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Multiscale simulations of polyzwitterions
in aqueous bulk solutions and brush array
configurations†

Aristotelis P. Sgouros, a Stefan Knippenberg, b Maxime Guillaumeb and
Doros N. Theodorou *a

Zwitterionic polymers are very promising candidates for antifouling materials that exhibit high chemical

stability as compared to polyethylene glycol-based systems. A number of simulation and experimental

studies have emerged over recent years for the investigation of sulfobetaine-based zwitterionic

polymers. Investigating the structural and thermodynamic properties of such polymers requires access

to broad time and length regimes, thus necessitating the development of multiscale simulation

strategies. The present article advocates a mesoscopic dissipative particle dynamics (DPD) model

capable of addressing a wide range of time and length scales. The mesoscopic force field was

developed hand-in-hand with atomistic simulations based on the OPLS force field through a bottom-up

parameterization procedure that matches the atomistically calculated strand-length, strand-angle and

pair distribution functions. The DPD model is validated against atomistic simulations conducted in this

work, and against relevant atomistic simulation studies, theoretical predictions and experimental

correlations from the literature. Properties examined include the conformations of SPE polymers in

dilute bulk aqueous solution, the density profile and thickness of brush arrays as functions of the grafting

density and chain length. In addition, we compute the potential of mean force of an approaching

hydrophilic or hydrophobic foulant via umbrella sampling as a function of its position relative to the

poly-zwitterion-covered surface. The aforementioned observables lead to important insights regarding

the conformational tendencies of grafted polyzwitterions and their antifouling properties.

1. Introduction

Antifouling, i.e., preventing the accumulation of biomolecules,
microorganisms, plants, algae, or even small animals on surfaces,
is extremely important in applications ranging from maintaining
the separation efficiency of polymeric membranes to excluding
pathogens from medical devices.1–4 Antifouling is typically accom-
plished by coating the surface of a structure or product with a
layer that can eliminate or repel foulants (FLs). Generally, there
are two classes of antifouling layers: biocidal5,6 or non-biocidal.7–9

Among non-biocidal layers—which are considered to be less toxic7

—one can find materials that are antifouling because of surface
structuration (such as super-slippery sharklet technology),10 or
superhydrophobicity,11,12 or high surface hydrophilicity.13

Among hydrophilic non-biocidal coatings, zwitterionic
polymers14–22 are considered to be one of the two major classes
of antifouling materials that are accessible and relatively easy to
implement, the other being hydrophilic polymers based on
poly(ethylene glycol) (PEG).23,24 Brushes of zwitterionic poly-
mers terminally grafted to a surface have been found to be
effective antifouling agents, exhibiting higher chemical stability
than PEG-based layers.23 A recent review paper highlights the
development of biocompatible and bioactive materials for anti-
fouling surfaces as an important and timely topic; it points out
that significant efforts have been made for the development of
these materials, but ‘‘much of the work retains an empirical flavor
due to the complexity of experiments and the lack of robust
theoretical models’’.23 These systems involve macromolecules of a
complex chemical constitution, interfaces, electrolyte solutions,
and chemical reactions. Each of these aspects is considered to be
a major challenge for molecular simulation.
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Promising polyzwitterionic candidates with antifouling pro-
perties are carboxybetaine methacrylate (CBMA), 2-methacryl-
oyloxyethyl phosphorylcholine (MPC), and (sulfobetaine
methacrylate) (SBMA).23 The latter, more correctly named 3-[N-
(2-methacryloyloxy)ethyl-N,N-dimethyl] ammonio propane-1-
sulfonate, is also called SPE. We will use this acronym for both
the monomer and its polymer in this work.

During the last decade there have been several atomistic16,19–22

and a few mesoscopic25 simulations of the antifouling action of
zwitterionic membranes. In a series of papers, Shao et al. examine
the influence of charged groups16 and ions20 on polyzwitterions,
as well as the effect of the latter on proteins.22 In a recent paper by
Xiang et al.,19 brushes of terminally grafted sulfobetaine polymers
were considered at different surface densities. The structure of the
brushes, including ion pairs between sulfobetaine zwitterions,
was explored. Interactions between two such brushes were com-
puted in vacuo, in water, and in a salt solution. Furthermore, the
mean force experienced by a foulant (FL) as a function of its
distance from the surface was computed by steered molecular
dynamics (SMD).19 The FL in the work of Xiang et al.19 was
represented as an alginate gel.

The relevant time and length scales governing the thermo-
dynamics and dynamics of long-chain polyzwitterions in
solution, their adsorption or chemical grafting onto solid
surfaces, and their antifouling action exceed by far the range
of microseconds and tens of nanometers that can be addressed
by atomistic simulations on readily available computational
platforms;26,27 judicious coarse-graining is thus necessary.

A wide variety of mesoscopic techniques have been developed
for addressing the properties of soft matter systems for time
scales up to seconds and length scales up to micrometers.
A promising technique of this kind for simulating anti-
biofouling polyzwitterionic layers is Dissipative Particle
Dynamics (DPD), in which beads interact with each other
through soft conservative and pairwise dissipative and random
forces.28–33 A definite advantage of DPD is that it correctly
represents hydrodynamic interactions. The DPD method has
been applied to a variety of problems involving polymers and
copolymers,32,34,35 nanocomposites,34 water–oil interfaces,36,37

brush arrays,38,39 liquid/solid40 and liquid/vacuum41 interfaces,
bilayers/membranes,31,42–46 and liquid flow in bulk47 and micro-
channels.48

The objective of the present study is to develop a multiscale
molecular modeling and simulation methodology that can
facilitate the design of polyzwitterionic brush arrays capable
of repelling bacteria and other bio-fouling agents from solid
surfaces in aqueous environments. The modeling approach is
able to predict how the length and concentration of the polymer
brushes affect the structure of the layers formed on the surface,
and the repulsive potential of mean force experienced by
biofoulants due to these layers. Given the chemical complexity
of the systems of interest and the broad range of length and
time scales governing their physicochemical behavior, a multi-
scale modeling and simulation methodology is adopted,
employing two interconnected representations: (i) a detailed
atomistic representation based on a suitable force field,

simulated with molecular dynamics (MD); (ii) a mesoscopic
representation cast in terms of coarse-grained ‘‘beads,’’ simulated
with DPD.

Parameterizing a DPD simulation so as to represent a specific
chemical system is not a trivial undertaking.30,35–37,42–46,48–50

A common practice is to tune the repulsive parameters of a ramp
potential aij for each interaction pair ij in a way that reproduces
specific Flory–Huggins parameters wij, using the correlation
proposed by Groot et al.30 to link wij with the repulsion para-
meters, aij, of the DPD potential. Weiß et al.51 propose a strategy
which initially maps out the surface charge density distribution by
quantum chemical methods around each moiety to be coarse-
grained into a bead, then invokes the COSMO-RS framework to
calculate the residual Gibbs energy of mixing of binary systems of
beads, then fits a w factor to the latter, and finally determines the
DPD parameter a so as to match this w factor. An alternative
bottom-up approach to restore the nonbonded interactions is
to employ a tabulated pair potential that can be parameterized
from the pair-distributions of an MD simulation with iterative
Boltzmann inversion52,53 or with reverse Monte Carlo.54,55

Given that the estimation of the w parameters for charged
SPEs is not straightforward due to the presence of electric
charges, we opted to incorporate a hybrid bottom-up para-
meterization procedure in which: (i) we retained the usual
ramp potential of DPD but, (ii) we optimized the aij parameters
in a way that best matches the pair-distribution functions
between MD and DPD. Optimization of the repulsive coefficients
was performed via brute force and machine-learning-based para-
meterization procedures (Bayesian optimization) which minimized
the standard deviation between the pair-distributions from MD
and DPD. The effective bonded interactions, on the other hand,
were parameterized based on a Monte Carlo optimization scheme
which best matches the strand-length and strand-angle distribu-
tions between MD and DPD.

