apply the
theory introduced by Coniglio et al.,61 who derived an Ornstein–
Zernike equation for the pair connectedness function and the
direct connectedness function C+, which in Fourier space reads

P̂ðq; u; u0Þ ¼ Ĉþðq; u; u0Þ þ r Ĉþðq; u; u00ÞP̂ðq; u00; u00Þ
� � 0 0

; (5)

where the hats indicate Fourier-transformed quantities. Loosely
speaking, C+(r, u, u0) can be interpreted as a measure for the
likelihood of the two particles being directly connected.63

Hence, to lowest order in the density we may presume it to
be equal to a Boltzmann factor, in which case Ĉ+ becomes equal
to39

Ĉþðq; u; u0Þ � 2L2l u� u0j jj0
L

2
q � u

� �
j0

L

2
q � u0

� �
; (6)

which is valid provided L/D - N and |q|D - 0, i.e., in the
Onsager limit, and formally equivalent to the second virial
approximation. In eqn (6), we have introduced the zeroth order
spherical Bessel function j0(x) = sin x/x. In the limit |q|L - 0, Ĉ+

becomes equal to the connectivity volume, that is, the volume
in which a particle with orientation u0 can be found, such that
its connectivity shell overlaps with a particle with orientation u.

To calculate the cluster size S from eqn (4), we solve the
Onsager eqn (3) and the connectedness Ornstein–Zernike
eqn (5) self-consistently. This we do numerically. First, we find
the orientational distribution function using the method
described in Section 2. The second step is to solve the integral
eqn (5). To do this, we reduce the dimensionality of the
problem by pre-averaging this equation over u0, and solving
for ĥ(u) = hP̂(0, u, u0)i0. In terms of this intermediate function ĥ,
the connectedness Ornstein–Zernike equation reads

ĥ(u) = hĈ+(0, u, u0)i0 + rhC+(0, u, u00)ĥ(u00)i, (7)

with S = 1 + rhĥ(u)i.
In contrast to the nonlinear Onsager equation for the

orientational distribution function, eqn (7) is linear. As such,

we do not need to perform a recursive iteration, but can write it
as a matrix equation h = b + Ah and solve it straightforwardly
using standard numerical methods.64 To turn eqn (5) into a
vector equation, we introduce the discretised orientation vector
ui in accordance with the Lebedev quadrature that we employ
for solving the Onsager equation.58 This allows us to introduce

the elements hi = h(ui), bi ¼
P

j cjwjĈ
þð0; ui; ujÞ, and Aij = rC+(0,

ui, uj)wjcj, defining cj = c(uj) and wj as the weight associated
with the grid-point uj. The cluster size is now straightforwardly
calculated from S ¼ 1þ r

P
i

hiciwi.

We locate the percolation threshold by performing a sweep
of concentration c and field strength K requiring that 1/S = 0,
which translates to the physical requirement that the average
cluster size diverges at the onset of percolation.

We perform this procedure throughout the parameter space
spanned by our three parameters c, K, l/D to obtain a compre-
hensive diagram that shows under what conditions percolation
occurs. This diagram is shown in Fig. 2, and extends that of the
earlier work of Finner and collaborators to negative values of
K.45 The presence of the second order transition line, separat-
ing the antinematic and biaxial nematic phase, drastically
changes the course of the percolation line in the state diagram.
Indeed, the percolation line exhibits a cusp at the second order
transition line. We do not find this kind of behaviour for K 4 0,
i.e., for orienting fields.

From Fig. 2, we can identify four regimes depending on the
value of thickness of the connectivity shell l/D.

Fig. 2 The occurrence of percolation for varying concentration c, exter-
nal field strength K and connectedness shell thickness l/D. For very low
concentration, no percolating cluster exists. As the concentration
increases, a percolating cluster is formed and possibly destroyed (and
sometimes reformed) dependent on the value of the external field strength
and the connectivity range l/D. Also indicated in the figure are the binodals
and second order phase transition computed from Onsager theory, see
Fig. 1.
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(1) If the connectedness shell thickness obeys l o 0.15D,
then the alignment induced by the external field and hard-core
interactions prevent percolating clusters from appearing alto-
gether. This has been shown analytically and was confirmed by
Monte Carlo simulations by Finner et al., in the absence of an
external field.65,66 Noting that quadrupole fields always inhibit
the formation of percolating clusters to some extent, we con-
clude that this finding remains valid in the presence of an
external field.

