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Nucleation rate in the two dimensional Ising
model in the presence of random impurities

Dipanjan Mandal * and David Quigley

Nucleation phenomena are ubiquitous in nature and the presence of impurities in every real and

experimental system is unavoidable. Yet numerical studies of nucleation are nearly always conducted for

entirely pure systems. We have studied the behaviour of the droplet free energy in two dimensional Ising

model in the presence of randomly positioned static and dynamic impurities. We have shown that both

the free energy barrier height and critical nucleus size monotonically decreases with increasing the

impurity density for the static case. We have compared the nucleation rates obtained from the Classical

Nucleation Theory and the Forward Flux Sampling method for different densities of the static impurities.

The results show good agreement. In the case of dynamic impurities, we observe preferential

occupancy of the impurities at the boundary positions of the nucleus when the temperature is low. This

further boosts enhancement of the nucleation rate due to lowering of the effective interfacial free

energy.

1 Introduction

Nucleation phenomena are of great importance both in physics
and chemistry. The study of nucleation has a long history,
rooted in the widely used theoretical model of classical nuclea-
tion theory (CNT)1 and the Becker–Döring (BD) expression for
the nucleation rate.2 CNT is able to explain the qualitative (and
sometimes quantitative) behaviour, of various nucleation pro-
cesses occurring in natural and experimental systems.3,4 The
nucleation rate at which a stable phase nucleates from a
metastable parent depends on various parameters, e.g.,
temperature,5 pressure,6 external electric field,7 viscosity,8

application of shear,9 etc. It is also heavily influenced by
surfaces and the presence of impurities10,11 in the system.

Modelling nucleation from solution is an active area of
research with relevance to pharmaceutical manufacture, bio-
mineral formation and other highly complex precipitation
processes. Atomistic simulations12 are now able to make quan-
titative predictions of the nucleation rate. Unfortunately, even
for nucleation of simple salt crystals from solution13,14 agree-
ment with experiment remains elusive and sensitive to details
of the atomistic force field and the order parameter used to
identify solid regions in the simulation.15 In addition, the
solution is nearly always simulated as pure with no impurities
or spectator/counter ions. A quantitative understanding of how
these additional species impact on the nucleation rate is
lacking.

The most basic physics of nucleation from solution can be
captured using a simple lattice-based model of solute
precipitation.16 Minimal models of this kind in two and three
dimensions have been used to probe assumptions of CNT and
to test advanced methods for quantifying rare events against
well-established results.17–21 Extensions of the basic Ising-like
model have been used to study nucleation inside a rectangular
pore,22,23 on substrates,24 two-step nucleation mechanisms,25

and nucleation in the presence of shear9 and on single immo-
bile microscopic impurities.26 Studies have also explored the
choice of microscopic kinetics on the nucleation rate.27 In this
work we study such a model in the presence of neutral
impurities as a further step toward introducing some of the
complexity found in ‘‘real’’ solutions. We explore how this
changes nucleation rate, critical nucleus size and free energy
barrier height, as a function of impurity concentration.

We consider two scenarios, static and dynamic impurities.
In the static impurity case the impurities are sites distributed
randomly in space and fixed throughout the simulation. We
work with quantities averaged over many samples of this static
disorder. In the dynamic case impurities can migrate via
Kawasaki dynamics.28 A particular advantage of working with
such simplified models is that the timescale of impurity
migration relative to cluster growth can be adjusted to probe
different kinetic regimes.

We have used umbrella sampling techniques to calculate the
free energy barrier for different densities of the impurity sites.
We also calculate the nucleation rate using the Forward flux
sampling (FFS) technique and compare the results to those
computed from the free energy barrier via the Becker–Döring
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expression. We have shown that the impurity particles prefer-
entially occupy the boundary positions of the nucleus for the
dynamic case when the temperature is low. This surface accu-
mulation process enhances the nucleation rate by a multiple of
104 compared to the static case.

The rest of this paper is organised as follows. In Section 2,
we describe the model and simulation techniques used to study
the model. Variation of the free energy barrier height and the
critical nucleus size are shown in Section 3. Section 4 contains
the comparison of theoretical and computational nucleation
rates for different impurity concentration. The effect of
dynamic impurities on barrier height as well as nucleation
rates are described in Section 5. Finally we conclude in
Section 6.