Predicted properties include the conformations of long SPE
chains in aqueous bulk solutions, the density profiles of brush
arrays and the brush dimensions and grafted layer structure
by means of the root mean square brush height hhg

2i0.5 and
the span hh99%i,53,56,57 and the potential of mean force (PMF)
between a solid substrate covered by the brush array and an
approaching mock foulant (suspended particle) as a function of
the foulant’s position relative to the surface. PMF is a direct
measure of the layer’s effectiveness as an antifouling agent.
A repulsive PMF is desirable; the longer the range of repulsion
and the steeper the potential of mean force, the better the
antifouling properties. The repulsive/attractive tendencies
between the foulants and the antifouling brushes are governed
by an interplay of brush–solution, brush–foulant and foulant–
solution interactions. To discern and validate these tendencies
we performed a sensitivity analysis of the PMF in terms of
varying the strength of the repulsive foulant–water and foulant–
SPE interactions; hence, tuning in that way the hydrophobicity/
hydrophilicity of these substances. Extensive validation efforts
were performed between the MD and DPD levels of modeling and
between simulations19 and available experimental evidence14,15

from the literature.
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To the authors’ knowledge, this is the first mesoscale study
of SPE polyzwitterions that addresses the following aspects in
the field of dissipative particle dynamics and antifouling:
� It proposes a hybrid IBI/MC/machine learning approach

for the bottom-up parameterization of the DPD model, which
does not require knowing the Flory’s w-parameters.
� It provides indirect indications for the transferability of the

free energy potential to different concentrations.
� It displays predictions concerning poly-zwitterions of high

molar mass, whose simulation exceeds by far the capabilities of
atomistic molecular dynamics.
� It assesses the scaling laws of the brush measures over a

broad range of molar masses and grafting densities and
provides comparisons with theoretical predictions.
� It demonstrates the applicability of umbrella sampling

techniques for assessing the antifouling properties of poly-
zwitterionic layers.

The article is structured as follows: Section 2 presents an
introduction to DPD; Section 3 introduces the atomistic and
mesoscopic models and discusses the bottom-up parameteriza-
tion procedure that bridges the atomistic levels of description
with the mesoscopic ones. Section 4 includes in-depth details
regarding the MD and DPD simulations. Section 5 presents the
main findings of this work for bulk solutions and brush arrays.
Finally, Section 6 concludes the manuscript.

2. Dissipative particle dynamics

DPD was initially introduced by Hoogerbrugge and Koelman28

and reformulated by Español and Warren.29 In DPD, the dissi-
pative and random forces are related through the fluctuation–
dissipation theorem, leading to conservation of the momentum,
which is a prerequisite for a correct description of hydro-
dynamics.58 In this model a set of point particles move and
interact with each other with three types of pairwise forces:

fi ¼
X
jai

f Cij þ fDij þ f Rij

� �
(1)

with f C being a conservative force derived from a potential, f D

being a dissipative force that reduces the radial velocity differ-
ences between particles, and fR being a stochastic force directed
along the line joining the centers of the particles. The func-
tional forms of the dissipative and random forces are:

f D
ij = �gij wD(eij�vij)eij (2)

f R
ij = sij wRzijeij (3)

with eij = (ri � rj)/(|ri � rj|) being a unit vector in the direction
from particle j to particle i, vij = vi � vj being the relative velocity
of the particles, gij being a pairwise friction factor, and wD and
wR being the weight functions which are chosen according to
the fluctuation–dissipation theorem, sij

2 = 2gijkBT and wD = wR
2.

The standard description of nonbonded soft conservative
interactions in DPD involves a repulsive ramp force that has a
finite value at zero distance and decays linearly with increasing

distance to zero at a characteristic cutoff distance, rc.

f Cij ¼ aij 1� rij

rc

� �
eij (4)

The forces vanish beyond the cutoff distance rc; the total
momentum is conserved, and hydrodynamics is respected.
We will call this force ‘‘dispersive’’ for short in the following.
The magnitude of dispersive nonbonded forces is determined
by the coefficients aij which tune the pairwise repulsion of the
DPD beads.

3. Model systems
3.1 Atomistic model

The chemical formula of SPE is illustrated schematically in
Fig. 1. The sulfobetaine group contained in SPE is zwitterionic,
consisting of a positively charged quaternary ammonium and a
negatively charged sulfonate tethered by three methylene units.
During the polymerization the double bond opens, connecting
the SPEs across the CH2 into a backbone.

3.1.1 Force fields for SPE. The atomistic SPEs were described
using two different force fields for validation and comparison
purposes, namely DREIDING59 and OPLS.60,61

DREIDING is considered to be relatively inexpensive com-
putationally and generic; thus, it is readily applicable over a vast
range of polymer types. Nonetheless, the fact that it is generic
makes its accuracy for describing uncommon molecular architec-
tures questionable. DREIDING does not offer a specific recipe for
assigning charges to individual monomers; thus the charges were
assigned using the generic Gasteiger62 scheme.

The OPLS force field was initially developed by Jorgensen’s
group60,61 and has been parameterized for describing accu-
rately very similar polymers; in particular, the same sulfo-
betaine groups, but shorter by one methylene segment,21 and
the same SPE group with a different backbone attached to Au
nanoparticles.61 Thus, the potential employed herein was
derived by mixing the original OPLS parameters with the force
fields in ref. 21 and 61 (see Section S1, ESI†).63–65 The OPLS
force field was applied via an in-house code that was developed
for the purposes of this project.

The primary atomistic simulations based on which we
parameterized our mesoscopic model were conducted with
the OPLS force field. A few representative cases were simulated
with DREIDING as well for comparison purposes.

Fig. 1 Chemical structure of an SPE monomer. During the polymerization
the double bond at the backbone opens, forming a new bond with the
next SPE monomer.
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3.1.2 SPCE force field for water. The interactions among
water molecules were described with the SPCE three-point-
charge force field for water.66 SPCE has been employed for
modeling very similar systems,19 and is computationally inex-
pensive since it involves rigid OH bonds and HÔH bond angles.

3.2 Mesoscopic model

3.2.1 Mapping. Fig. 2 illustrates the mapping between the
atomistic and the mesoscopic levels of description. Various
coarse graining schemes have been employed in the literature
with Nm ranging from 1–531,37,42–44,46,67–69 up to 107–109 water
molecules per bead.48 In this work, the water molecules are
lumped into groups of Nm = 5 water molecules per bead. The
mesoscopic representation of SPE includes 4 bead types: SB
(relative molecular mass mC3H5

= 41.07 g mol�1), constituting
the backbones of the chains; SO (mC2O2H2

= 58.04 g mol�1),
describing the ester group; SN (mNC4H10

= 72.13 g mol�1), the
positively charged quaternary ammonium; SS (mSO3C2H4

=
108.11 g mol�1), the negatively charged sulfonate group. Each
coarse-grained bead of the polymer is placed at the center of
mass of the atomistic moiety it represents. Beads are connected
together with effective bonds represented by springs and form
effective bond-bending angles.

3.2.2 Coarse-grained force field for water and reduced
units. DPD simulations are usually performed using the follow-
ing dimensionless quantities for the mass, distance, time,

energy, and electric charge, respectively: ~m ¼ m

mDPD
, ~r ¼ r

rDPD
,

~t ¼ t

tDPD
, ~E ¼ E

eDPD
, ~q ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pe0eDPDrDPD

p . The reference bead

mass, mDPD = Nm�mH2O, is set equal to the mass of the water

bead describing Nm water molecules (mH2O). rDPD ¼ rc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~rDPDNmVH2O

3
p

is the cutoff distance of the nonbonded inter-

actions with VH2O being the volume per water molecule as
calculated from the density of bulk liquid water under the
conditions of interest.31 Thus, we find the physical size of the
interaction radius. tDPD is a reference time and is usually set

equal to tDPD ¼ rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDPD=ðkBTÞ

p
. eDPD is usually set to kBT.

Note that the aforementioned quantities are functions of the
dimensionless DPD number density, which is set to ~rDPD =
rDPDrc

3 = 3, as in most DPD studies.30,31,37,70 It should be noted
that ~rDPD is a free parameter of the model that can be set to any
value equal to or larger than 3, which is the lowest value for
which the excess pressure retains its proportionality to ~rDPD

2.30

Setting ~rDPD 4 3, however, has been deemed impractical
because the number of interactions scales as B~rDPD

2.30

The commonly used dimensionless friction factor, ~gij = 4.5
(in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDPDeDPD
p

=rDPD units) leads to a very good temperature
control; however, it predicts overly enhanced diffusivity for
water.31,45 The effect is demonstrated in Table 1 which depicts
the self-diffusion coefficient of experimental71 and simulated
water via MD and DPD. The diffusion coefficient of the DPD
water beads, multiplied by Nm = 5, is much higher than the
experimental one.

