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Interfacial behavior of the decane + brine +
surfactant system in the presence of carbon
dioxide, methane, and their mixturet
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Molecular dynamics simulations are carried out to get insights into the interfacial behavior of the decane
+ brine + surfactant + CH4 + CO, system at reservoir conditions. Our results show that the addition of
CH,, CO,, and sodium dodecyl sulfate (SDS) surfactant at the interface reduces the IFTs of the decane +
water and decane + brine (NaCl) systems. Here the influence of methane was found to be less
pronounced than that of carbon dioxide. As expected, the addition of salt increases the IFTs of the decane
+ water + surfactant and decane + water + surfactant + CH4/CO, systems. The IFTs of these surfactant-
containing systems decrease with temperature and the influence of pressure is found to be less
pronounced. The atomic density profiles show that the sulfate head groups of the SDS molecules
penetrate the water-rich phase and their alkyl tails are stretched into the decane-rich phase. The sodium
counterions of the surfactant molecules are located very close to their head groups. Furthermore, the
density profiles of water and salt ions are hardly affected by the presence of the SDS molecules. However,
the interfacial thickness between water and decane/CH4/CO, molecules increases with increasing
surfactant concentration. An important result is that the enrichment of CH,4 and/or CO, in the interfacial
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region decreases with increasing surfactant concentration. These results may be useful in the context of
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1 Introduction

The emission of anthropogenic CO, is one of the major causes
of global climatic changes.'™ Carbon capture and storage
technology might be beneficial for mitigating these emissions.
Various adsorbents (e.g., carbon nanotubes and clays)>* have
been extensively utilized for carbon dioxide capture. In enhanced
oil recovery (EOR) operations, the oil recovery could also be
combined with the carbon dioxide storage.'>>' The water-
alternating-gas (WAG) approach has been utilized for mobility
control during CO,-EOR operations.'®'®'*?! The WAG cycles
consist of injecting water (or surfactant) and CO, alternatively
into the reservoirs. Lowering the interfacial tension (IFT) of the
oil + water system leads to an increase in the capillary
number,””*° which may help to recover more oil. In general,
the presence of surfactant/CO, decreased this IFT. In addition,
the captured CO, contains impurities (e.g., CH,)"**>"** that may
have an important influence on the EOR operations.
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the water-alternating-gas approach that has been utilized during CO,-enhanced oil recovery operations.

25-37 32-34,36-39 38-45

Experiments, theory, and simulations
have been successfully employed to understand the bulk and
interfacial properties of alkane + water + CH,/CO, systems.
These studies have reported the occurrence of, for example, a
two-phase region at high pressures. The IFT of the alkane +
water + CH,/CO, two-phase systems was more similar to that of
the corresponding alkane + water system alone,>*>36:38743:43
The IFTs of the alkane + water + CH,/CO, and alkane + brine +
CH,/CO, systems increased with decreasing xcu, /Xco, (xCH4 and
Xco, are the mole fractions of CH, and CO, in the alkane-rich
phase, respectively). This can be attributed to the fact that the
interface was enriched with CH, and CO, molecules.>®*™** The
IFTs of the alkane + brine and alkane + brine + CH,/CO,
systems were reported to increase with increasing salt
concentration.*®?7:2%3%4445 It ig also known that the addition
of surfactants such as sodium dodecyl sulfate (SDS) generally
decreases the IFT.***® Molecular simulations showed that, in
the water + surfactant system, water molecules and sodium
counterions are relatively near the SDS headgroups.*>'™®
Bruce et al. found distortions in the water-water hydrogen
bonding network because of the SDS-water hydrogen bond
formations.*® Lin et al. found that, in the water + surfactant +
CH, system, the solubility of CH, in water is not affected by the
presence of SDS molecules at the interface.>® da Rocha et al.
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observed favorable CO,-fluorinated surfactant tail interactions at
the interface in the water + surfactant + CO, system.’ The high
density of CO, in the bulk enabled strong interaction between
CO, and the hydrocarbon tail of SDS at the interface.’®>’
However, the interfacial behavior of the decane + brine +
surfactant + CH, + CO, system has not been studied yet.

Molecular simulations have emerged as important
tools for accurately predicting the bulk and interfacial
properties.>'> 743839762 Here we perform molecular dynamics
(MD) simulations to get insights into the interfacial behavior of
the decane + brine + surfactant system in the presence of CH,
and CO, at reservoir conditions.