2 Model & simulation techniques

We consider the two dimensional Ising model on a L� L square
lattice with spin Si at position i. The Hamiltonian of the model
may be written as

H ¼ �J
X
hi; ji

SiSj � h
X
i

Si; (1)

where J is the strength of the coupling between two nearest
neighbours, h is the externally applied field and hi, ji represents
summation over all nearest-neighbour pairs in the usual man-
ner. The spin can take two values, Si = �1. We take the strength
of the coupling to be positive ( J 4 0), i.e., the ferromagnetic
Ising model. In our simulations we have taken the copling
strength J = 1. This is analogous to a lattice-gas model in which
each lattice site can be occupied (Si = +1) or unoccupied
(Si = �1), with the external field playing the role of a particle
reservoir at a constant chemical potential.

We study the discontinuous magnetisation reversal for a
system with initially negative magnetisation in the presence of
a positive magnetic field. This necessarily occurs only for
temperatures T o Tc (Tc is the critical temperature) and
proceeds via nucleation and growth of domains with positive
magnetisation. In the lattice-gas (solute precipitation) analogy
this corresponds to an initially mostly-empty lattice (solvent-
rich) to a full lattice (solute-rich) at a chemical potential where
equilibrium with a particle reservoir corresponds to a mostly-
occupied lattice.

We modify the model by introducing a third spin state Si = 0
at random positions of the lattice. This represents non-
magnetic impurities, or ‘‘neutral’’ impurity ions in solution
which do not favour interaction with either solute or solvent
neighbours. The interaction energy of impurity particles with
both solute and solvent is chosen to be half way between
solute–solvent and solute–solute (or solvent–solvent) inter-
action energy, i.e. zero. Other possibilities could be studied
by creating impurities which interact more favourably with
solvent than solute (for example). In the present work we
restrict ourselves to the neutral case. These non-zero spins
are evolved in time via the usual spin–flip dynamics in which
a randomly selected spin is flipped, and the move accepted or

rejected according to the Metropolis criterion. In what follows
we mainly use the magnetic terminology for brevity.

The overall density of spin-0 impurities is kept fixed
throughout the simulation. Further, we consider two different
circumstances, static and dynamic impurities. In the static
case, the impurity particles are immobile. In the dynamic case
impurities can diffuse through the lattice using spin-exchange
dynamics often known as Kawasaki dynamics.28 The ratio of
impurity-diffusion move attempts to spin flip move attempts
controls the mobility of impurities relative to the nucleation
timescale.

We calculate the nucleation rate using two independent
methods, and as a function of the impurity density. The first
method calculates the free energy barrier to nucleation and
applies the BD expression for the nucleation rate and the
second method is the Forward Flux Sampling (FFS) method
which calculates the rate independently of classical nucleation
theory. A typical configuration of the system during the transi-
tion is shown in Fig. 1 where red represents occupied (Si = 1)
sites, blue represents impurity (Si = 0) and white represents
empty sites (Si = �1).

In the next sections, we describe in more detail the simula-
tion techniques used to calculate the barrier heights and the
nucleation rates.

2.1 Umbrella sampling

In situations where the free energy barrier to nucleation is
large, it is impossible to adequately sample the probability
distribution for large nuclei in an unbiased simulation.
Umbrella sampling (US) is widely used biased simulation
technique to calculate free energy as a function of a collective
variable or reaction coordinate. The US method was introduced
by Torrie and Valleau in 197629 and tested successfully for
Lennard-Jones systems. The method has been used in different
contexts, e.g., protein folding dynamics in biological systems,
measuring reaction rates in chemical systems, etc.30 The

Fig. 1 Typical configuration of the nucleating system in the presence of
static impurities for T = 1.5, h = 0.05, ri = 0.028 and L = 100. Particles and
impurities are respectively denoted by red and blue colors respectively,
and white represents empty site.
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method is also often used (as here) in the context of
nucleation31,32 to obtain free energy as a function of cluster
size and hence parameterise a BD calculation of the nucleation
rate. We define a cluster as a contiguously connected region of
+1 spins. This definition has proven to yield accurate BD
estimates of the nucleation rate in the regime of interest
here,18 but may not be optimal closer to Tc.33 The configuration
space is divided into overlapping windows of equal size which
span the range of cluster sizes from one to the nucleus size
greater than the critical nucleus size. The probability distribu-
tion of the cluster sizes lying inside the window range is
calculated for each window. In our US simulations all windows
span a cluster size of range 20. A range of 10 overlaps between
two neighbouring windows. We have taken wide overlap
between two windows to reduce the error while combining
different parts of the free energies. We use an infinite square
well umbrella potential of the same width as the window. For
each window we run the simulation for 109 steps where each
step is an attempt to flip a randomly chosen spin. We skip the
spin update if the the random site contain an impurity spin.
After each step we measure cluster sizes. If the largest cluster
size escapes the window range we reject the spin flip and
restore the previous state of the spin. Simulations of this kind
are particularly suited to parallelisation over windows, for
which we employ OpenMP34 threading to decrease simulation
time significantly. In the case of static impurities, we average
the obtained probability distribution for each window with 28
different impurity configurations. An uncertainty in the prob-
ability distribution is obtained by averaging over 28 indepen-
dent calculations of probability distribution in each window.