An approach to overcome this problem and reproduce the
diffusivity of water exactly is to renormalize the reference time
accordingly:31,45

trenormDPD ¼ tDPD

NmD
DPD
H2O

Dexp
H2O

(5)

where Dsim
H2O

and D
exp
H2O
¼ 2:43� 10�9 m2 s�1 are the simulated

and the experimental self-diffusion coefficients of a water bead
and a water molecule, respectively.71 For Nm = 5, tDPD = 4.6 ps,

whereas Dsim
H2O

was estimated at B10.47 � 10�9 m2 s�1 from our

simulations (1/6 of the slope of mean square displacement with

Fig. 2 Atomistic (left) and mesoscopic (right) representation an (a) SPE
and (b) water molecules.

Table 1 Self-diffusion coefficients of water from the experiment,71 MD
(the SPCE model of water with an abrupt cutoff at 10 Å), and DPD (each
bead describes five water molecules). The last two rows depict the
diffusion coefficient of an SPE monomer infinitely diluted in aqueous
solution from MD and DPD. The rightmost column displays the renorma-
lized diffusion coefficient based on trenorm

DPD from eqn (5)

System Method D (nm2 ns�1) Drenorm (nm2 ns�1)

H2O EXP71 2.430 —
H2O MD-SPCE 2.595 —
W (H2O)5 DPD 10.47 0.486
SPE1 MD-OPLS 0.261 —
SPE1 DPD 4.531 0.210
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respect to time). Using these values in eqn (5), the reference
time, trenorm

DPD , increases by B21.5 times (see Table 2). Interest-
ingly, rescaling the time by eqn (5) yields DPD self-diffusivities
for SPE which are very close to those obtained by atomistic MD
(see the two last rows of Table 1). This reinforces the idea that
the rescaling of eqn (5) is physically meaningful.

Regarding the nonbonded interactions among water beads,
a common practice is to fit the coefficient aij in eqn (4) to a
value that in the case of water reproduces the experimental
compressibility of the liquid:

aWW ¼ Nm

~k�1 � 1

2a
kBT

rDPD

(6)

with ~k�1 ¼ 1= rnkBTkTð Þ ¼ 15:9835 being the dimensionless
experimental inverse compressibility of water, where kT is the
real isothermal compressibility and rn the number density
of molecules.30 According to Groot and Warren,30 setting a =
(PDPD � rDPDkBT)/(aWWrDPD

2) to 0.101rc
4 provides a good

approximation for ~rDPD 4 2, with PDPD being the pressure
predicted by the DPD simulation. In this work we recalculated it
to a = 0.0919rc

4, which provides a more accurate estimation of
the ratio for ~rDPD = 3.

3.2.3 Coarse-grained force field for SPE. In our mesoscopic
model, the beads are connected with harmonic strands with the
free energy contribution

Ustrand = kstrand(r � l0)2 (7)

with kstrand and l0 being the stiffness and the reference length of
the strand, respectively. In addition, consecutive bead triplets
form angles which are described with the following harmonic
potential:

Uangle = kangle(y � y0)2 (8)

with kangle and y0 being the stiffness and the reference angle of
the strand-bending potential. The non-bonded dispersive inter-
actions among like and unlike beads are described with the
ramp potential in eqn (4).

Regarding the electrostatics, because of the softness of
short-range nonbonded interactions, point charges cannot be
used in DPD, for they would bring about collapse of oppositely
charged beads upon each other and negatively infinite electro-
static energy. Instead, it is common practice to smear the
charge of a bead according to a prescribed density function

within a sphere of the prescribed radius. The electrostatic
field resulting from the smeared distributions is then summed
using the particle–particle particle-mesh (PPPM) or the three-
dimensional Ewald summation method (EW3DC).72 In our
model, the DPD beads experience electrostatic interactions
which are described by the following potential68 which was
introduced by the authors in LAMMPS for the purposes of this
project:

Uij ¼ k
qiqj

rij
1� 1þ rij

l

� �
exp �2rij

l

� �� �
(9)

where k = (4pe0er)
�1 with e0 = 8.85418782 � 10�12 C2 J�1 m�1

being the permittivity of free space and er being the relative
permittivity (for water at 298 K it equals er = 78.3).39 This
potential smears the charge across a DPD bead using a Slater

type charge density, riðrÞ ¼
qi

pl3
exp �2 r� rij j

l

� �
; with l being

the second moment of the charge distribution.68 Note that in
the limit l - 0, the potential recovers its original Coulomb
expression, while according to the DPD literature,45,73,74 the
optimal value for l is 0.25rc.

In our implementation the DPD nonbonded interactions are
zero between 1st neighboring (directly bonded) beads in a
molecule, 50% between 2nd bonded neighbors and 100%
everywhere else. Regarding the Coulomb interactions, these
are zero between 1st–3rd bonded neighbors.

Based on the parameterization procedure that is reported in
Appendix A we obtained the coefficients for the mesoscopic
force field shown in Tables 3–5. Finally, for the case of brush
arrays, the nonbonded coefficients of the atoms comprising
the solid surface were set to ãAA = 200 (in DPD units), whilst the

Table 2 Reference units

Quantity Real units DPD units

Nm 5 water molecules 5
mDPD 0.09 kg mol�1 1
trenorm

DPD 99.245 � 10�12 s 1
rDPD = rc 7.66 � 10�10 m 1
eDPD = kBT 4.14 � 10�21 J 1
|qDPD| 0.84e = 1.346 � 10�19 C 7.16
rDPD 997 kg m�3 3
gij 1.46 � 10�13 kg s�1 4.5
sij 3.48 � 10�17 (J kg s�1)0.5 3
aWW 7.34 � 10�13 N 135.868

Table 3 Coefficients for the strands (eqn (7)), in DPD units

Bond type kstrand l0

SB–SB 993.893 0.390
SB–SO 6536.214 0.375
SN–SO 707.171 0.526
SN–SS 1810.595 0.663

Table 5 Coefficients for the nonbonded dispersive interactions (aij),
charges and masses, in DPD units

SB SO SN SS W Charges Mass

SB 63.69 61.59 62.16 103.44 98.26 0.00 0.456
SO 61.07 39.87 89.33 103.33 0.00 0.645
SN 61.46 77.35 54.45 7.16 0.801
SS 129.03 135.24 �7.16 1.201
W 135.86 0.00 1.000

Table 4 Coefficients for the strand-angles (eqn (8)), in DPD units

Angle type kangle y0 (1)

SB–SB–SB 2.744 115.252
SB–SB–SO 6.434 82.982
SB–SO–SN 2.585 130.594
SO–SN–SS 3.094 134.925
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interactions with beads of type j were derived by applying the
geometric mixing rule; aAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aAAajj
p

.

It is worth mentioning here that our implementation
involves variable bead-size,75 charged DPD beads, and variable
aii coefficients; thus, it is not straightforward to interpret the
physical meaning of the repulsive coefficients listed in Table 5.
In detail, the derived aij contains information about several
molecular-level aspects such as:
� Bead size
� Enthalpic interactions
� Entropic interactions
� Charges and hydrogen-bonding effects
� Geometric constraints imposed by the branched architec-

ture that generate correlations
Even though these aspects are highly convoluted, one could

nonetheless attempt to discern some basic trends. Overall,
the coefficients increase with bead mass (rightmost column
of Table 5) since the beads occupy more space and thus aij must
become more repulsive. Interestingly, even though mSN 4 mSB

and mSO, their repulsive coefficients are similar. This is attrib-
uted to SN being positively charged; the SN–SN repulsive
coefficient remains relatively low in order to compensate
for electrostatic repulsion between positively charged SN–SN
pairs. The same reasoning can be applied to SS beads as well:
even though mSS 4 mW, we see that aSS o aWW in order to
compensate for the repulsive interaction between negatively
charged SS beads. Interactions between the beads at the end of
the zwitterion (SN and SO) with its backbone (SB) are somewhat
more repulsive (e.g., compare SN–SO with SN–SB, and SS–SO
with SS–SB, whilst keeping in mind that mSO 4 mSB). This effect
could be attributed to the molecular architecture of the poly-
zwitterions and to excluded volume effects arising due to the
presence of the intermediate SO beads.

Finally, the pair-wise friction factors of the SPE beads were set to
~gij = 4.5. Interestingly, even though we based the time-mapping
solely on the dynamics of water, the renormalized diffusion
coefficients of the coarse-grained SPEs are in reasonable agreement
with the diffusion coefficients of the atomistic ones; e.g., compare
the renormalized DPD diffusion coefficient with the atomistic
diffusion coefficient in Table 1. The agreement could be potentially
improved by optimizing the ~gij with the target to match the
diffusion coefficient of the atomistic and the mesoscopic SPEs.

