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Droplets on substrates with oscillating wettability†

Josua Grawitter * and Holger Stark *

In recent decades novel solid substrates have been designed which change their wettability in response

to light or an electrostatic field. Here, we investigate a droplet on substrates with oscillating uniform

wettability by varying minimum and maximum contact angles and frequency. To simulate this situation,

we use our previous work [Grawitter and Stark, Soft Matter, 2021, 17, 2454], where we implemented the

boundary element method in combination with the Cox–Voinov law for the contact-line velocity, to

determine the fluid flow inside a droplet. After a transient regime the droplet performs steady

oscillations, the amplitude of which decreases with increasing frequency. For slow oscillations our

numerical results agree well with the linearized spherical-cap model. They collapse on a master curve

when we rescale frequency by a characteristic relaxation time. In contrast, for fast oscillations we

observe significant deviations from the master curve. The decay of the susceptibility is weaker and the

phase shift between oscillations in wettability and contact angle stays below the predicted p/2. The

reason becomes obvious when studying the combined dynamics of droplet height and contact angle. It

reveals non-reciprocal shape changes during one oscillation period even at low frequencies due to the

induced fluid flow inside the droplet, which are not captured by the spherical-cap model. Similar

periodic non-reciprocal shape changes occur at low frequencies when the droplet is placed on an

oscillating nonuniform wettability profile with six-fold symmetry. Such profiles are inspired by the light

intensity pattern of Laguerre–Gauss laser modes. Since the non-reciprocal shape changes induce fluid

circulation, which is controllable from the outside, our findings envisage the design of targeted

microfluidic transport of solutes inside the droplet.

1 Introduction

The shape a liquid droplet forms on a flat surface is determined
by the wettability landscape of the surface. On more wettable
parts of the surface, the droplet spreads out and on less
wettable parts it contracts.1 In the past two decades researchers
have developed substrates the wettability of which can be
controlled such that patterns that change in space and/or time
can be created.2–4 For example, the wetted substrates become
switchable due to a single layer of light-responsive
molecules,2,5,6 electro-responsive molecules,7 an array of light-
responsive pillars,8–10 or more complex nanostructures.11,12

Regardless of the specific mechanism, controlling the
dynamics of a liquid drop by time-varying wettability patterns
is not yet fully explored, despite its importance for lab-on-a-chip
devices13 and for targeted deposition of solutes, for example, in
printing devices.14

So far, much research has aimed at understanding wetting on
substrates with static non-uniform wettability patterns. Early
theoretical studies used perturbation methods to analytically
estimate the influence of small local wettability gradients on
droplets with simple circular or cylindrical shapes.15,16 Later,
experimental and numerical work investigated more complex
shapes which occur, for example, when a droplet crosses a
static step in wettability,17,18 flows over two neighboring stripes
of increased wettability,19 over a checker-board pattern,20,21

or random spatial fluctuations in wettability.21 From the perspec-
tive of the droplet these patterns also become time-varying if the
droplets starts to move, for example, on an inclined substrate.22

Furthermore, a droplet may trigger a chemical reaction with the
substrate and thereby create a wettability gradient, which moves
it forward.23 Taking into account the switchable substrates
introduced above, we have shown recently how a chemically inert
droplet responds to moving steps in wettability.24 Thus, the
droplet’s motion is under external control.
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In this article we present a theoretical investigation how a
small liquid droplet behaves on a substrate with oscillations in
uniform wettability. We also give a brief outlook toward its
behavior on a substrate with oscillations of a non-uniform
wettability pattern. Generally, small sessile droplets form
spherical caps on flat substrates with uniform wettability because
that shape minimizes its total surface energy on a flat substrate.25

However, when the substrate’s wettability oscillates, the droplet
continually tries to follow but cannot relax to its equilibrium
shape. Its continuous motion in turn gives rise to internal flow in
the droplet. We are interested in both—the droplet shape during
oscillation and the accompanying internal flow. Since at small
length scales viscous forces dominate inertia within the droplet,
the internal fluid flow is described by the Stokes equations.26 We
solve these using the boundary element method, the implemen-
tation of which we have described in a previous work.24 At the
edge of the droplet-substrate interface (the contact line), we use
the Cox–Voinov law to calculate the velocity of the contact line.27