The maximum error is obtained from the standard error s=
ffiffiffiffiffiffi
N
p

of the probability at each nucleus size, where s is the standard
deviation of N independent results.

The relative free energy for a droplet of size l at the n-th
window may be written as

f US
n (l) = �kBT ln[Pn(l)], (2)

where Pn(l) is the probability of sampling a cluster of size l and
kB is the Boltzmann constant. We take kB = 1 in our calcula-
tions. We combine the free energy obtained for the n-th window
with the free energies of the previous windows by a constant
shift Sn which may be written as

Sn ¼
1

m

X
i

�kBT ln
Pn�1ðiÞ
PnðiÞ

� �
; (3)

where m is the total number of overlapped points and i runs
over all overlapped points between (n � 1)-th and n-th windows.
After the constant shift the free energy of the n-th window may
be written as

F US
n (l) = f US

n (l) + Sn. (4)

Once all windows have been combined in this fashion we
obtain FUS(l), the free energy over the entire sampled range
of cluster sizes.

2.2 Forward flux sampling

FFS35–38 is a numerical technique widely used to calculate the
rate of occurrence of a rare event. In this paper we calculate the
nucleation rate from the initial metastable phase (negative
spin) to the stable phase (positive spin) using FFS. The method
proceeds via the following steps. First, we divide the configu-
ration space connecting the metastable and the stable phase
with intermediate equally spaced interfaces li. Each interface is
an isosurface of the maximum cluster size, such that progres-
sion from the first interface l0 to the final interface lN captures
a nucleation trajectory. We assume that li+1 is always greater
then li.

The nucleation rate is then estimated as

IFFS ¼ I0
YN
i¼0

P liþ1jlið Þ; (5)

where I0 is the initial positive flux through interface l0, i.e., the
number of crossings of l0 per unit area in unit time. We define
a unit of time as L � L attempts to flip a single spin. The units
of I0 and hence IFFS are therefore crossings per Monte Carlo
step per single site, or MCSS�1. P(li+1|li) is the probability that
a sequence of Monte Carlo moves beginning with a configu-
ration with maximum cluster size li will cross to li+1 before
reaching lA = 8, i.e., reaches the next interface before returning
to the metastable parent phase (l r lA).

In our simulations, we have used 250 interfaces with a constant
gap of 10 between adjacent interfaces. The position of the first
interface varies for different temperatures. For T = 1.5 and h = 0.05,
the first interface position is l0 = 16. The position of first interface is
chosen such that crossings are infrequent, i.e. the probability of
being at l = l0 state is quite low (l0 is above the 95th percentile of
the cluster probability in the parent phase). We run trials starting
from the metastable (negative spin) phase to calculate the initial
positive flux, storing configurations which cross l0 in the direction
of increasing l. We then initialise Monte Carlo trajectories from
randomly chosen configurations at this interface and count how
many reach l1 before returning to lA to obtain the crossing
probability of the first interface. This is repeated for all subsequent
interface pairs. In each case we sample the interface until 25 200
successful events are captured. The initial flux is calculated based on
how much time is needed to produce 25 200 positive crossings of l0.
In a typical FFS simulation we sample interface up to l B 2500.
Plots of the interface probabilities at l = li and the rate of reaching
state l starting from the metastable phase for different impurity
densities ri are shown in Fig. 2(a) and (b) respectively for fixed
T = 1.5 and h = 0.05. The interface probability and rate saturate for
large l indicating post-critical behaviour. The saturation becomes
slower with increasing ri.