4. Simulation details
4.1 Atomistic molecular dynamics

The initial configurations were generated with the Amorphous
Builder program,76 as implemented in the MAPS77 package by
Scienomics. During the generation phase (chain growth and
insertion of water molecules), the system temperature was set
to T = 450 K, the density to r = 0.8 g mol�1, and the interactions
were described by the DREIDING force field59 with Gasteiger
charges.62 For simulations with the OPLS force field the bonded
and nonbonded OPLS coefficients were applied using an
in-house code.

The atomistic simulations consisted of three main stages:
1. The initial configurations were subjected to sequential

energy minimizations, in which the bond and angle stiffness
was gradually increased, until these hard degrees of freedom
practically reached their equilibrium values. In particular, the
initial coefficients for the harmonic, Vbond = kbond(l � l0)2,
SPCE bonds for water were set to kbond = 100 kcal mol�1 Å�1

and l0 = 1 Å, and the initial coefficients for the harmonic
SPCE angles, Vangle = kangle(y � y0)2, were set to kangle =
100 kcal mol�1 rad�1 and y0 = 109.47 Å. Furthermore, over
subsequent energy minimizations, the bond and angle stiffness
was increased by powers of 2 until these geometric charac-
teristics practically reached their equilibrium lengths corres-
ponding to infinite stiffness.

2. The energy-minimized atomistic configurations were then
simulated for moderate periods of time until they reached their
equilibrium properties. In detail, the equilibration stages were
the following: (i) first, the samples were simulated for 10 ps
using the efficient velocity rescaling thermostat; (ii) then, the
samples were simulated in the NVT ensemble using the Nosé–
Hoover thermostat for another 10 ps; (iii) finally, the samples
were simulated in the NPT ensemble using the Nosé–Hoover
thermostat and barostat for up to 160 ps, until they reached
their equilibrium density, which is about equal to the density of
water, 1 g cm�3.78,79

3. The equilibrated samples were simulated for extended
periods of time (up to 0.1 ms).

Note that, in stages (2) and (3), the equations of motion were
integrated using the velocity-Verlet algorithm80 with a time step
set to 1 fs. In addition, the SHAKE algorithm81 was enabled
which applies bond and angle constraints on the bonds and
angles of the SPCE water molecules. Throughout the MD
simulations we investigated SPEs with 1 up to 64 repeating
units at mass ratios B10 wt%. Unless otherwise stated, it is
assumed that the atomistic simulations are conducted with
the OPLS force field, based on which we parameterized our
mesoscopic model.

4.2 Mesoscopic simulations

4.2.1 Bulk systems. The simulations of bulk solutions were
realized in 3 main phases:

1. The initial mesoscopic configurations for bulk solutions
were generated using an in-house builder, PyMeso, which was
developed for the purposes of the current project. The code is
written in Python3.8 and can generate chains of arbitrary con-
nectivity and chemical constitution based on user input. There is
no restriction regarding the number of chain types, polydispersity
and the periodic boundary conditions applied at the wall bound-
aries. For more details about PyMeso see Section S2 (ESI†).82

2. Subsequently, the configurations were energy minimized
and then equilibrated for up to ~t = 104 (B1 ms).

3. Finally, the trajectories were simulated for extended time
periods up to ~t = 2 � 105 (B20 ms), for the larger systems
considered here.

The equations of motion were integrated using the velocity-
Verlet algorithm80 in conjunction with the multiple time step
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Reference System Propagator Algorithm (RESPA),80,83 with one
hierarchical level having a time step equal to 0.005tDPD for the
bonded interactions and another hierarchical level having a
time step equal to 0.015tDPD for the nonbonded interactions.
The cutoff of the long range interactions was set to rc = 1
(in DPD units). The summation of the electrostatics was carried
out using the Particle–Particle Particle-Mesh (PP-PM) solver84

(‘‘pppm/cg’’ style in LAMMPS which is identical to the ‘‘pppm’’
style except that it incorporates an optimization for systems
where most particles are uncharged) with a G-Ewald parameter
for the dispersion equal to 1.8, and a maximum relative error
of 10�4. The simulations were performed for SPEs with 1 up to
512 repeating units at 10 wt%.

4.2.2 Brush arrays. Fig. 3 illustrates a brush array with
nSPE = 36 grafted SPE chains of length NSPE = 5 repeating units
in water solution. The edge of the wall lies at zS = 0.425rDPD =
0.325 nm, while the grafting point-wall distance is zg–zs =
0.5rDPD B 0.38 nm. The simulations of the brush arrays and
the estimation of PMF with umbrella sampling were realized in
5 main phases:

1. The initial mesoscopic configurations for the brush arrays
were generated with PyMeso. The solid substrate was modeled
by a slice of an 11 � 11 BCC lattice with a lattice constant of
0.8542rDPD (r B 3.2 in DPD units), as shown in Fig. 3. The SPE
brushes emanate from grafting points which are distributed
periodically across a lattice spanning the lateral directions of
the solid surface, with a grafted bead-grafted bead closest

distance, ag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=chain

p
; where area/chain = sg

�1, and
sg is the grafting density.

2. The brush-arrays were then equilibrated in conjunction
with a Newton–Raphson scheme that varied the normal dimen-
sions of the simulation box until the normal component of
the system pressure matched the pressure of bulk DPD water
[PN B 121.3eDPD/rDPD

3 for Nm = 5]. The tolerance value for

pressure differences was set to 0.1 and the optimization lasted
for up to 7 cycles.

3. The initial snapshots for the umbrella sampling were
extracted by Steered Molecular Dynamics (SMD) simulations.
In SMD the z-component of the center of mass of the foulant
(FL), zFL, was tethered to the surface with a harmonic spring
starting at zg with stiffness kspring and equilibrium length lspring,
without applying any constraint along the lateral dimensions;
a similar treatment is employed in ref. 19. By adjusting the
equilibrium length of the spring one can tune the distance of
the FL from the solid surface. The simulations were performed
in three stages: (i) the system was initially equilibrated for
500tDPD with lspring = zinit and kspring rising gradually from
0 to 10 000 (in DPD units). (ii) The system was equilibrated
for an additional 100tDPD with the same lspring and kspring.
(iii) The length of the spring decreased gradually from zinit to
zfinal at a rate Dz/tequil, with Dz = (zinit� zfinal)/nbins being the bin
width for the umbrella sampling simulations, nbins being the
number of bins, and tequil = 100tDPD; the FL was thereby
gradually moved towards zg and snapshots of the systems were
stored with a frequency tequil

�1.
4. Starting from the jth snapshot from the SMD simulations

an umbrella sampling simulation was performed for 400tDPD,
lspring = (zfinal � zinit)/j, and kspring = 500 whilst storing values of
(zFL � zg) along the generated trajectory.

5. Finally, trajectories started at each snapshot were processed
by the implementation of the Weighed Analysis Histogram
Method (WHAM) by Grossfield.85

Each umbrella sampling experiment was repeated two times
with different initial configurations in order to assess the
deviation. The latter is very small, probably due to the sufficient
equilibration time and relatively large system sizes. It should be
noted that, according to our benchmarks, the PMF arising from
pulling the FL away from the antifouling layer to infinity (in the
reverse direction) is practically identical.

During the simulations both the beads comprising the solid
surface and the grafted beads were kept frozen. This treatment,
however, can generate artifacts in the calculation of system
temperature and pressure; thus, these properties were recom-
puted based on the atomic velocities and virial of the mobile
atoms, respectively. For the calculation of pressure the effective

volume of the system was scaled by V
0
system ¼ VsystemNmobile=Ntotal;

an alternative treatment would be to consider the effective volume
of the mobile atoms as the sum of their Voronoi volumes. The
systems were periodic along the lateral and aperiodic along the
normal directions, whereas reflective (specular) boundary condi-
tions were implemented along the normal direction. The incor-
poration of fixed wall particles in conjunction with reflective
boundaries has been shown to be an effective approach for
preventing DPD beads from crossing the top and bottom faces
of the simulation box and for enforcing the no slip boundary
condition.33,86,87

During these simulations the equations of motion were
integrated using the velocity-Verlet algorithm80 with a time step
of 0.005tDPD. The estimation of the electrostatic interactions in
these aperiodic systems was performed with the algorithm by

Fig. 3 Coarse-grained representation of a brush array with area/chain =
1.44 nm2. The SPE brushes comprise SB (black), SO (red), SN (blue) and SS
(yellow) beads, while white beads represent the wall surface. The beads of
the wall surface and the grafted beads (SB beads marked with ‘‘�’’) remain
immobile throughout the simulation. zS and zg denote the position of the
wall surface and the grafted point-wall surface distance, respectively. The
violet beads comprise a model foulant particle at zFL. Water beads are
omitted for clarity.
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Yeh and Berkowitz88 that inserts an empty volume between the
images of the system along the aperiodic directions and as a result
removes the dipole interactions among the slabs. The parameters
of the brush arrays examined in the present work are displayed in
Table 6.