We have previously validated and applied our method to dro-
plets that are steered by moving steps in wettability.24

The case of droplets exposed to oscillating wettability is
distinct from droplets on vertically vibrated substrates, which
have been studied in ref. 28–30. For the droplet such vibrations
only play a role in the presence of inertia or external forces.
They affect the droplet as a whole, while oscillations in wett-
ability only act via forces at the contact line. Vertical vibrations
have been shown to give rise to ripples that travel up the side of
the droplet and to generate higher-harmonic deformations of
the contact line for water28,29 as well as for mercury droplets.30

At large amplitudes of the vibrations the droplet breaks up by
ejecting small amounts of liquid at its top.29 As we study
wettability oscillations in the absence of inertia, we will not
observe such extreme phenomena in our case.

Our theoretical approach stands alongside two other continuum
approaches to dynamic wetting. In the first approach, one uses a
thin-film equation to evaluate the droplet dynamics via its height
profile,31–34 which means the contact angle should be small and
cannot exceed 90 degrees. Another approach, which we will discuss
in detail below, is the spherical cap model. It constraints the shape
of the droplet to a spherical cap27,35 and does not capture fluid flow
within the droplet. The spherical cap shape is motivated by the
equilibrium shape of a droplet on a substrate with uniform
wettability. With our approach, we are able to evaluate the
applicability of the spherical cap model and investigate the internal
flow field of the droplet.

Our findings add to the microfluidics toolbox36–38 another way
to interact with and manipulate droplets by placing them on
substrates with oscillating wettability. Specifically, we find that the
contact angle oscillations of the droplet decrease with increasing
frequency. For slow oscillations this can be well described by the
spherical-cap model, which even provides a characteristic time
scale to map the oscillations onto a common master curve.
However, the master curve is no longer applicable for fast oscilla-
tions. A more detailed study of the droplet dynamics in terms of
two shape variables, such as contact angle and droplet height,
reveals that they oscillate out-of-phase with each other. Thus, the

droplet performs a non-reciprocal motion during one oscillation
period, which cannot be described by the spherical-cap model.
It is due to fluid flow within the droplet, which gives rise to fluid
circulation within the droplet.

Our article is structured as follows: in Section 2 we reiterate
the theoretical basis of our boundary element method applied
to dynamic wetting. In Section 3 we describe and discuss our
findings in detail. First, in Section 3.1 we present the basic
phenomenology of the droplet oscillations. We analyze them
using linear-response theory and the spherical-cap model,
where the contact angle serves as a single shape characteristic.
Second, in Section 3.2 we look at the coupled dynamics of
contact angle and height, reveal the non-reciprocal motion of
the droplet, and discuss its implications for the internal fluid
flow. Third, in Section 3.3 we study a closely-related example
of a droplet on a substrate with an oscillating non-uniform
wettability pattern. Finally, we conclude in Section 4.

2 Simulation method

The motion of a droplet consisting of an incompressible simple
liquid is completely described by the dynamics of its interfaces: the
gas–liquid and the solid–liquid interface. The motion of any point s
on the interfaces is governed by the fluid velocity field at this point:

:s = v(s). (1)

In the following we summarize how we determine the velocity
field both at the droplet surface and its interior.

2.1 Stokes flow

We consider droplets in which viscous drag dominates inertia,
which is the limit of Stokes or creeping flow.39

The equations govering the velocity field v of Stokes flow are

mr2v = rp, r�v = 0, (2)

where m is viscosity and the second equation is the incompressi-
bility condition which constrains the pressure p. These
differential equations can be restated as boundary integral
equations40 using the Oseen tensor O and the associated
stress field T:

cðrÞvðrÞ ¼
þ
@D

Oðr� r0Þrnðr0Þd2r0

�
þ
@D

vðr0Þ � Tðr� r0Þnðr0Þd2r0
(3)

with

cðrÞ ¼

1 for r 2 Dn@D

1

2
for r 2 @D; where @D is smooth

a
4p

for r 2 @D; where @D has a corner
with inward solid angle a:

8>>>>>><
>>>>>>:

(4)

where qD is the (time-dependent) surface of the droplet.
Because the equation relates velocity v and stress sn, for any
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surface point r either variable must be prescribed by boundary
conditions.