3 Barrier height and the critical
nucleus size

We first report on variation of the nucleation behaviour in the
presence of randomly distributed static impurity spins.
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The free energy of a cluster of +1 spins of size l may be
written as

FUSðlÞ ¼ �kBT lnr1 � kBT ln
PðlÞ
Pð1Þ

� �
; (6)

where r1 is the monomer density, i.e., the fraction of the sites
occupied by isolated positive spins in the metastable parent
phase and P(l) is the probability that an observed cluster will be
of size l. For a cluster size upper limit of l = lm, this probability
obeys the normalisation condition

Xlm
l¼1

PðlÞ ¼ 1: (7)

The variation of the free energy FUS(l) for different densities of
the impurities ri is shown in Fig. 3. The height of the free
energy barrier decreases monotonically with increasing ri. The
nucleus size at which the barrier height takes maximum value
is known as the critical nucleus size lc which monotonically
decreases with increasing ri. This suggests that the presence of
spin-0 impurities enhances nucleation of Si = +1 domains.

To gain insight into this enhancement, we fit our free energy
barriers to nucleation theory and extract trends in the resulting

physical parameters. In a previous study Ryu and Cai18 have
numerically calculated free energy barriers in the absence of
impurities and confirmed these accurately obey a cluster free
energy given by

FðlÞ ¼ �2hlþ A1

ffiffiffi
l
p
þ A2 lnðlÞ þ A3; (8)

where A1 is proportional to the interfacial tension per unit
length, A2 is the coefficient of the logarithmic correction term
introduced by Langer39 to incorporate the microscopic fluctua-
tion of the cluster shape. In ref. 18, the term A3 is obtained from
matching F(l) with the analytical expression of droplet free
energy40 for small l. However, in the presence of impurities, we
have used modified expression of free energy which can be
written as

F l; rið Þ ¼ �2hlþ A1 rið Þ
ffiffiffi
l
p
þ A2 lnðlÞ þ A3 rið Þ; (9)

A3(ri) = �kBT ln r1 � A1(ri) + 2h. (10)

The expression of A3(ri) is obtained from the equality F(1,ri) =
�kBT ln r1, where r1 is the density of isolated +1 spins in the
presence of impurities. The term A2 can be calculated theore-
tically for homogeneous nucleation and written as

A2 ¼
5

4
kBT .41 We fit the free energy plot of the system without

impurities obtained from the umbrella sampling techniques to
the function F(l,ri) written in eqn (9) to estimate A1(ri) and
A3(ri). The fitted values of the parameters A1(ri) and A3(ri) are
respectively 4.279 and 3.776 for T = 1.5 and h = 0.05, which are
in very close agreement with A1 E 4.3 and A3 E 3.7, values
obtained in ref. 18 for ri = 0.

In the presence of impurities we fix A2 ¼
5

4
kBT for all ri.

Allowing this parameter to vary has negligible impact on the
quality of fit suggesting that the low impurity densities we study
here do not significantly alter fluctuations in cluster shape.

The size-independent term A3(ri) is obtained from the
density of isolated +1 spins during unbiased simulations of
the system in the metastable phase. This varies with impurity
concentration. The only free parameter when fitting the free
energy plots in Fig. 3 for different ri is the interfacial tension
per unit length A1(ri). As shown in Fig. 4(a), this decreases
linearly with increasing impurity density for fixed T and hence
can be written as

A1(ri) = m1ri + m2. (11)

It is interesting to explore how the parameters m1 and m2 vary
with temperature and field. We observe that A1(ri) increases
with decreasing T for fixed ri. The variation of A3(ri) as a
function of ri for T = 1.4 and 1.5 is shown in Fig. 4(b). A3(ri)
increases with increasing ri for both temperatures.

Spin-0 impurities which bridge between sites occupied by
opposite spins lower the overall energy of the system by a
greater amount than impurities surrounded entirely by spins
of the same sign. Hence it is the presence of spin-0 impurities
at the cluster boundary (rather than inside the cluster) which
has the greatest impact on the nucleation barrier. With static

Fig. 2 Plots of (a) interface probability P(li+1|li) and (b) nucleation rate Il
to a cluster of size l as a function of l for different impurity densities ri with
fix temperature T = 1.5 and field h = 0.05.

Fig. 3 Plot of the free energy FUS(l,ri) obtained from the US simulations as
a function of the nucleus size l for different static impurity densities ri at
T = 1.5 and h = 0.05. The black line is the fit to the modified CNT
expression of the free energy F(l,ri) (see eqn (9)). The error-bars are less
than point size.
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impurities, the average impurity density per unit length of
cluster circumference is independent of both temperature
and cluster size, and hence we can capture their impact on
the interfacial free energy via this simple functional form.