2 Simulation details

MD simulations of decane + water + surfactant and decane +
brine + surfactant two-phase systems in the presence of CH,
and CO, at 323 and 443 K, and pressure up to 100 MPa were
carried out using the GROMACS package.”® The salt (NaCl)
concentration is 2.7 mol kg~ " and the amounts of surfactant
adsorbed at the interface are 0.008 and 0.016 SDS per A%, The
method is similar to that used previously by us.*>**®° In short,
the TraPPE force field was used to model normal decane,
methane, and carbon dioxide.®®®® Water is represented by
the TIP4P/2005 model® and the Na* and CI™ ions are described
using the Smith and Dang”® parameters. As in the case of, e.g.,
decane, the hydrocarbon tail of SDS (C12) was also modeled
using the TraPPE united atom force field. The sulfate head
group of SDS was modeled using the all-atom CHARMM36
forcefield.”" The Lennard-Jones energy (¢) and distance (o)
parameters, and the charges (g) of the SDS molecules are given
in Table 1. The number of each species employed in our simula-
tions is given in Table 2. For example, all the systems had 2048
water and 200 decane molecules. Also, all the systems had the
dimensions of 36 x 36 A parallel to the interfaces (Fig. 1). The cell
size in the z-direction (perpendicular to the interfaces) L, was
about three times this value. The system sizes used here ensure
that the finite-size effects are negligible.*®****7>77% Each system
was equilibrated for 5 ns in the NPT ensemble (only L, varied) and
we ran a 5 ns production under NVE conditions. The temperature
was controlled using the Nosé-Hoover thermostat and pressure
using the Parrinello-Rahman barostat.

The IFT was estimated from the below equation;®*3%646%72775

1 1
Y= ELZ P..— E(P\Y + P}'}') s (1)

Table 1 Force field parameters of SDS

Site o (A) ¢ (k] mol™) q (e) Ref.
(@) 3.029 0.502 —0.650 71
S 3.741 1.966 1.330 71
O (in O-C bond) 2.939 0.418 —0.280 71
CH, (in O-C bond) ~ 3.950  0.382 —~0.100 66
CH, 3.950 0.382 0 66
CH; 3.750 0.815 0 66
10546 | Soft Matter, 2021, 17, 10545-10554
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where the diagonal components of the pressure tensor are
represented by Py, Py, and P,.. The radial distribution function
(RDF) was determined as described previously." The validation
of models and a detailed analysis of the interfacial behavior of
decane + H,O and decane + brine (NaCl) systems in the presence
of CH,, CO,, and their mixture can be found in our previous
studies.’®*® The amounts of surfactant chosen in our simulations
(0.008 and 0.016 SDS per A% seem to be well below the critical
micelle concentration (CMC). The overlap of the simulated IFTs
of the water + SDS and water + SDS + CH, systems with
the corresponding experimental data’®*’ is shown in Fig. 2.
To achieve the overlap, the bulk concentration of surfactant
reported in the experiments was multiplied by a constant (same
value used in both systems). It is important to mention that
these estimates could be further improved by using the Gibbs
adsorption isotherm.*>® For these systems, the CMC is about
8 mM (about 0.025 SDS per A*7%7”). Note, however, that higher
surfactant concentrations might be considered by using coarse-
grained models.”®

3 Results

3.1 Interfacial tension

The simulated IFTs of the decane + water + surfactant and
decane + brine + surfactant systems in the presence of CH,
(xcu, = 0.5), COy (xco, = 0.5), and their equimolar mixture
(Xch, = Xco, = 0.25) at 443 K are provided in Fig. 3. The salt
(NaCl) concentration was 2.7 mol kg™' and the amounts of
surfactant adsorbed at the interface were 0.008 and 0.016 SDS
per A% The corresponding simulation results at 323 K are
provided in Fig. S1 (ESIt). Note that our previous results of the
simulated IFTs of the decane + water’® and decane + brine
(NaCl)*® systems in the presence of CH,, CO,, and their mixture
compared well with the corresponding experimental®>*® and
density gradient theory (DGT)*®*?*° results. Past studies have
shown that the IFT of the alkane + water + CH,/CO, systems is
more similar to that of the corresponding alkane + water system
alone.>>3%363874345 Ao the IFT of the decane + brine + CH,/
CO, systems was more similar to that of the corresponding
decane + brine system alone.?®?%394%%% The IFTs of all these
systems decreased with temperature. For instance, the simula-
tion value of the IFT of the decane + water system (20 MPa)
decreased from about 47.8 mN m™ ' at 323 K to about
36.5 mN m ' at 443 K.*° It was found that the IFTs of these
systems generally increased with pressure. The influence of
pressure was, however, found to be less pronounced at lower
temperatures and higher values of xcp /Xco,. Note that the IFT of
the water + CH,/CO, and brine + CH,/CO, systems depends
nonmonotonically on pressure.”>”>’°% Furthermore, the IFTs
of the alkane + water + CH,/CO, and alkane + brine + CH,/CO,
systems increased with decreasing xcy /Xco,- Here, the influence
of methane was found to be less pronounced than that of carbon
dioxide. This can be attributed to the fact that the interface
was highly enriched with CO, molecules than with methane
molecules. It was found that the IFTs of the alkane + brine and
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Table 2 Number of molecules used in MD simulations