2.2 Boundary conditions

On the liquid–gas interface the normal stress balances surface
tension forces due to mean curvature k of the interface, i.e.,
sn = gkn, where g is the surface tension of the liquid–gas
interface.

On the solid liquid interface (at the substrate) two conditions
apply: firstly, the interface cannot deform along its normal ez

and therefore vz = 0. Secondly, roughness of the substrate
introduces a small amount of slip with slip length l, which we
account for by setting lsn = mv tangential to the interface.41

As a boundary condition on the contact line, we choose its
velocity along the substrate according to the Cox–Voinov law27,42

vcontact ¼
g

9m lnðh=lÞ ydyn
3 � yeq3

� �
; (5)

where yeq is the equilibrium contact angle, which defines the
wettability of the substrate, and ydyn is the dynamic or actual
contact angle. Only with this separate boundary condition is the
problem well-posed because the three-phase contact line is
neither clearly part of the gas–liquid interface nor the solid–
liquid interface.26,43 Note also that the Cox–Voinov law excludes
the effects of contact angle hysteresis.44,45

The boundary conditions introduce several material para-
meters in addition to viscosity m. For our simulations we choose
dimensionless parameters. They correspond, for example, to a
droplet with an initial radius R0 = 100 mm of its circular base
area and made of a 90% glycerol and 10% water mixture. This
reference system was studied in experiments by de Ruijter
et al.35 The mixture has m = 209 mPa s, kinematic viscosity
n = m/r = 169 mm2 s�1, g = 65.3 mN m�1, l = 1 nm, and
ln(h/l) = 44. The latter value was observed by de Ruijter et al. by
fitting the spherical cap model with eqn (11) and (12) mentioned
below to their experimental data. Furthermore, we choose
the initial contact angle ydyn to be the time average of yeq. We
calculate and report our data in units of R0 for length, t = R0

2/n for
time, and F0 = nm for force. Thus the remaining dimensionless
parameters are ~g = gR0/F0 = 0.19 and ~l = l/R0 = 10�5.

Based on these parameters and eqn (5), we estimate the ratio
between inertial and viscous forces, i.e., the Reynolds number
Re. It contains a characteristic flow velocity, for which we take
the velocity of the contact line. According to eqn (5) the
prefactor provides a relevant velocity scale so that we obtain

Re ¼ vcontactR0

n
� gR0

9m lnðh=lÞn ¼
~g

9 lnðh=lÞ ¼ 5� 10�4: (6)

Now, Re { 1 means that the nonlinear term in the Navier–
Stokes equations, the convective derivative of the velocity field,
can be neglected. To also neglect the time derivative, we need to
impose that the flow field adjusts to the driving forces quasi
instantaneously. This is the case if the characteristic vortex
diffusion time t = R0

2/n is much smaller than the time scale of
the driving forces, which in our case is the period of the
oscillations in wettability. To make sure we fulfil this criterion

in our investigations, we limit the oscillation frequency in our
simulations to values smaller than 10�1t�1.

2.3 Boundary element method

To solve for the velocity field at the droplet’s interfaces, we
construct a triangular mesh and discretize the integral equation.
We then integrate the dynamic of the mesh in time using an
adaptive 5th order Runge–Kutta method.46 The full details of our
boundary element method are provided in ref. 24. Briefly, to
discretize eqn (3) we divide the droplet surface into polygonal
regions, each with a vertex at its center. The polygons are then
decomposed into triangles and we integrate separately over each
triangle using Gaussian quadrature47 with 400 sampling points
for singular integrands and 9 sampling points for nonsingular
integrands. Once we have solved the discretized equation and
the surface velocity field is known, we can use the boundary
integral eqn (3) to evaluate the flow field in the interior of the
droplet. Similar numerical approaches have been used to study
dewetting of polymer microdroplets48,49 and for bubbles on a
solid surface under the influence of an acoustic field.50