Now we compare the critical nucleus size and the barrier
height obtained from our modified free energy expression and
from the simulation. From eqn (8) it is easy to show that the
critical nucleus size may be written as

lc rið Þ ¼
A1 rið Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1

2 rið Þ þ 32hA2

p
8h

" #2
: (12)

The variation of lc and F(lc,ri) for different ri obtained from
theory and simulations are shown in Fig. 5(a) and (b) respec-
tively for two different T. The results agree satisfactorily. As
would be expected from the reduced interfacial free energy,
increased density of impurities results in a smaller critical
nucleus size and barrier height.

4 Nucleation rates

We have calculated nucleation rates using both BD theory, and
the FFS technique (which is independent of CNT assumptions).
The expression of the nucleation rate using FFS is shown in
eqn (5). We compare these nucleation rates obtained from FFS
with nucleation rate estimates from Becker–Döring theory
using our modified expression for F(lc,ri) (see eqn (9) and
(12)) which incorporates the effects of impurities. The nuclea-
tion rate may be written as

IBD ¼ DcGe
�F lc ;rið Þ

kBT ; (13)

where Dc is a diffusion coefficient which captures the rate of
addition to the critical nucleus and G is the Zeldovich factor
defined as

G ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT
p �@

2F l; rið Þ
@l2

jl¼lc
� �1=2

: (14)

The quantity Dc is extracted from the mean squared varia-
tion in the nucleus size as plotted in Fig. 6(a) with increasing
time for different impurities densities. We perform separate
Monte Carlo simulations to calculate Dc for different ri. The
initial configuration at t = 0 is taken to be the nucleus with
critical size. The mean squared variation is defined as

Dl2(t) = [l(t) � lc]2. (15)

We average Dl2(t) over an ensemble of 105 such trajectories
for each line plotted in Fig. 6(a). The diffusion coefficient Dc is
defined as

Dc ¼
Dl2ðtÞ
� �

2t
; (16)

where hi represents the ensemble average. The slope gradually
decreases with increasing ri indicating that the presence of
impurities hinders addition of new positive spins to the cluster.
Since this term appears in pre-factor of the exponential it has
little impact on the nucleation rate, such that the reduction in
F(lc,ri) dominates leading to an overall increase in nucleation
rate with increasing impurity density.

The nucleation rates obtained from the FFS [see eqn (5)] and
BD theory [see eqn (13)] are compared in Fig. 7 which shows
good agreement. From this we conclude that the impact
of static impurities on nucleation rate is well described

Fig. 4 Variation of (a) the interfacial tension A1(ri), and (b) the size-
independent term A3(ri) as a function of the impurity densities ri for
T = 1.5 and h = 0.05. The maximum impurity density is ri = 0.028 i.e.
2.8% of the lattice is occupied by the impurities.

Fig. 5 Variation of (a) the critical nucleus size lc and (b) the maximum free
energy barrier F(lc,ri) as a function of ri for T = 1.5 and h = 0.05.
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via classical nucleation theory with only minor extensions
required to capture trends with increasing impurity density
over the range explored 0 r ri r 0.028. For higher impurity
densities we observe multiple overlapping pre-critical nuclei
and therefore CNT is not appropriate.

We have plotted the nucleation rate I(MCSS�1) as a function
of ri for different T with fixed h = 0.05 in Fig. 8(a). The
nucleation rate grows exponentially with increasing impurity
density and the exponential growth becomes faster with
decreasing temperature. The slope of the best fitted line
increases with decreasing T for fixed h as shown in Fig. 8(a).
This indicates that the barrier height decreases more rapidly
with increasing ri when the temperature is lowered. The varia-
tion of nucleation rates for different h with fixed T = 1.5 is
shown in Fig. 8(b). The rates grow exponentially as a function of
ri for fixed T and become more steeper with decreasing h. We
can approximately write the nucleation rate as I E C exp(nTri)

and I E C exp(nhri) for fixed h and T respectively. Both nT and nh

increase monotonically with decreasing T and h.

5 Dynamic impurities

With static spin-0 impurities, the reduction of the interfacial
free energy is controlled by the overall impurity density. The
probability of a impurity being located at the growing +1 spin
boundary is constant, and independent of temperature. With
dynamic impurities, the possibility of two limiting regimes
arises.