System Water no. Decane no. CH, no. CO, no. Na*/Cl™ no. SDS no.
Water + decane + SDS 2048 200 20-40
Brine + decane + SDS 2048 200 100 20-40
Water + 50%decane + 50%CH, + SDS 2048 200 200 20-40
Brine + 50%decane + 50%CH, + SDS 2048 200 200 100 20-40
Water + 50%decane + 50%CO, + SDS 2048 200 200 20-40
Brine + 50%decane + 50%CO, + SDS 2048 200 200 100 20-40
Water + 50%decane + 25%CH, + 25%CO, + SDS 2048 200 100 100 20-40
Brine + 50%decane + 25%CH, + 25%CO, + SDS 2048 200 100 100 100 20-40

, o
=i @) 000 @ @ i G
Z
X H,

(o] CH, CO, Na*  Cr Decane SDS

Fig. 1 Equilibrium snapshot of the decane + brine + surfactant + CH4 +
CO, (xCH4 = Xco, = 0.25) system at 443 K and 20 MPa. The NaCl
concentration is 2.7 mol kg~ and the amount of surfactant adsorbed at
the interface is 0.016 SDS per A2.

alkane + brine + CH,/CO, systems increase with salt
concentration.?¢?”2939444% Here the linear slope in the IFT versus
salt (NaCl) concentration plot was about 2 mN (m mol kg™ *)™"
under all conditions. This value was similar to that reported for the
brine + CH,/CO, systems.”>”>”° However, higher slopes were reported
for the corresponding systems containing divalent ions.”>”
Previous studies””>> have also shown that the IFTs decreased
with increasing SDS concentration, e.g., at the methane/water
interface (see Fig. 2). Our current results show that the addition
of the SDS surfactant reduces the IFTs of the decane + water and
decane + water + CH,/CO, systems. Similar behavior is also
observed for the decane + brine and decane + brine + CH,/CO,

systems. For example, the IFT of the decane + water + surfactant
(0.016 SDS per A%) system is about 16.5 mN m™* at 20 MPa and
443 K. As in the case of, for example, the alkane + water system,
the IFTs of these surfactant containing systems decrease with
temperature and the influence of pressure is found to be less
pronounced. We see that the IFTs of the decane + water +
surfactant + CH,/CO, and decane + brine + surfactant + CH,/
CO, systems decrease with increasing Xxcu /Xco,. Again the
influence of methane is found to be less pronounced than
that of carbon dioxide. For example, the IFTs of the decane +
water + surfactant (0.016 SDS per A%) system in the presence
of CHy (xcu, = 0.5) and CO, (xco, = 0.5) were about 13.7 and
11.5 mN m™ ', respectively, at 20 MPa and 443 K. It can be seen
that the IFT of, for instance, the decane + water + surfactant +
CH,4 + CO, system is more similar to that of the corresponding
decane + water + surfactant + CO, system. Furthermore, the
addition of salt increased the IFTs of the decane + water +
surfactant and decane + water + surfactant + CH,/CO, systems.
For example, the IFT of the decane + brine + surfactant
(0.016 SDS per A?) system is about 25.2 mN m™~* at 20 MPa and 443 K.