3 Droplet on a substrate of oscillating
uniform wettability

We consider a droplet on a substrate, where the uniform
wettability expressed by the equilibrium contact angle yeq(t)
oscillates with a frequency f between a minimum (ymin

eq ) and
maximum (ymax

eq ) value:

yeq(t) = ymin
eq + (ymax

eq � ymin
eq )�sin2(pft) (7)

For further use below, we note that the wettability oscillation is
invariant under time reversal, up to a constant phase shift.

We now discuss how the droplet reacts on oscillations in the
wettability and compare our numerical results to the outcome
from the spherical-cap model. Then, we show that the induced
flow in the droplet is non-reciprocal so that it effectively pumps
fluid during one oscillation cycle.

3.1 Phenomenology

After an initial transient behavior, the droplet settles into a
periodic deformation which oscillates with the same frequency
as the wettability. For three frequencies separated by a factor of
10, we display the dynamic contact angle in Fig. 1. We observe
that the range covered by the dynamic contact angle decreases
with increasing frequency. For slow oscillations the contact
angle nearly follows the prescribed equilibrium value of the
substrate wettability, while for fast oscillations it barely varies
leading to an almost steady droplet shape. Note that in our
example the droplet does not oscillate about the mean value of
ymax

eq = 1201 and ymin
eq = 601. Furthermore, we observe a phase

shift between the oscillating equilibrium and dynamic contact
angles, which also depends on f. Note, for different combinations
of ymax

eq and ymin
eq we provide Videos M01–M03 in the ESI,† where a

relatively small frequency of f = 10�3t�1 is used (for details see
footnote, ESI†).
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To quantify the response of the droplet to the oscillating
substrate wettability, we introduce the nonlinear susceptibility
w = |w| exp(iDj) with absolute value |w| and phase shift Dj. The
imaginary unit is indicated by i. We extract |w| from

wð f Þj j ¼
max

t
fydynðtÞg �min

t
fydynðtÞg

ymax
eq � ymin

eq

: (8)

To calculate the phase shift Dj( f ), we determine the first
Fourier coefficient adyn of the dynamic contact angle ydyn,

adynð f ¼ T�1Þ ¼ lim
s!1

1

T

ðsþT
s

ydynðtÞei2pt=Tdt; (9)

where s - N insures that the oscillations of ydyn(t) are steady.
For the same time interval we also determine the complex
amplitude aeq of the prescribed equilibrium contact angles and
then calculate the phase shift between oscillating wettability
and dynamic contact angle from

Dj( f ) = arg[adyn( f )] � arg[aeq( f )], (10)

where arg means the phase angle of the complex amplitude.
In Fig. 2 we plot the absolute value |w| over frequency for

different combinations of ymax
eq and ymin

eq . All three curves show
the expected decrease of |w| with increasing f. Furthermore, for
larger difference ymax

eq � ymin
eq and larger values of the equilibrium

contact angles, the curves are shifted to larger frequencies but
roughly have the same shape. This suggests by rescaling
frequency appropriately, they fall on a master curve. The inset of
Fig. 2 plots the corresponding phase shift. For small frequencies of
the oscillating wettability the phase shift tends towards zero for the
green curve meaning that the dynamic contact angle follows the
prescribed wetting angle instantaneously.

To gain more insights and also pursue the idea of the master
curve further, we compare our observations to the spherical-cap
model,35 where the droplet always keeps the shape of a
spherical cap and the dynamics is solely governed by the
Cox–Voinov law for the contact line. This will allow us to
distinguish phenomena inherent in the contact-line friction
from phenomena which are due to the freely deformable liquid-
gas interface and the initiated fluid flow in the droplet as

determined in our boundary element method. For slow temporal
variations in the wettability we expect the spherical-cap model to
be valid since fluid flow in the droplet is weak, while for larger
frequencies deviations should occur. We now go into more
detail.