(1) Low mobility impurities: the boundary of the growing +1
spin cluster will expand rapidly compared to the randomly
distributed and slow-moving impurities, resulting in a
reduction of the interfacial free energy similar to the static case.

(2) High mobility impurities: sufficiently fast-moving impu-
rities can reach a local equilibrium distribution much faster
than the +1 spin nucleus can grow or shrink. This implies that a
description of the nucleation process in terms of a free energy
at each nucleus size remains appropriate.

Here we apply both the BD and FFS approaches in the high
mobility regime and compare to the static regime
studied above.

We consider dynamic impurities of fixed density ri. Impurity
sites may move to the one of the four neighbouring sites via
Kawasaki dynamics. The spin 0 impurity (blue) may exchange
with a spin +1 (red) or spin �1 (white) neighbouring sites. We
do not consider spin exchange dynamics involving only red and
white sites. We define the quantity a such that the mobility of
impurity particles increases with increasing a. The mobility
parameter a takes values between 0 to 1. In our Monte Carlo
simulations we attempt a spin exchange move for a random
impurity particle with probability a. Attempts to flip the spin of

Fig. 6 Variation of hDl2(t)i as a function of time t with (a) static impurities
for different densities and (b) dynamic impurities for different a.

Fig. 7 Comparison of the nucleation rates obtained from the FFS method
and the Becker–Döoring theory for T = 1.5 and T = 1.4 with h = 0.05.

Fig. 8 Variation of the nucleation rate as a function of ri for different
values of the temperatures with fixed external field h = 0.05.
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randomly chosen size with spin �1 are attempted with prob-
ability 1 � a.

Rates are reported to be consistent with the previous section,
i.e., based on a unit of time during which, on average, every site
on the lattice is subjected to one trial flip. Hence for large a,
many Kawasaki exchange moves involving impurities are
attempted per time unit.

We have plotted the free energy barrier to nucleation both
for static (a = 0) and high mobility (a = 0.95) impurities with
density ri = 0.020 for different values of a. The free energy plots
for T = 1.0 and T = 1.5 are shown in Fig. 9(a) and (b) respectively.
We observe that the barrier height decreases significantly for
the nonzero value of a compared to the a = 0 case when the
temperature is low (T = 1.0). However, the critical nucleus size is
approximately the same. By contrast, we see that the barrier
height and critical nucleus size of the free energy do not change
as dramatically between a = 0 and a = 0.95 at the higher
temperature T = 1.5.

Nucleation rates I as a function of ri obtained using FFS for
static and high mobility impurities at T = 1.5 and h = 0.05 are
shown in Fig. 10. We see that the rates obtained using FFS for
different a are similar (i.e. within one order of magnitude) for
every ri at this high temperature, but there is an indication of
high mobility impurities increasing the nucleation rate. This is
consistent with the observation of marginally lower barrier
heights for high a at T = 1.5 in Fig. 9(b).

Based on the free energies in Fig. 9(a), we expect a much
more dramatic impact of high mobility impurities at the lower
temperature of T = 1.0. The FFS method becomes extremely
inefficient at this temperature due to a very low density of spin
+1 sites in the metastable phase. Computing a sufficiently
accurate flux through l0 is intractable in this case.

We have, however, calculated the nucleation rate at T = 1.0
using the Becker–Döring expression. The rates are
4.005 � 10�38 MCSS�1 and 2.180 � 10�34 MCSS�1 for a = 0
and a = 0.95 respectively. The mobility of impurities hence
enhances the nucleation rate by several orders of magnitude.
The mean squared deviation hDl2(t)i for dynamic impurities
with different a at T = 1.0 is shown in Fig. 6(b). We see that the
slope of the plot reduces for a a 0 implying the reduction of
diffusion coefficient Dc for dynamic impurities.

The BD rates at T = 1.5 are 1.128 � 10�15 MCSS�1 and
1.930 � 10�15 MCSS�1 for a = 0.95 and a = 0.0 respectively. The
corresponding critical cluster sizes are lc = 368 and lc = 363 for
dynamic and static case respectively.