3.2 Atomic density profiles

The atomic density profiles may provide insights into the bulk
and interfacial properties of the studied systems. The simulated
density profiles for the decane + brine + surfactant + CH, + CO,
(*ch, = Xco, = 0.25) system at 443 K and 20 MPa are provided in
Fig. 4. These profiles at other conditions are provided in Fig. S2-S4
(ESIt). Note that our simulation results of the atomic density

80 80
(L(a) Water + SDS + vapor at 298 K (b) Water + CH, + SDS at 273.2 K and 7.2 MPa
o ° . 5 .
@) 1) o)
= 60 - @ @ — 60 O 0) @ -
Z ) o)
E ot oo | o2 o |
»
—40- O MD . 40~ O MD ® -
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Fig. 2
at 273.2 K and 7.2 MPa.
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IFT dependence on the surface concentration of surfactant for the (a) water + surfactant system at 298 K and (b) water + surfactant + CH,4 system
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Fig. 3 IFTs of (a) decane + brine + surfactant, (b) decane + brine + surfactant + CH4 (XCH4 =0.5), (c) decane + brine + surfactant + CO, (Xc02 =0.5), and
(d) decane + brine + surfactant + CH4 + CO, (><CH4 = Xco, = 0.25) systems at 443 K. Error bars are smaller than the symbol size.

profiles for the decane + water’® and decane + brine (NaCl)*
systems in the presence of CH,, CO,, and their mixture compared
well with the corresponding DGT***° results. Previous studies of
the alkane + water + CH,/CO, and alkane + brine + CH,/CO,
systems®**%#3%> have shown that the presence of CH, and CO,
hardly affects the density profiles of water, alkane, and salt. It was

found that, in general, the density profiles of water and alkane vary
monotonically across the interfacial region. These profiles might be
approximated by a hyperbolic tangent function.®® The salt ions
were excluded from the interfacial region and distributed homo-
genously within the H,O-rich phase. However, water is enriched at
the interfacial region with the addition of salt.**”*>#%% This can be

[(a) Brine (2.7 mol/kg) + 50%Dgcane + 25%CH,

1000 |~ +25%CO, + SDS (0.008/A°) at 20 MPa, and 443 K [— +25%CO, + SDS (0.016/A") at 20 MPa, and 443 K

HZO
Decane
CH o

co,

Na*

Ccr

B S (SDS)
C (SDS)

foN
(=
S
I

Density (kg m_3)

)

S

S
|

_(b) Brine (2.7 mol/kg) + 50%Dgcane + 25%CH

0 1 2 3 4
z (nm)

Fig. 4 Atomic density profiles for the decane + brine + surfactant + CH4 + CO, (XCH4 = Xco,= 0.25) system at 443 K and 20 MPa: (a) 0.008 SDS per A2

and (b) 0.016 SDS per A% The NaCl concentration is 2.7 mol kg™,
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explained by the enhanced ionic desorption from the interfacial
region at high salt concentrations. Also, at high xcy,, the interfacial
region was enriched with decane in the alkane + water + CH,
system.*® It is worth noting that the simulated distributions of
alkane exhibited artificial oscillations in the interfacial region due
to finite-size effects.®>®" The interfacial region was enriched with
CH, and CO, molecules for the alkane + water + CH,/CO, and
alkane + brine + CH,/CO, systems.*®**** This enrichment was
found to decrease with temperature and increase with pressure.
Also, in general, this enrichment increased with increasing xcp,/
Xco,- Here, the enrichment of methane was found to be less
pronounced than that of carbon dioxide. The presence of salt
had no significant effect on the CH,/CO, enrichment.*® At low
pressures, however, the enrichment of the interfacial region with
CO; (CH,) depends nonmonotonically on Xco, (¥cir,).***? Details of
the interfacial behavior of the water + CH,/CO, and brine + CH,/
CO, systems have been described by us and others.”>”>80-848¢-83
Here the enrichment of the interfacial region with CH, and CO,
depends nonmonotonically on pressure.

Note that the behavior of the IFT can be further understood
by means of the Gibbs adsorption equation:

—dy = Z rdu;, (2)

View Article Online
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where I'; and u; are the surface excess and the chemical
potential of component i, respectively. The surface excesses
could be calculated using the density profiles,3%3%:64:6%:73,74,84,85
A detailed description of the surface excess of different species
in the decane + water + CH,/CO, and decane + brine + CH,/CO,
systems is provided in our previous reports.’®?°
systems, it was found that the IFTs increase with pressure (salt
concentration) due to the negative surface excesses of alkanes
(salt).>®**° For the water + CH,/CO, and brine + CH,/CO,
systems, a minimum was found in the IFT versus pressure plot
when the surface excess of CH,/CO, changes sign from positive
to negative.”>”>%%% Furthermore, for the alkane + water and
alkane + water + CH,/CO, systems, the solubilities of decane/
CH,/CO, in the water-rich phase and water in the decane-rich
phase were very low.*®°>% The solubility of CH,/CO, in the
water-rich phase was found to decrease with the addition of salt
(salting-out effect).*”