5. Results
5.1 Bulk solutions

Fig. 4 depicts the mean square radius of gyration, hRg
2i, of free

SPE in dilute aqueous solution from DPD, MD and from the
experimental correlations derived by Mary et al.14,15 The latter
are based on measurements in the presence of NaCl and they
refer to the conditions of temperature, SPE and electrolyte
concentration under which the upper critical solution tempera-
ture of each system exhibits a maximum with respect to the
electrolyte concentration. In addition, representative configura-
tions from the atomistic (OPLS) and mesoscopic (DPD) models
are displayed in Fig. 5. Overall, atomistic chains as described by
the DREIDING and the OPLS force fields exhibit very similar
behavior. The size of the atomistic chains—as quantified by
hRg

2i—increases sub-linearly with respect to their length in the
short chain regime, while for longer chains it follows a scaling
law very close to BN1, characteristic of random coils. As far
as the mesoscopic chains are concerned, the estimated hRg

2i
values are in very good quantitative agreement with the ato-
mistic ones (compare green triangles with red squares and
circles), while for larger chain lengths the scaling exponent

becomes slightly higher. The accessible chain length regime
from DPD features significant overlap with the experimental
correlations by Mary et al.14,15 Moreover, the predicted square
radii of gyration are in quantitative agreement with the experi-
mental correlation which is built-in in the model proposed by
Mary et al.: Rg = aMb

a with a = 0.69 nm, b = 0.48 and Ma being the
weight-average (Mw) or number-average (Mn) molar mass.14,15

(all SPE polymers studied experimentally in ref. 15 were quite
polydisperse, with polydispersity indices ranging from 2 to 3.)
Small Angle X-ray Scattering (SAXS) measurements, on the other
hand, are for NSPE = 1611 and are a better match with the
predictions based on the Mn averaged degree of polymerization.

5.2 Brush arrays

Throughout our DPD simulations we investigated polyzwitter-
ionic brush arrays exposed to water similar to those examined
by Xiang et al.,19 over a broad range of molecular parameters
such as the area/grafted molecule (i.e., the inverse of the
grafting density, sg) and the polymerization degree of the
grafted SPE chains (NSPE).

5.2.1 Density profiles. Comparisons of the mass density
profiles from DPD against atomistic ones are instructive for
assessing the accuracy of our DPD model. It is worth mention-
ing that the profiles from the DPD simulations considered here
differ from the atomistic MD ones by Xiang et al.19 in the
following aspects:

(1) The MD profiles include the additional contribution of
the saturated benzene rings with the azide group (C20H19O3N4)
representing the root of the brush and the polyamide
membrane surface.19

(2) At low grafting densities the polyamide membrane sur-
face employed in the atomistic MD simulations becomes very
sparse and as a result the sulfobetaine groups can penetrate it
(e.g., see Fig. 6c in ref. 19).

(3) Another difference between these systems is that the
atomistic SPEs simulated by Xiang et al.19 are smaller by one
methylene unit, mSPE0 ¼ mSPE �mCH2

in order to facilitate com-
parisons with previous simulation works by Shao et al.16,20–22

These differences have to be accounted for in order to
perform meaningful comparisons between these simulations.
Therefore, to facilitate comparisons among these models the
density profiles in Fig. 6 are visualized against the effective
segment-wall distance:

h = z � zS (10)

with zS being the effective position of the wall surface. In DPD
this is set to the edge of the solid wall, zS, as indicated in Fig. 3.
Consequently, zS was obtained from the MD profiles in a way
that the following mass balance equation is satisfied:ð1

zS

rSPE0 ðzÞdz ¼ sgNSPE0mSPE0 (11)

In other words, the integration of the density profile from zS

onwards equals the SPE mass per unit area considered in the
atomistic system. Consequently, the integrated area below the
surface of the wall (i.e., the vertical dashed line in Fig. 6),

Table 6 Parameters of the brush arrays under study

NSPE Area/chain (nm2) alatt (nm) sg (nm�2) LT (nm)

5, 10, 15, 20 36.9 6.075 0.027 6.075
5, 10, 15, 20 16.4 4.05 0.061 8.1
5, 10, 15, 20 7.29 2.7 0.137 8.1
5, 10, 15, 20 3.24 1.8 0.309 7.2
5, 10, 15, 20 1.44 1.2 0.694 7.2
5, 10, 15, 20 0.64 0.8 1.562 7.2

Fig. 4 Mean square radius of gyration from MD with OPLS (J) and
DREIDING (&), DPD calculations (m) and experimental data from ref. 15
(�, + and %). The experimental data were derived from the correlation
Rg = aMb

a with a = 0.69 nm and b = 0.48, with Ma being either the weight-
(Mw, �) or number- (Mn, +) average molar mass.
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Ð zS
�1rSPE0 ðzÞdz; corresponds to the mass of the polyamide

membrane per unit area. Note that comparisons betweenÐ zS
�1rSPEðzÞdz; from MD and DPD are not especially meaning-

ful, since the polyamide membrane is not exactly the same as

the solid substrate used in our DPD simulations (see the lattice
in Fig. 3).

According to Fig. 6, the density profiles from DPD are in
reasonable agreement with the MD19 density profiles consi-
dered by Xiang et al.19 The DPD profiles appear to be slightly
more expanded as compared to the MD ones; the difference can
be attributed to the SPEs from the MD study19 being shorter by
one CH2 segment. In addition, DPD profiles feature a narrow
low density region near the surface, since in that case the SPE
chains are grafted to a planar solid surface instead of the
mobile saturated benzene rings in Xiang et al.19 As has been
demonstrated by numerous works in the past,38,89–91 the den-
sity profiles tend to form steep peaks near rigid planar surfaces.
These peaks arise due to excluded volume effects which lead to
the formation of layers.70,92–94 The effect becomes even more
intense in DPD with increasing coarse-graining because the
interactions among beads become more repulsive94 in order to
maintain the compressibility at a constant density; e.g., see
eqn (6). Nonetheless, setting the width of the profile bin to half
the radius of a DPD bead leads to overall smooth profiles, as
shown in Fig. 6. In the case corresponding to the highest
grafting density examined here, the SPE chains experience
intense confinement and as a result some of their beads
penetrate the wall surface at the lowest boundary of the
simulation box (e.g., see the density states below the solid
vertical line in Fig. 6c). The efficacy of DPD to sample the
configurations of these densely grafted brushes was quantified
in terms of the autocorrelation function of the tangential (with
respect to the surface) components of the end-to-end vector of
the SPE chains. These results are shown in the Section S3 (ESI†)
and demonstrate that the dynamics becomes more sluggish
with increasing grafting density, albeit the autocorrelation
drops below 10% at times longer than 1000tDPD. Another
difference between the DPD and MD19 profiles is the tendency

Fig. 5 Atomistic (MD with OPLS) and mesoscopic (DPD) representation of representative SPE polymers investigated in this work.

Fig. 6 Density profiles of SPE (red) and water (blue) from DPD (solid lines)
and atomistic MD19 (dots) for area/chain = (a) 3.24, (b) 1.44 and
(c) 0.64 nm2. The thick vertical line illustrates the effective position of
the wall, zS, whereas the dashed one depicts the grafting point in DPD.
The width of the bins of the profile was set to 0.5rDPD B 0.383 nm.
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of the water molecules to penetrate the SPE brushes, especially
in the dense brush regime. In MD19 the water molecules can
penetrate the SPE brushes over all the grafting densities
considered there. In DPD, however, the water beads cannot
penetrate the dense brush in Fig. 6c because the water beads
are much larger (5 times) than individual water molecules. The
profiles of the water beads are similar to those from MD for the
sparser brushes (Fig. 6a and b).