(2) For 0.15D o l o 0.2D, the percolation line is a closed
loop, but intersects the phase coexistence region. This means
that for certain values of K and the mean concentration c, the
rods in the isotropic domain may percolate while in the
nematic domain they do not. For sufficiently weak external
fields, percolating particle clusters are formed in the dilute
phases (isotropic, paranematic, and antinematic). Upon
increasing the concentration or field strength, the alignment
induced by either the external field or the hard-core interaction
always cause the percolating clusters to eventually disconnect.
This implies that we witness re-entrant percolation as a func-
tion of both the field strength, running from large negative to
large positive values, and of the concentration, running from
the very dilute to the highly concentrated.

(3) If 0.2D o l o 0.236D, percolation islands remain to be
present, but they no longer intersect the phase coexistence
region, meaning that if phase separation occurs, rods in both
phases percolate. Not surprisingly, re-entrance percolation
survives.45,65

(4) For l 4 0.236D, the percolation islands fan out, and
transform from islands to peninsulas, and from peninsulas to
normal coastlines. Depending on the precise value of l/D there
may be repeated re-entrance effects, where percolating clusters
form and break down multiple times. For K o 0, the region in
which double re-entrant effects occur is notably larger than that
for positive values of K.

Thus far, we considered the Onsager limit, that is, the limit
in which the particle aspect ratio goes to infinity. Actually, the
theory discussed above should be expected to become quanti-
tatively correct for aspect ratios exceeding a few hundred.66

Even though that this covers many practical applications,
involving, e.g., carbon nanotubes, we need to ask ourselves
the question if our main conclusions remain valid if we correct
for finite aspect ratios. This we investigate next.

4 Finite aspect ratios

In the preceding sections, as already alluded to, we considered
the phase behaviour and percolation of infinitely slender
nanorods in an external field. The question arises in what
way our predictions change if we let the particle aspect ratio
decrease to more realistic values down to, say, a hundred or
even twenty, more typical of colloidal systems. For this purpose,
we need to include corrections to Onsager Theory of higher
order in the density. We choose to make use of a renormalised
second-virial approach based on Scaled Particle Theory

(SPT).45,67,68 This approach is similar in spirit to the Parsons-
Lee approach, yet has been shown to yield results that are in
better agreement with Monte Carlo simulations of percolation,
and in fact remains nearly quantitative, even down to aspect
ratios of L/D = 5.66,69,70 We briefly present the main ingredients
of the theory, and proceed to apply it to percolation of rods in
external fields.

We consider a dispersion of spherocylinders rather than
cylinders for reasons of tractability.49 Therefore, we take hemi-
spherical end-caps into account, implying that the aspect ratio
of the particles becomes L/D + 1. Here, L denotes the length of
the cylindrical part of the particle and D its width. The volume
fraction of a dispersion of such spherocylinders is given by

j ¼ N

V

pLD2

4
þ pD3

6

� �
¼ c

D

L
þ 2

3

D2

L2

� �
; (8)

where the dimensionless concentration remains to be defined
as c = prL2D/4.

Cotter and Wacker derived an expression for the SPT free
energy of spherocylindrical particles, which is exact up to
second order and approximate for all higher orders in the
density.67,71 For a review of the theory, we refer to Lekkerkerker
and Tuinier.68 Tuinier et al.72 show that SPT simply renorma-
lises the concentration c in eqn (3) and yields

cðuÞ ¼ 1

Z
exp K cos2 y� 8Gc

p
u� u0j jh i0

� �
; (9)

in which Z is again a normalisation constant, and

G ¼ 1

1� j
1þ j

1� j

2þ 2
L

D

2þ 3
L

D

0
B@

1
CA; (10)

is the SPT correction factor, which depends only on the volume
fraction and the aspect ratio of the particles. In the infinite
aspect ratio limit, eqn (9) reduces to eqn (3) for G - 1 as L/D
- N at constant c.