Our current results show that the sulfate head groups
(see, e.g., sulfur atoms) of the SDS surfactant molecules penetrate
the water-rich phase and their alkyl tails are stretched into the
decane-rich phase. The Na' counterions of the SDS surfactant
molecules are located very close to their head groups (see, e.g.,
Fig. S2, ESIf). Furthermore, the distributions of water and Cl™
ions are independent of the surfactant concentration for the

For these

CH4 CO2 Decane
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Fig. 5 Simulated surface excess (symbols) of (a) CHg4, (b) CO,, and (c) decane for the decane + brine + surfactant + CH4 + CO, (xCH4 = Xco, = 0.25)
system at 323 K and NaCl concentration of 2.7 mol kg™*. The corresponding surface excess at 443 K is shown in (d), (e), and (f), respectively. The lines

denote the DGT results.>
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studied systems (see also Fig. S5, ESIt). However, the interfacial
thickness between water and decane/CH,/CO, molecules
increases with increasing surfactant concentration. We estimated
the interfacial thickness between water and decane by applying
the “90-90” interfacial thickness criterion (distance between
positions where densities of decane and H,0 were 90% of their
own bulk densities).>* The results are provided in Fig. S6-S9
(ESIY). The interfacial thickness between water and decane is in
the range of about 1.1-1.7 nm for the studied systems. This
interfacial thickness shows an opposite trend to that seen for
the IFT. For example, the interfacial thickness decreases with the
addition of salt and increases with the addition of CH,/CO,.
Interestingly, the enrichment of CH, and/or CO, in the interfacial
region decreases with increasing surfactant concentration.
It seems that the enrichment is followed by a minimum in
the density profile of CO, at high surfactant concentrations.
This minimum is found near the location of the surfactant tails.

We calculated the surface excess®®?6%6%73748485 1y yy5ing
these density profiles. Our results show that the surface excess
of CH,4, CO,, and decane decreases with increasing surfactant
concentration (Fig. 5). The surface excess of CH,/CO, changes sign
from positive to negative as surfactant concentration increases.
The addition of SDS surfactants has a more pronounced effect on
the surface excess of decane. For example, at 443K and 20 MPa, the
surface excess of decane in the decane + brine + CH, + CO,>° and
decane + brine + surfactant + CH, + CO, (0.016 SDS per A%) systems
is about —0.47 x 107® mol m™? and —2.7 x 10°® mol m 2
respectively. The corresponding surface excess of CH, is about
0.19 x 10°® mol m 2 and — 0.73 x 10~ ° mol m™?, respectively,
and that of CO, is about 0.57 x 10~°® mol m~? and —0.03 X
10°® mol m 2 respectively. Here the effects of pressure,
temperature, and mole fraction on the surface excess are similar
to those observed for the decane + water + CH,/CO, and decane +
brine + CH,/CO, systems.e's'39 For example in all cases, we see that
the surface excess of decane decreases with pressure, whereas the
surface excess of CH, and CO, increases with pressure.

3.3 Radial distribution functions

The RDFs may give further insights into the interfacial properties
of the surfactant-containing systems. The simulated RDFs for the
decane + brine + surfactant + CH, + CO, system at 443 K and
20 MPa are provided in Fig. 6. We see that water molecules and
counterions are nearest to the SDS headgroups. The first peak in
the RDF of S-H (water), S-Na', and S-O (water) is around 0.29,
0.36, and 0.38 nm, respectively. These peak positions obtained
here are consistent with the previous simulation results.>?>*38
The presence of water molecules near the SDS headgroups is
possibly due to the hydrogen bonding between SDS headgroups
and water molecules.*> Whereas, CO,, CH,, decane, and Cl~ are
further away from the SDS headgroups. The first peak in the RDF
of S-O (CO,), S-CH, site, and S-ClI”~ is around 0.40, 0.46, and
0.49 nm, respectively. The RDFs show that the interactions of the
surfactant headgroups with methane are weaker than those with
CO,. This is expected due to the quadrupole moment of CO,
molecule.”® Similar positions of these peaks were found in all
studied systems. It is worth mentioning that here the RDFs may
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Fig. 6 RDFs between the S-atom of SDS and different species in the
decane + brine + surfactant + CH4 + CO, (XCH4 = Xco,= 0.25) system at
443 K and 20 MPa. The NaCl concentration is 2.7 mol kg~* and the amount
of surfactant adsorbed at the interface is 0.016 SDS per A2,

not go to unity at large distances due to the inhomogeneous
nature of the system.>>>*® In comparison, the alkyl tails of SDS
interact strongly with decane molecules leading to peaks, for
example, at 0.55 nm (Fig. S10, ESIf). Furthermore, it is found
that the alkyl tails of SDS interact similarly with CH, and CO,.
For both these interactions the first peak in the RDF plot is
around 0.47 nm and its magnitude is about 1.7. A similar result is
obtained for the interactions between alkane and CH,/CO,.**%®