5.2.2 Brush thickness. The spatial extent of the polyzwit-
terionic brushes can be quantified in terms of the root mean
square brush thickness:

hg
2

� �
1=2 ¼

Ð1
0 dh hð Þ2rSPEðhÞÐ1

0 dhrSPEðhÞ

" #1=2
(12)

Based on the scaling of its radius of gyration with chain length
in dilute aqueous solution (Fig. 4), SPE behaves as if it finds
itself in a Y solvent under the considered conditions. For a
polymer brush in a Y solvent it has been shown that the scaling
law hhg

2i1/2 B NSPE
1sg

1/2 holds.97–99 We thus examine first
how well this scaling describes our simulation results. Fig. 7a
depicts hhg

2i1/2 from DPD and from MD19 (based on the effective
wall projection in eqn (10)), plotted against NSPE

1sg
1/2, appropriate

for polymer brushes in Y solutions.
Overall, the brush thickness is a close match between MD19

and DPD; e.g., compare the red data points for NSPE = 5. The
brush thickness scales linearly with NSPE, as is indicated by
markers with the same shapes and different colors in Fig. 7a;
this linear scaling has been shown to hold regardless of
whether the solvent is good, theta or poor.99 The Y-scaling
with surface grafting density hhg

2i1/2/NSPE B sg
1/2, however,

does not seem to collapse our data fully satisfactorily.
Based on our simulations, the brush thickness is practically

insensitive to sg at low grafting densities, a feature which
indicates that the sparsely grafted chains interact weakly with
each other (mushroom regime).100 At larger grafting densities
the chains experience significant confinement and thus the
brush thickness increases with sg. Nevertheless, this increase
appears to be weaker than the prediction for flexible polymer
brushes in Y solvents97–99 and as a result considerable scat-
tering is seen in Fig. 7a.

Plotting the brush thickness against NSPE
1sn

g with a scaling
exponent n o 1/2 leads to significantly lower scatter. This is
clearly demonstrated in Fig. 7b, which depicts hhg

2i1/2 plotted
against N1sg

1/5. The master plot of all data for the brush height
in this figure is very satisfactory. Even though long SPE/water
solutions behave as Y solutions under the temperature of
interest, the shorter SPE chains considered in Fig. 7 deviate
from the expected Y-solution scaling for brushes of long,
randomly coiled chains. This can be attributed to the finite
extensibility of the short chains comprising our brushes. Finite
extensibility plays a significant role here because of the con-
siderable conformational stiffness exhibited by our SPE chains
in water. The inflexibility of our chains is attributable to the
large branches on the SPE monomers (SO–SN–SS side groups),
which lead to thick and twisted chain contours, and thus to

persistent polymer backbones. This effect is especially evident
when considering relatively short chains; e.g., please inspect
the atomistic and mesoscopic configurations for NSPE o 40
in Fig. 5.

Finite extensibility leads to a weaker scaling with sg.
To highlight this, we have performed a simple scaling analysis
for a brush of finitely extensible chains in a Y solvent following
ref. 101, which we present in Section S4 (ESI†). A similar effect
has been reported for good solvents as well, where, in situations
with enhanced chain stretching and orientation, the brush
thickness scales more weakly with sg, and can even become
independent of sg in extreme cases.99,101 It should be noted,
however, that in the limit of very high chain molar masses, for
which the chains assume random-coil-like configurations, the
dependence of hhg

2i1/2 on grafting density could potentially
become stronger, approaching the Y-chain hhg

2i1/2 B NSPE
1sg

1/2

scaling.
Another measure for quantifying the shape of a grafted

polymer brush is the brush span hg,99%, which can be defined

Fig. 7 (a) hhg
2i1/2 versus NSPEsg

1/2 from MD19 (filled symbols) and DPD
(hollow symbols). (b) hhg

2i1/2, (c) hhg,99%i, and (d) hhg,99%i/hhg
2i1/2 versus

NSPEsg
1/5. The dashed line in (d) illustrates the prediction from Alexander’s

model57,95,96 for incompressible brushes. The markers denote grafting
densities, sg = 0.027 (K), 0.061 (m), 0.137 (%), 0.309 (’), 0.694 (+), and
1.562 (�) nm�2, whereas colors denote different chain lengths, NSPE =
5 (red), 10 (blue), 15 (green) and 20 (violet). The error bars depict the
standard deviation derived from three DPD simulations for each case
starting with different initial configurations.
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for planar geometries as the segment-wall distance that
encloses 99% of grafted SPE mass:

ðhg;99%
0

dhrSPEðhÞ ¼ 0:99sgNSPEmSPE (13)

According to Fig. 7c, hg,99% exhibits very similar behavior with
hhg

2i1/2, shown in Fig. 7b. Finally, the ratio hhg,99%i/hhg
2i1/2 is

characteristic of the shape of the brush. As shown in Fig. 7d,
it appears that, in the limit of large NSPE and sg, this ratio

becomes close to
ffiffiffi
3
p

; which is the prediction from Alexander’s
model for incompressible brushes.57,95,96

5.2.3 Potential of mean force of the approaching foulant.
The present section investigates the mean force (MF, negative
gradient of the potential of mean force) for a foulant (FL)
approaching the antifouling (AFL) layer, as modeled by the
SPE-covered surface, embedded in a water solvent (W). Negative
values of the force denote repulsive FL–AFL tendencies, a
feature which is generally preferred in antifouling applications.
Positive forces, on the other hand, indicate that there is a
tendency for the FL to stick to the grafted brush.

The DPD foulant is modeled as an icosahedron formed by
DPD beads connected with harmonic springs. Unless otherwise
stated, the spring constant equals kspring,FL = 500eDPD/rDPD

2 and
the equilibrium length equals, l0,FL = 0.77 nm (1rDPD). The
repulsive/attractive nature of the resulting mean force depends
on an interplay among the strengths of the enthalpic and

entropic FL–W, FL–AFL and the W–AFL interactions. In order
to explore these tendencies, the repulsive FL–W and FL–AFL
interactions were varied systematically, based on the following
scaled geometric mixing rules:

aFL�W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fFL�WaFL�FLaWW

p
(14)

aFL-j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fFL�AFLaFL�FLajj

p
; jj =2 fWW;FL� FLg (15)

with fFL–W and fFL–AFL being the corresponding scaling coeffi-
cients. In eqn (15) the index j denotes any of the four types of
coarse-grained beads SB, SN, SO, and SS used to represent the
AFL. Consequently, the resulting relative strength of FL–W and
FL–AFL interactions is proportional to the square root of the
ratio of the scaling coefficients, as shown in eqn (16):

aFL�W
aFL-j

� fFL�W=fFL�AFLð Þ0:5 (16)

Decreasing/increasing the values of these coefficients leads to
more attractive/repulsive interactions with the corresponding
species; note that increasing the value of the DPD coefficients
corresponds to enhanced repulsion. Also, note that setting
fFL–W = fFL–AFL = 1 in eqn (14) and (15) recovers the geometric
mean expression of the conventional mixing rule.

Fig. 8 depicts the MF as obtained from the umbrella
sampling DPD simulations on (a and d) sparsely, (b and e)
moderately and (c and f) densely grafted brushes, as a function

Fig. 8 Mean force (MF) from DPD as a function of the foulant’s center of mass-wall surface distance, for area/chain set to (a and d) 3.24 nm2, (b and e)
1.44 nm2 and (c and f) 0.64 nm2. Positive/negative MF indicates attraction/repulsion. Different lines/colors indicate a different combination of (aFL–FL/
aWW, fFL–W, fFL–AFL) as indicated in the legends. In all cases, the equilibrium length of the FL–FL bonds was set to 0.77 nm (rDPD). The horizontal lines are
guides to the eye. The error bars depict the deviation from the mean based on two DPD simulations starting with different initial configurations.
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of the separation distance between the FL’s center of mass and
the wall.

Panels a–c in Fig. 8 depict situations where aFL–FL is set
to 0.5aWW (circles), aWW (triangles), and 2aWW (squares), and
fFL–W = fFL–AFL = 1. It appears that, regardless of the magnitude
of aFL–FL, the MF remains strictly repulsive. This is to be
expected, since the relative strengths of the FL–W and
FL–AFL interactions are invariant to aFL–FL, therefore the overall
attractive/repulsive tendencies of the MF are not affected.
In practice, since fFL–W/fFL–AFL = const, increasing aFL–FL has
the effect of varying the effective bead size of the FL, thus
shifting the MF towards slightly larger distances.

The right-hand panels of Fig. 8(d–f) present the effect of
varying the relative strength of the FL–W and FL–AFL interac-
tions, whilst fixing aFL–FL to aWW. Decreasing fFL–W/fFL–AFL

(making the foulant more hydrophilic) has the effect of shifting
the MF towards larger separation distances, indicating stronger
effective FL–AFL repulsion. Increasing fFL–W/fFL–AFL, on the
other hand (making the foulant more hydrophobic) leads to
the emergence of a more complicated picture which could be
explained as follows:

(1) At the edge of the AFL brush the MF becomes positive;
thus indicating that there is a tendency for the FL to stick on it.