Following the same procedure that we used to obtain the
phase diagram for infinitely slender particles, we obtain phase
diagrams for L/D = 100 and L/D = 20, which are shown in Fig. 3
together with that of L/D - N. As far as we are aware, SPT has
not yet been applied to predict the phase diagram of hard rods
in a quadrupole field. We conclude from this figure that the
phase diagram expressed in terms of the scaled concentration c
and the dimensionless field strength K only starts to deviate
significantly when the aspect ratio is smaller than roughly one
hundred. However, the external field dependence seems rather
insensitive to a variation of aspect ratio of the particles. Indeed,
the critical and tricritical field strengths vary only by a few
percent if the aspect ratio decreases from infinity down to
twenty. At K = 0, our results show excellent agreement with
earlier simulations and numerical work.72

To apply SPT to our calculation of the cluster size, we closely
follow the procedure presented in Finner et al.66 We rescale our
contact volume with the same parameter G that we used to
rescale our excluded volume, given by eqn (10), and explicitly
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include the contributions due to the end-effects to the excluded
volume. The closure of the connectedness Ornstein–Zernike
eqn (5) now becomes

Ĉþð0; u; u0Þ
�
G ¼ 2L2l u� u0j j þ 2pLD2 1þ l

D

� �2

�1
 !

þ 4pD3

3
1þ l

D

� �3

�1
 !

;

(11)

for qL - 0, where the second and third terms account for the
effects of the hemispherical end-caps.

That we should rescale the closure (11) with the factor G
does not follow from rigorous theoretical arguments. However,
it may be justified on the grounds that it makes sense to make
use of the same renormalisation of the excluded volume term of
the free energy as that in the direct connectedness function,
which in effect is a connectedness volume.66 Perhaps more
convincingly, it turns out that this approximation yields very
accurate results for aspect ratios L/D 4 10.66

By the same methods described in Section 3, we solve the
connectedness Ornstein–Zernike equation and find the cluster
size as function of the volume fraction j, aspect ratio L/D,
connectedness criterion l/D, and external field strength K. We
summarise our findings in the percolation diagrams shown in
Fig. 4, in which we plot for the aspect ratios L/D = 100 and L/D =
20 the percolation threshold for a range of different connect-
edness criteria as a function of the external field strength. The
percolation thresholds are expressed in terms of the product

jL/D of the volume fraction and the aspect ratio, which in the
slender particle limit becomes the definition of our parameter
c. We recall that the diagram for L/D - N is shown in Fig. 2.

Comparing Fig. 2 with Fig. 4, we notice that the finite
particle slenderness introduces an additional percolation tran-
sition at high concentrations. This agrees with the findings of
Finner et al.45 for the case K Z 0. This is not hugely surprising,
since, after all, a finite dispersion with sufficiently many
particles must percolate even if perfectly aligned, although it
may be superseded by a transition to a smectic or
crystalline phase.

Intuitively, the location of this high concentration percola-
tion threshold must strongly depend on the aspect ratio of the
particles, and this is indeed what we find. Apart from this
additional percolation threshold, our results show that the
topology of the percolation diagram does not change as the
aspect ratio decreases down to L/D = 20. However, if we decrease
the degree of particle anisometry further, so below L/D = 20, we
find that the percolation islands and peninsulas disappear
entirely (results not shown). Notice that for aspect ratios near
L/D = 5 we expect the nematic transition to disappear altogether
and be replaced by a transition to a smectic or crystalline
state.73 For longer particles, the nematic–smectic A transition
occurs at volume fractions in the range j A (0.4, 0.6).74–77 In
particular, this means that this transition occurs well above the
densities considered in Fig. 4 and therefore should leave the
reported phenomenology intact.

For spherical particles, so for L/D = 0, the diagram should
lose its dependence on the external field completely, as the
connectedness and excluded volumes become independent of
the particle orientations. In this case, the concentration at
which percolating clusters appear depends only on the ratio
between the connectivity criterion and the particle diameter.
See, e.g., Miller.78

Now that we have discussed under what conditions materi-
als percolate, it turns out to be instructive to investigate the
shape of the clusters near and away from the percolation
threshold. For this, we need to a have closer look at the theory
for finite values of the wave vector q. As we shall see, subcritical
clusters in the biaxial nematic state can be highly triaxial.