In the spherical-cap model the shape of the droplet is
constrained to a single degree of freedom for which it determines
a dynamic equation.35 Here, we follow ref. 35 and express the
model in terms of the dynamic contact angle ydyn,

dydyn
dt
¼ �gðydyn; yeqÞ (11)

with

gðydyn; yeqÞ ¼
glg

9m lnðh=lÞ

ffiffiffiffiffiffiffi
p
3V

3

r
ydyn3 � yeq3
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos ydynÞ2ð2þ cos ydynÞ43

q (12)

To gain some insight and derive a characteristic relaxation time
of the spherical-cap model, we linearize it around ydyn = yeq in
Dy = ydyn � yeq:

dydyn
dt
¼ � @g

@ydyn

����
ydyn¼yeq

ydyn � yeq
� �

: (13)

The derivative of g is a characteristic relaxation rate t0
�1. But, in

our case yeq is a function of time. Nevertheless, to have a constant
rate, we calculate the derivative at the mean equilibrium contact
angle �yeq = (ymax

eq � ymin
eq )/2 and obtain

t0�1 �yeq
� �

¼
glg�yeq

2

3m lnðh=lÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
3V

1� cos �yeq
� �2

2þ cos �yeq
� �43

r
: (14)

It determines the exponential relaxation of small deviations of
ydyn� �yeq towards �yeq. Now, we approximate eqn (13) by using the

Fig. 1 Contact angle oscillations in response to oscillations in wettability
for three frequencies f with ymax

eq = 1201 and ymin
eq = 601.

Fig. 2 Absolute susceptibility |w| as a function of oscillation frequency
f = o/2p in units of t�1 for three combinations of ymax

eq and ymin
eq . The inset

shows the corresponding phase shift Dj.
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constant t0 instead of the exact derivative of g. Rescaling time
by t0, we finally arrive at

dydyn
dðt=t0Þ

� �½ydyn � yeqðtÞ�; (15)

which is the parameter-free linearized model. Below we will
demonstrate that it very nicely fits our computational results for
low frequencies and it is the basis for identifying a master curve
for |w(o = 2pf )|.

Using time rescaled with t0 also in the full spherical-cap model,
we can rewrite eqn (11) and (12) in a non-dimensionalized form as

dydyn
dðt=t0Þ

¼ � 1

3�yeq2
ðy3dyn � yeqðtÞ3Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos ydynÞ2ð2þ cos ydynÞ4
ð1� cos �yeqÞ2ð2þ cos �yeqÞ4

3

s
(16)

Note that here the r.h.s. is independent of the liquid–gas surface
tension glg, the viscosity m of the fluid, and the Cox–Voinov
parameter ln(h/l), which determines the contact line mobility. All
these parameters are subsumed in the relaxation time t0. The only
remaining parameters are ymin

eq and ymax
eq , which also determine �yeq.

We now explore the linerarized model. By taking the Fourier
transform of eqn (15), one finds the dynamical susceptibility
w(o), which quantifies how ydyn responds to an oscillation in
yeq: ŷdyn(o) = w(o)ŷeq(o) with

wðoÞ ¼ 1

1� it0o
: (17)

The absolute value |w| reads

wðoÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ ðt0oÞ2

s
(18)

and the complex phase j is

j(o) = arctan(t0o). (19)

Note that in the region where the linear model applies, j(o) is
identical to the phase shift Dj(f = o/2p) between yeq(t) and
ydyn(t) introduced above.