(2) Below a threshold separation distance (which becomes
larger with increasing brush density) the MF begins to decrease
(becomes more repulsive) due to the manifestation of excluded
volume effects; i.e., the foulant is displaced to a region that is
already occupied by the brush segments. The effect is more
pronounced when considering the densest brush in Fig. 8f,
where the MF becomes negative (strictly repulsive) below a
distance of 3 nm.

(3) At distances of B1 nm where the entire foulant has been
submerged into the sparse brush, the MF forms a minimum
and begins to rise again (becomes more attractive). This is
attributed to the density of the AFL brush having reached
approximately its maximum value (where its effect on the MF
becomes minor), whereas the density of the (repulsive) water
phase declines; hence, favoring the occupation of these low
water density-regions.

It is noteworthy that the MF remains strictly positive (attrac-
tive) across the full range when considering the sparser brush
studied here (Fig. 8d).

The AFL–W interactions play a significant role for the
resulting MF, as well. However, we opted not to vary them
during our tests since our model has been parameterized for
a specific chemical constitution of the antifoulant (AFL).
Nonetheless, it is expected that, as the AFL–W interactions
become less repulsive there is a tendency for the FL and the AFL
to repel each other, since the latter will prefer to interact with
the solvent molecules instead of with the FL. More repulsive
AFL–W interactions are expected to promote the opposite
behavior; i.e., the FL tending to stick to the AFL layer.

Fig. 9 provides qualitative comparisons between the MF
from our DPD simulations and from the steered atomistic
MD simulations by Xiang et al.19 In MD, the FL is modeled
by an alginate gel via the OPLS force field.19 In DPD, the

equilibrium length of the harmonic springs was set to either
l0,FL = 0.38 nm (0.5rDPD) or 0.77 nm (rDPD) in order to explore the
effect of varying the size of the foulant. For these comparisons,
the FL–AFL and FL–W interactions were estimated via the
original geometric mixing rule ( fFL–W = fFL–AFL = 1). The
strength of the repulsive interactions among the beads
that comprise the foulant were set to two times those of water
(aFL–FL = 2aWW), albeit as long as fFL–W and fFL–AFL are fixed the
overall qualitative behavior is practically the same for lower and
higher aFL–FL values (e.g., see the demonstrations in Fig. 8a–c).

The MF is qualitatively similar between DPD and MD;
the MF assumes negative (repulsive) values as the foulant
approaches the SPE brushes, while it decreases more steeply
with increasing grafted density, indicating an enhancement of
the antifouling properties of the SPE brush. Increasing the size
of the FL by increasing l0,FL makes the MF slightly more
repulsive, albeit the effect is minor. The difference between
DPD and MD is to be expected, since the DPD foulant has not
been parameterized from an alginate gel, and thus there might
be differences in the size and geometry of the foulants consi-
dered in each case. For reference, the radius of gyration of the

Fig. 9 Mean force (MF) from atomistic MD19 (circles) and DPD with l0,FL =
0.38 nm (blue triangles) and 0.77 nm (green squares) as a function of the
foulant’s center of mass-wall surface distance, for area/chain = (a)
3.24 nm2, (b) 1.44 nm2 and (c) 0.64 nm2. Positive/negative MF indicates
attraction/repulsion. The horizontal lines are guides to the eye. The error
bars depict the deviation from the mean based on two DPD simulations
starting with different initial configurations.
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DPD foulant is about Rg;FL �
l0;FL

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2þ j
p

B0:73 nm; with

j ¼ 1þ
ffiffiffi
5
p

2
being the golden ratio. It is interesting that, given

the simplicity of the biofoulants employed in DPD, the corres-
ponding MFs are in reasonable qualitative agreement with
those from MD. The estimation of the PMF arising from the
interaction among grafted polyzwitterions and more complex
biofoulants (in terms of their chemistry and structure) as a
function of their concentration, and in the presence of ionic
solutions, is a subject for future research.

6. Concluding remarks

Sulfobetaine-based polyzwitterions constitute promising candi-
date materials for the design of surfaces with antifouling
properties. Several atomistic studies have been conducted in
recent years addressing the structure and thermodynamics of
these polymers over atomistic length scales.16,19–22 Nonethe-
less, the relevant time and length scales of long polyzwitterions
are far greater than those that can be reached by conventional
atomistic simulations. Hence, there is a need for the develop-
ment of mesoscopic simulation approaches involving aggres-
sive coarse-graining.

The present work develops a multiscale simulation strategy
with two levels of description, entailing an atomistic and a
mesoscopic regime. The atomistic regime is investigated with
molecular dynamics simulations (MD) using the OPLS force
field, whereas the mesoscopic regime is explored by dissipative
particle dynamics (DPD) simulations. These two different levels
of description are capable of providing access to a very broad
spectrum of time- and length-scales, which constitutes an
absolute necessity for describing the structural features and
thermodynamics of SPE poly-zwitterions. The mesoscopic
model is parameterized hand-in-hand with atomistic molecular
dynamics simulations across the overlapping regime of chain
lengths. More specifically, the coefficients of the mesoscopic
force field are optimized to match the atomistically computed
strand-length, strand-angle and pair distribution functions via
Monte Carlo and machine-learning based approaches.

Overall, the developed potential exhibits good transferability
among different concentrations as indicated indirectly, by the
good match with molecular dynamics, theory and experiments
for both sparse and dense systems. In detail, the structural
features of the mesoscopic SPE chains in dilute aqueous
solutions reproduce those from the underlying OPLS atomistic
model and agree with the experimental findings of Mary
et al.14,15 For sufficiently long SPE chains, the scaling exponent
between the mean squared radius of gyration and chain length
in dilute aqueous solution is close to 1. The brush array
configurations studied herein are investigated in terms of the
corresponding brush thickness measures, the local density
profiles, and the mean force they exert on an approaching
foulant. Results from our DPD simulations are compared with a
relevant molecular dynamics study by Xiang et al.19 In detail,
the root mean square brush thickness and the span of the

density profiles as quantified by hg,99% increase approximately
linearly with the product of the degree of polymerization and
the grafting density to the power of 1/5, a feature that can be
explained by scaling considerations for brushes of finitely
extensible chains exposed to theta solvents. For very high
grafting densities the structure of the brush approaches that
of an Alexander-type incompressible brush, also obtained from
self-consistent field theory treatment of compressible dense
brushes53,57 in planar geometries.

The repulsive potential of mean force derived from umbrella
sampling simulations of a foulant upon approaching the poly-
zwitterionic brush is in good qualitative agreement with the
atomistic findings by Xiang et al.,19 whereas the discrepancies
between atomistic and mesoscopic simulations can be traced to
differences between the geometric aspects and the overall
parameterization of the model systems.

The repulsive/attractive tendencies of the foulant are
governed by an interplay among the foulant–solvent, foulant–
antifoulant and the solvent–antifoulant interactions (both
enthalpic and entropic). A general design rule for effective
nonbiocidal antifoulants would be to enhance antifoulant–
solution and the foulant–solution interactions with respect to
the antifoulant–foulant ones. For biocidal antifoulants, on the
other hand, opposite design rules would be applicable, since
sticking the foulant to the antifouling brush would facilitate the
biocidal process.

Conflicts of interest
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Appendix A

The mesoscopic force field described in Section 3.2.3 was
parameterized through a bottom-up mapping procedure aimed
at matching the bond and bond-angle distributions and the
pair correlation functions between DPD and atomistic trajec-
tories. For the purpose of this matching, the polymer configu-
rations in each atomistic trajectory were geometrically mapped
onto coarse-grained configurations. This coarse-graining of
atomistic trajectories was performed by lumping the SPE seg-
ments into coarse-grained beads (see Fig. 2a) based on the
center of mass of the corresponding segments using a code
developed in-house:

rcg;j ¼

P
i2Cj

MiriP
i2Cj

Mi
(17)

with Mi and ri being the mass and position of the type i atom,
and Cj being a set that includes the atoms that belong to bead j.
The mapping procedure we developed can be summarized in
the following steps:

1. Derivation of the distributions concerning bonded
interactions

2. Boltzmann inversion of the bonded distributions
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3. Calibration of the coefficients for the bonded interactions
4. Calibration of the coefficients for the nonbonded inter-

actions
5. Recalibration of the coefficients for the bonded

interactions
Details about each step of the mapping procedure are

presented in Appendices A1–A5, respectively.