We calculated the end-to-end distance and radius of
gyration®>®*° of the alkyl tails of SDS molecules for the decane
+ water + surfactant system (Table 3). Here the end-to-end
distance is in the range of about 1.12 to 1.18 nm. This end-
to-end distance decreases with temperature and increases with
the amount of surfactant. We found that pressure has no effect
on the end-to-end distance. Similar trends were observed for
the radius of gyration. Furthermore, these sizes were not
affected by the presence of salt/CH,/CO, under the studied
conditions.

Regarding the SDS force field (see Table 1), it was shown that
the difference among the force fields does not have much effect
on the overall structure of small aggregates of surfactant.>*
Among different water models, the surface tension simulated
using TIP4P/2005 model was close to the experimental data.”?
Moreover, our simulated RDF peaks for SDS-water spatial
correlations are consistent with previous studies.*>>*>% It will
be challenging to obtain the relevant activity coefficients of,
e.g., salt from molecular simulations for these multi-component

Table 3 Chain size of the alkyl tail (C12) of SDS for the decane + water +
surfactant system at 20 MPa

End to end distance/radius of gyration (nm)

No. of SDS per A® 323 K 443 K
0.008 1.16/0.394 1.12/0.383
0.016 1.18/0.396 1.14/0.385

This journal is © The Royal Society of Chemistry 2021
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systems.”> However, for decane + brine + CH,/CO, systems,
theoretical analysis showed that changing salt concentration
does not have much effect on the chemical potential of decane,
CH,, and CO,.*®* This explains the fact that the IFTs increased
with salt concentration because of the negative surface excess of
salt ions (see eqn (2)).***° Note that we did not consider any
SDS in the bulk and the salting-out of SDS to the interface.*®
Therefore, further studies are necessary to fully understand the
effects of surfactants on the decane + brine + CH,/CO, systems.

4 Conclusions

The interfacial behavior of the decane + brine + surfactant +
CH, + CO, two-phase system was studied using MD simulations
at 323 and 443 K, and pressure up to 100 MPa. Note that our
previous results*®*? of the simulated IFTs of decane + brine +
CH,/CO, systems compared well with the corresponding
experimental®®*®> and DGT**?° results. Our current results
show that the addition of CH,, CO,, and the presence of SDS
surfactant at the interface reduced the IFTs of the decane +
water and decane + brine (NaCl) systems. Notably, the influence
of methane was observed to be less pronounced than that of
carbon dioxide. For example, the IFT of the decane + water +
SDS + CH, + CO; (xch, = Xco,= 0.25) system is more similar to
that of the corresponding decane + water + SDS + CO, (xco,= 0.5)
system. This may be attributed to the fact that the interface was
highly enriched with CO, molecules than with CH, molecules.
As expected, at a fixed surface concentration of SDS, the
addition of salt increases the IFTs of the decane + water +
SDS and decane + water + SDS + CH,/CO, systems. The IFTs
of these surfactant-containing systems decreased with
temperature and the influence of pressure was found to be less
pronounced.

The atomic density profiles show that the sulfate head
groups of the SDS molecules penetrate the water-rich phase
and their alkyl tails are stretched into the decane-rich phase.
The Na' counterions of the surfactant molecules are positioned
very close to their head groups. Furthermore, the density
profiles of water and salt ions are independent of the surfactant
concentration. However, the interfacial thickness between
water and decane/CH,/CO, molecules increases with increasing
surfactant concentration. For instance, the interfacial thickness
between water and decane is in the range of about 1.1-1.7 nm
for the studied systems. This interfacial thickness decreased
with the addition of salt and increased with the addition of
CH,4/CO,. An important finding is that the enrichment of CH,
and/or CO, in the interfacial region decreases with increasing
surfactant concentration. The calculated RDFs show that the
interactions of the surfactant headgroups with methane are
weaker than those with CO,.
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