5 Cluster shape

In order to analyse the cluster shape, we rely on the methods
employed in earlier work.44,45 We do so in the Onsager limit,
valid for particles with very high aspect ratios and expect that
finite aspect ratio corrections to this procedure do not qualita-
tively change our main findings. We quantify the shape of the
clusters by evaluating the qL - 0 behaviour of the connected-
ness structure factor S+(q). From the structure factor, we are
then able to identify the correlation lengths.

As a first step, we write down a formal expansion of the
structure factor for small qL

SþðqÞ ¼ Sþð0Þ þ 1

2

@2Sþ

@q@q

����
q¼0

:qqþ . . . ; (12)

Fig. 3 Phase diagram of hard spherocylinders with aspect ratios L/D A
{N, 100, 20} in terms of a scaled volume fraction as function of the
external field strength K. Within the enclosed region, high and low density
phases coexist. We computed the location of the binodals using the
Onsager free energy, with scaled particle theory corrections for finite
particle aspect ratios. The terminology of the phases is unchanged and
shown in Fig. 1.
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where, as usual, the double dot product is defined as
A:B ¼

P
ij

AijBij , in which A and B represent matrices. The

diadic products are defined as (ab)ij = aibj, where a and b are
vectors. Since the rods are inversion symmetric, our theory
must be invariant under the transformation q - �q. This
implies that the odd orders and cross terms in the expansion
must vanish and therefore only the second order diagonal
terms remain in eqn (12). From their dimensions these coeffi-
cients can be interpreted as correlation lengths, and therefore
they must provide us with information about the shape of
clusters.

In accordance with earlier work of Finner et al.,45 we define
the correlation lengths as

SþðqÞ � 1

Sþð0Þ � 1
¼ hhP̂ðq; u; u

0Þii0

hhP̂ð0; u; u0Þii0
¼ 1� xx

2qx
2 � xy

2qy
2 � xz

2qz
2 þ . . . ; (13)

where xx is the correlation length in the x-direction, and so on.
In the isotropic phase, all correlation lengths are equal, whilst
in the uniaxial phases two out of the three are equal. We
interpret these correlation lengths as measures of the average
dimensions of a cluster.

To calculate the correlation lengths, we follow Finner et al.45

and find an expression for the leading order anisotropic term in
the expansion of the pair connectedness function

P̂ðq; u; u0Þ ¼ P̂ð0; u; u0Þ þ 1

2

@2P̂ðq; u; u0Þ
@q@q

����
q¼0

:qqþ . . . (14)

The tensor
@2P̂ðq; u; u0Þ

@q@q

����
q¼0

contains all the information

required to find the correlation lengths. By substituting
eqn (14) into eqn (13), we find‡

xa
2 ¼ �1

2

r
S � 1

@2P̂ðq; u; u0Þ
@qa

2

����
q¼0

* +* +
0
; (15)

where the Greek index a can denote any of the Cartesian
coordinates.

As eqn (15) suggests, we can restrict our calculation to

finding the tensor
@2P̂ðq; u; u0Þ

@q@q

����
q¼0

instead of the full P̂(q, u,

u0). For this, we take the second derivative of the connectedness
Ornstein–Zernike eqn (5) and evaluate it in the limit q - 0.
Because the first derivatives of both P̂ and Ĉ+ vanish at q = 0,
this simplifies to

@2P̂ðq; u; u0Þ
@q@q

����
q¼0
¼ @2Ĉþðq; u; u0Þ

@q@q

�����
q¼0

þ r
@2Ĉþðq; u; u00Þ

@q@q

�����
q¼0

P̂ð0; u00; u0Þ
* +

00

þ r Ĉþð0; u; u00Þ@
2P̂ðq; u00; u0Þ
@q@q

����
q¼0

* +
00
:

(16)

Fig. 4 Percolation diagram for spherocylinders with aspect ratio L/D = 100 (a) and L/D = 20 (b) as a function of the external field strength K and
concentration c for different values of the connectedness criterion l/D. The hatched region denotes the region of phase coexistence.