A1. Derivation of the distributions concerning the bonded
interactions

Our initial attempt was to extract the strand length (rstrand) and
strand-angle (rangle) distributions from a coarse-grained trajec-
tory of a single SPE8 chain immersed in 850 water molecules for
extended simulation times (B0.1 ms). In doing so, we observed
that the strand-angle distributions exhibited nonergodic beha-
vior within the time span of the atomistic molecular dynamics;
thus, the distributions would not converge within these simu-
lation times. In other words, configurations sampled by the
atomistic MD within the accessible simulation time appeared
to be trapped in the vicinity of local energy minima, retaining
strong memory of their initial characteristics (e.g., angle dis-
tributions along consecutive SB–SB–SB triplets differed sub-
stantially). Example nonergodic strand-angle distributions are
illustrated in Section S5 (ESI†). To circumvent this issue we
incorporated a temperature annealing scheme at constant
volume and number of particles which proceeds as follows:
(i) equilibration of 120 independently generated atomistic
samples at T = 900 K with different initial velocities for 2 ns;

(ii) temperature annealing from T = 900 K down to 300 K over
2 ns. (iii) Additional relaxation at T = 300 K for 0.5 ns.
(iv) Sampling at T = 300 K for 2 ns. Subsequently, the strand
length and strand-angle distributions were calculated based on
the 120 temperature-annealed atomistic trajectories by placing
beads at the centers of mass of atomistically represented
groups, configuration by configuration, according to eqn (17).
The resulting distributions for strands and strand-angles
differed very little across the polymer backbone. The converged
rstrand and rangle from MD are illustrated in Fig. 10 (red circles).
It should be noted that the corresponding box size for this
concentration is B4 times the radius of gyration of an SPE8

chain, and as a result interactions between different images of
the same chain segments are minimal.90

A2. Boltzmann inversion of the distributions

The free energy of the atomistically calculated strand and
strand-angle distributions up to an additive constant is given
by the following equation:

U(r) = �kBT ln f (r) (18)

with fstrand rð Þ ¼ rstrandðrÞ
4pr2

for strands, and fangle yð Þ ¼
rangleðyÞ
sin y

for

angles, respectively. Assuming that f follows a Gaussian dis-

tribution, faðxÞ ¼
1

sa
ffiffiffiffiffiffi
2p
p exp � x� mað Þ2

2sa2

 !
; then the kind-a

strands and the strand-angles can be described by harmonic
free energy functions of the form: Ua(x) = ka(x � ma)

2, with x

Fig. 10 Strand length (a–d) and strand-angle (e–h) distributions from MD with OPLS (red circles); BI (blue lines); DPD, aij = 0, coefficients from BI
(green dashes); DPD, aij = aww, coefficients from BI (purple, dot-dashes); DPD, optimized aij coefficients after the final recalibration (orange, dots).
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being the strand length or the angle. Therefore, the stiffness of
the strand/strand-angle potential equals ka = kBT/(2sa

2), and the
reference length/angle equals ma. The blue lines in Fig. 10
depict the theoretical predictions based on the ka and ma
coefficients from the Boltzmann inversion (BI). It is worth
mentioning that some of the distributions derived from ato-
mistic MD are seen to display complex features. Notable is the
bimodality in SB–SB and SO–SN, originating in torsion angles
along the backbone and along the side chain adopting trans
versus gauche states. These details are not kept in the coarse-
grained model.

A3. Calibration of the coefficients for the bonded interactions

As seen in Fig. 10, the strand distributions from DPD with the
set of ka and ma for each strand extracted from BI and in the
absence of the nonbonded interactions (aij = 0) are in good
match with the Boltzmann inverted distributions from MD
(compare blue lines with the green dashed lines). The strand-
angle distributions for SB–SB–SB and SB–SO–SN triplets exhibit
a slightly worse match and this is attributed to cross-
correlations among different angle types. The introduction of
the nonbonded interactions perturbs the distributions signifi-
cantly; e.g., compare green dashes (aij = 0) with the purple dot-
dashed lines (aij = aww) in Fig. 10. To circumvent this issue we
developed an optimization scheme that finds the optimal
strand and strand-angle coefficients that best reproduce the
BI distributions from MD. The scheme optimizes all the
coefficients for the target strands and strand-angles at the
same time in the presence of the nonbonded interactions,
while the whole procedure takes 100–200 iterations. The orange
dotted lines in Fig. 10 depict the distributions after the final
recalibration (see Appendix A5), which are in excellent match
with the fitted (BI) distribution. In other words, the DPD
distributions have been optimized with the target to replicate
the mean and the standard deviation of their corresponding
MD distributions. Introducing more complex functional expres-
sions would allow one to replicate these distributions more
closely, but this would introduce additional complications to
the model and potentially require even smaller time steps due
to the enhanced roughness of the potential hypersurface.
Details about the optimization scheme for the bonded interac-
tions are illustrated in S6 (ESI†). An alternative approach for
tackling these cross-correlations among different intra-
molecular components would be to invoke the MRG-GG (mole-
cular renormalization group coarse-graining) scheme devised
by Sevalyev et al.102

A4. Calibration of the coefficients for the nonbonded
interactions

As we discussed in the Introduction section, the wij for the SPE
polymers under investigation are inaccessible, and thus we
opted for a more direct parameterization approach based on
matching the partial pair distribution functions (gij) between
MD and DPD; the former is shown in Fig. 11 (dashes) and was
derived from coarse-graining atomistic trajectories of 4 � SPE
monomers in 800 water molecules (concentration B7.8 wt%)

with a duration of 0.3 ms. The objective function is illustrated in
S7 (ESI†). For SPE the objective function to be optimized has as
input npair = ntypes(ntypes + 1)/2 � 1 = 14 free parameters (the
‘‘�1’’ has to do with keeping aWW fixed), while its output (cost)
is proportional to the mean squared error between gij from
MD and DPD averaged over all the npair interactions,

MSSE ¼ 1

npairs

P
ij2pairs

Ð rmax

r¼0 dr gDPD
ij ðrÞ � gMD

ij ðrÞ
� �2

. To minimize

the objective function, initially we performed B5000 bounded
evaluations for 10 o aij o 180, and then we performed
Bayesian optimization for B3000 steps (having fed the opti-
mized output of the first B5000 iterations) to guide us closer to
the global minimum using the implementation by Nogueira.103

It is worth mentioning that the efficiency of the bounded
optimization was comparable to the Bayesian one, since the
former was performed in parallel using 128 cpu cores (1 core
per simulation). Details about Bayesian optimization can be
found in the S8 (ESI†).103–106

With few exceptions, the optimized DPD coefficients allow
us to capture very reasonably the overall shape and probability
amplitude of the RDFs from MD. The largest discrepancy arises
in the SN–SS term of the RDF, wherein the corresponding beads
assume opposite charges. The agreement between the atomistic
and DPD pair distribution functions could be potentially
improved by continuing the Bayesian optimization for much
longer times, given that the 14-D objective function is sensitive
(spans B5 orders of magnitude as shown in Fig. S5, ESI†),
somewhat noisy, and that Bayesian optimization lacks appropriate
convergence criteria. In addition, one could attempt to introduce

Fig. 11 Pair radial distribution functions from MD with OPLS (dashes) and
DPD (solid lines).
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additional degrees of freedom, such as varying the absolute values
of the charges or the charge smearing radius l. Here we opted to
retain the original bottom-up charges as in most DPD studies, in
order to avoid introducing additional complexity to the model.
In this way, the interactions with charged foulants are straight-
forward to describe and do not necessitate additional parameter-
ization. Nonetheless, the aforementioned discrepancies do not
appear to affect the performance of the model much, as indicated
by the good match of the long range conformational characteristics
between MD and DPD presented below in Fig. 4, and the similar
density profiles discussed in Section 5.2.1.

Another potential approach for describing the nonbonded
interactions would be to incorporate a more complicated
expression for the description of the repulsive interactions, or
even to invoke tabulated potentials.52–55

A5. Recalibration of the coefficients for the bonded
interactions

The variation of the nonbonded coefficients during the optimi-
zation introduced minor perturbations to the strand and
strand/angle distributions. To refine these parameters and
restore the unperturbed distributions, we performed one last
recalibration to the coefficients for the bonded interactions in
the presence of the optimized aij using the algorithm in S6
(ESI†). This recalibration step had a very minor effect on the
partial radial distribution functions; note that the orange dots
in Fig. 10 and the red lines in Fig. 11 where calculated using the
final form of the potential, after the recalibration process.
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