The role of high mobility impurities at high versus low
temperature for three different temperatures with fixed
h = 0.05 is illustrated in Fig. 11(a–f). Fig. 11(a, b), (c, d) and
(e, f) are the snapshots of typical configuration after equili-
brium at T = 1.5, T = 1.0 and T = 0.9 respectively for both static
and dynamic impurities. For the purposes of this illustration
we set the mobility parameter a = 0.95 prioritising the spin
exchange dynamics for the impurity particles. Initially the
impurities are placed randomly on the lattice. We create a
circular nucleus of red (spin +1) particles at the centre of the
lattice of size l = 600 and evolve the system such that the cluster
size remain confined within a range [l� 10, l + 10]. We see that
the impurity particles preferentially occupy the boundary posi-
tions of the nucleus at low temperatures. This happens because
the particular impurity particles modelled here act as a surfac-
tant, reducing the surface free energy. However, at high tem-
peratures the phenomenon of preferential occupancy of the
blue particles at the boundary positions is entropically unfa-
vourable leading to a less dramatic enhancement of the
nucleation rate.

To quantify this observation, we plot the equilibrium frac-
tion f of the impurity particles present at the boundary of a
static nucleus as a function of T for different sizes of the
nucleus as shown in Fig. 12. The quantity f is defined as

f ¼ Nb

Nr þNb
; (17)

where Nr is number of red particles connected to the nucleus
through the nearest neighbour sites and Nb is number of blue
particles present at the boundary of the nucleus and also
connected to the nucleus through the nearest neighbour sites.
We set the mobility parameter a = 1 such that only spin
exchange dynamics are performed for the impurity particles.
The boundary particles are identified by measuring the dis-
tance r of the blue particle from the centre of mass of the
nucleus. If r Z 0.7R, we count the blue particle as boundary
blue particle, where R is mean radius of the nucleus. The

Fig. 9 Free energy barrier to nucleation with both static (a = 0) and high
mobility (a = 0.95) impurities at (a) T = 1.0 and (b) T = 1.5 with h = 0.05 and
ri = 0.020. The critical nucleus size at T = 1.0 for a = 0.0 and a = 0.95 are
respectively 756 and 665.

Fig. 10 Comparison of nucleation rates obtained via FFS for static (a = 0)
and high mobility (a = 0.95) impurities.
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quantity f increases with decreasing T indicating the adsorp-
tion phenomenon of impurity particles at the boundary of the
nucleus. This adsorption phenomenon is absent at high
temperatures.

6 Conclusion

We have studied nucleation rates in the two dimensional Ising
model in the presence of randomly placed impurities on a
square lattice using two independent methods which are BD
theory and FFS. The rates obtained using both methods agree
satisfactorily for different impurity densities up to ri = 0.028,
i.e., when the only 2.8% of the sites are occupied by the
impurities. The nucleation rate increases with increasing
the impurity density. We have also studied the effect on the
nucleation rates when the impurity particles are dynamic. The
dynamics of the impurity particles accelerate the nucleation
when the temperature is low. However, the impurity dynamics
does not play as significant a role when the temperature
is high.

We have not explored the regime of intermediate impurity
mobility. Here one would not expect the distribution of impu-
rities to equilibrium on a timescale more rapid than that on
which spin +1 cluster grow or shrink. This would invalidate a
free-energy based description, but could be amenable to a
description based on BD theory if growth/shrinkage rates could
be evaluated directly. Rates in this regime can possibly be
probed via FFS, however in the high temperature regime
accessible to this method we expect little impact of mobility
on nucleation rate due to the less-dramatic difference between
the two limiting cases of zero and high mobility.

We stress that our study has only considered the case where
the impurities interact with both spin up and spin down sites in
the same way. Different behaviour would be expected if (for
example) the interactions favoured location of impurities
within the bulk of the metastable phase. Future work will
attempt to map behaviour in different interaction regimes such
that approximate connections to solute precipitation can
be made.

The study of the nucleation in the presence of random
impurities on triangular lattice and three dimensional cubic
lattice is an open area for future research. It would be interest-
ing to investigate how the different dynamics of the impurity
particles in other lattice geometries impact the nucleation rate.
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Fig. 11 Snapshot of the system after equilibration with static (left column)
and dynamic impurities (right column) at (a and b) T = 1.5, (c and d) T = 1.0
and (e and f) T = 0.9 with fixed h = 0.05 and ri = 0.020. The value of a is
0.95 for the dynamic impurities.

Fig. 12 Fraction of the blue particles present at the boundary of the nucleus
with increasing the temperature for different size of the initial nucleus li.
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