‡ This expression corrects a typographical error in earlier work.45 The typogra-
phical error does not affect any of the results presented in that work.
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Using the fact that‡ @
2Ĉþðq; u; u0Þ
@q@q

�����
q¼0

¼ �1
6
lL4 u� u0j jðuuþ u0u0Þ;

we obtain a closed equation for the tensor
@2P̂ðq; u; u0Þ

@q@q

����
q¼0

,

which reads

@2P̂ðq; u; u0Þ
@q@q

����
q¼0
¼ � 1

6
lL4 u� u0j jðuuþ u0u0Þ

� 1

6
rlL4 u� u00j jðuuþ u00u00ÞP̂ð0; u00; u0Þ

� �00

þ 2rlL2 u� u00j j@
2P̂ðq; u00; u0Þ
@q@q

����
q¼0

* +
00
:

(17)

Similarly to our treatment of the qL = 0 version of the connect-
edness Ornstein–Zernike equation, we can simplify the compu-
tation by pre-averaging this equation over u0, and solving the

result one matrix element at a time, as the elements are not
coupled. The correlation lengths are now easily evaluated with
eqn (15). We numerically find that the off-diagonal elements do
vanish, as demanded by our symmetry arguments.

In Fig. 5, we plot the various correlation lengths xa/L
for different connectivity lengths l/D and field strengths K,
as a function of the dimensionless concentration c. As we
have seen in Section 3, for sufficiently small values of l/D,
no percolation can occur. Indeed, the correlation lengths
in this regime remain finite, as shown in Fig. 5a for K = 0
and l = 0.1D. As expected, we only find one independent
correlation length in the isotropic phase, and two in the
nematic phase of which the one along the director is larger
than that perpendicular to it. This means that in the nematic
phase the particle clusters become elongated, that is, longer
than they are wide.

For K 4 0, clusters are always elongated, the degree to which
depends on the strength of the field and the concentration. For
a discussion of the cluster shapes for K 4 0 we refer to the work

Fig. 5 Correlation lengths as a function of the concentration along vertical slices in Fig. 2. The first and second order phase transitions are indicated in
black. The figures correspond to the slices across the isotropic–nematic transition at K = 0, l/D = 0.1 (a), and across the antinematic–biaxial nematic
transition at K = �5, l/D = 0.2 (b); K = �4.5, l/D = 0.24 (c), and K = �4, l/D = 0.23 (d). We see a wide variety of behaviour across this transition, depending
on the field strength and connectivity length.
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of Finner et al.,45 and in the remainder of this section we focus
attention exclusively on the case K o 0.

If, for instance, we choose K = �5 and l = 0.2D, then again
there is no percolation for any concentration as Fig. 5b shows.
However, in the dilute phase, the correlation length parallel to
the field axis is smaller than the correlation lengths perpendi-
cular to it, indicating that the clusters are oblate rather than
prolate.

As we cross the continuous phase transition line indicated
by black dashed lines in Fig. 5, the induced biaxiality of the
orientational distribution function makes itself felt in a cluster
that is longer along the director (which is defined parallel to the
x-axis) than along the field direction (parallel to the z-axis). In
the direction perpendicular to both the external field and the
nematic director (along the y-axis), the clusters are wider than
along the field direction.

Notice that the degree of triaxiality of the clusters decreases
with increasing concentration in the biaxial nematic phase,
because both correlation lengths perpendicular to the director
field become increasingly equal. This is caused by the fact that,
relatively speaking, the impact of the (triaxiality-driving) exter-
nal field decreases compared to that of the hard-core interac-
tions that favour uniaxial order.

To illustrate what happens to the cluster shape if we
encounter a sequence of re-entrance phenomena, we show
the correlation lengths for K = �4.5 and l = 0.24D in Fig. 5c
and for K = �4 and l = 0.233D in Fig. 5d as a function of the
concentration c. In Fig. 5c we take a vertical cut through the
state diagram of Fig. 2 on the left of the tricritical point. This
means that we again cross the continuous phase transition
between the antinematic and biaxial nematic. Before we cross
this transition, however, a percolating cluster emerges, char-
acterised by diverging correlation lengths in all three direc-
tions. This percolating state does not disappear until well into
the biaxial nematic phase. Interestingly, even more deeply in
the biaxial nematic phase, percolation is restored.

In Fig. 5d, we illustrate a superficially counter-intuitive
phenomenon, namely, that further increasing the concen-
tration of particles deep in the biaxial nematic phase does
not always lead to larger clusters. It is important to realise that
the cluster dimensions are directly linked to the distance from
the percolation threshold in K, c parameter space. What Fig. 5d
shows, is that for the chosen parameters, we approach a
percolation threshold with increasing concentration, but at
higher concentrations move away from it again. The decrease
of the cluster size at very high concentrations is in effect caused
by the increased alignment of the particles.

On the surface of it, this mirrors what happens in the
absence of a field.65 However, we conclude from Fig. 5d, that
only one of the correlation lengths increases when approaching
the percolation threshold, while the others do not. This is
qualitatively different from the zero-field case, where the ratio
of the correlation lengths grows linearly with the
concentration.65 We have no explanation for why in this
particular case the behaviour of xx seems to be decoupled from
the that of xy and xz.

This leads us to the conclusions of this paper, in which we
summarise and briefly discuss our findings.

6 Conclusions

In summary, we have numerically investigated the effect of
external-field-induced antinematic and paranematic order on
the percolation threshold and cluster shape in dispersions of
spherocylindrical particles, extending the earlier work of Finner
et al.45 We have applied Scaled Particle Theory corrections to
approximately incorporate the impact of higher order virial
terms in the Onsager free energy, and used a similar approxi-
mation for the direct connectedness function. This has allowed
us to generalise our findings to rods with aspect ratios of down
to approximately L/D = 20.

For connectivity lengths satisfying l 4 0.15D, we find that
percolation islands form in the percolation diagram, meaning
that upon an increase of the concentration, percolating clusters
can form and break down subsequently. For particles with
finite aspect ratios, a high density percolation threshold always
exists, as one would expect. In the Onsager limit, in which end-
effects are neglected, this high density percolation threshold
does not exist.

We find that if we increase the connectivity length, the
percolation islands grow in size, and eventually fan out, con-
necting to the high density threshold. If the connectivity length
is sufficiently large, percolation cannot be lost beyond the
percolation threshold, i.e., and the re-entrance phenomenon
disappears.

As to sub-critical cluster shapes, we confirm earlier findings
that clusters are spherical in the isotropic state but elongated in
the uniaxially aligned phases. Moreover, across the continuous
antinematic–biaxial nematic phase transition occurring subject
to disorienting fields, the clusters shift in shape from oblate
spheroidal to triaxial prolate ellipsoidal according to our find-
ings. We speculate that the highly anisometric shape of clusters
in these phases might be exploitable to manufacture materials
that have anisotropic conductivity properties.79

We expect our predictions to become less accurate for small
particle aspect ratios. Hence, it would be useful to verify our
calculations by means of simulations. To the best of our
knowledge, such simulations have not yet been conducted---at
least not under conditions of full thermodynamic equilibrium.

Interestingly, our results in the disorientational regime do
show a surprising qualitative resemblance with the percolation
diagrams obtained by dynamical simulations of nanorods
subject to shear flow.80 Indeed, if we compare Fig. 5b and 6b
of Kwon et al.80 with our Fig. 2, we conclude that a shear field
has a similar impact on the topology of the percolation diagram
as a disorientational field. In particular, in both multiple re-
entrance phenomena occur depending on the field strength
and the aspect ratio of the particles. Since Kwon and coworkers
explain this re-entrant percolation behaviour in terms of loca-
lised aggregation of particles rather than of particle alignment,
the correspondence might be coincidental.
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Ideally, we would also like to compare our predictions with
experimental work. We have not been able to find any such
work in the literature, but are aware of the experimental work of
Yuan et al.36 highlighting the competition between percolation
and the nematic transition in dispersions of graphene flakes,
which does lend some support to some of our findings.

Similar experiments have not yet been performed involving,
e.g., carbon nanotubes, and for these it is difficult to envisage
an external field that is of the planar type, other than an
extensional flow field imposed in a four-roll-mill setup.47 We
realise that such experiments are not trivial to conduct, as it is a
major challenge to disperse carbon nanotubes homogeneously
in any type of fluid, except perhaps chlorosulfonic acid.81

From an application point of view, the situation is even more
complex due to the impact of the manufacturing process,
including spin coating and shear mixing, on the orientational
order in the particle dispersions.29,82 Even in controlled labora-
tory experiments, external electric, magnetic or flow fields are
difficult to avoid, and our results show that the effects of such
weak external fields on the percolation threshold can be very
significant. We believe that this can in part explain the huge
scatter in the experimental measurements of the conductivity
of nanocomposite materials that seem superficially very
similar.26
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