Because eqn (18) and (19) do not depend on any material
parameters besides the characteristic relaxation time t0, they
are candidates for the master curves for our simulation results
in Fig. 2. We simply need to rescale frequency by t0

�1 calculated
for the specific values of ymin

eq and ymax
eq . In Fig. 3(a) and (b) we

display the master curves as dashed lines together with the
results from our boundary element method (BEM) using
rescaled frequencies. First, in Fig. 3(a) we observe that the
BEM results all fall on a common master curve for f o t0

�1,
which perfectly matches the linear model in this range. For
f 4 t0

�1 the BEM results do not follow a common master curve
and they deviate from the linear model. We observe that the
absolute susceptibility enters an algebraic decay with an
approximate exponent �0.5 rather than �1 as predicted by
the linear model. Second, in Fig. 3(b) we similarly observe that
the BEM results approach the linear model for small f, however
they start to deviate significantly for ft0 4 3 � 10�1. The phase

shift varies between roughly 0.3p and 0.4p rather than
approaching 0.5p as predicted analytically by the linear model
in eqn (19) and indicated as dashed line. The phase shifts
beyond ft0 4 3 � 10�1 apparently depend on ymax

eq and ymin
eq .

To interpret these observations, we distinguish two regimes:
a low frequency regime with ft0 o 1 and a high frequency
regime with ft0 4 1. In the low frequency regime, the oscillations
are sufficiently slow so that the droplet can adapt its shape and
keep it close to a spherical cap. Thus, the linear spherical-cap
model is valid. In fact, in the limit of vanishing f it becomes exact
as the dynamics becomes quasistatic. According to linear
response theory, the imaginary part Imw, which in our linear
model from eqn (17) reads

ImwðoÞ ¼ t0o
1þ ðt0oÞ2

; (20)

Fig. 3 Absolute susceptibility |w| (a) and phase shift Dj (b) as a function of
oscillation frequency f = o/2p in units of f0 = t0

�1 determined in the
simulations for three combinations of ymax

eq and ymin
eq (coloured crosses with

solid lines to guide the eye, see legend). The dashed grey lines indicate the
prediction of the linear model in eqn (18) and (19), respectively. The dotted
black line in (a) shows a f�0.5 scaling.
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quantifies dissipation. Because Imw as well as the phase shift Df
from eqn (19) are linear in o at small frequencies, this implies
that almost no work performed on the droplet through slow
wettability oscillations is dissipated by the friction of the
contact line.

In the high frequency regime, the droplet deviates far from
the linear model since small |w| means ydyn barely tracks yeq(t).
But also the full spherical cap model is unable to predict the
observed behavior for |w| and Dj and, in particular, the
deviation from a common master curve. This implies that the
droplet shape deviates from a spherical cap when fast wett-
ability oscillations are applied. These deviations occur close to
the contact line, which can move quickly without displacing
much liquid and thereby bends the free surface, i.e., it locally
in- or decreases curvature, which is precluded in the spherical
cap model. This explains why ydyn is more susceptible at large f,
meaning it lies above the prediction of the linear model: a small
adjustment of the position of the contact line can drastically
alter ydyn and increase in a short time the surface energy of the
droplet relative to the equilibrium reference shape for a given
yeq. Thus the work performed on the droplet is not completely
dissipated. Therefore, the phase shift angle Dj is below the
value p/2, which is expected for a complete dissipation and
which is predicted within the spherical-cap model for large
frequencies.

The spherical cap model only includes dissipation at the
contact line. It does not account for viscous friction, friction at
the substrate interface, or the elasticity of the free surface. All of
these are present in the BEM results, however. We now want to
focus on these contributions by turning our attention toward
the internal flow of the droplet and toward its deformation
from the spherical cap shape.

3.2 Deformation and pumping

The shape oscillations of the droplet are accompanied by
internal fluid flow. When the wettability increases, the droplet
wets more area on the substrate and fluid moves from the top
of the droplet through its center to the contact line. When the
wettability decreases, the droplet wets less area on the substrate
and fluid moves in the opposite direction.

However, this back-and-forth does not cancel out completely
and there is a net displacement of fluid after each period, i.e.,
fluid is pumped within the droplet, as illustrated in Fig. 4.
To quantify the net displacement, we place point-like tracer
particles in the droplet and track their motion for one full
period of oscillation, so that to each starting point r0 we can
assign a displacement

d(r0) = r(T) � r0, (21)

where r(t) is the solution of the differential equation :r(t) = v(r, t)
with initial condition r(0) = r0 and v(r, t) is the interior velocity
field of the droplet when it is steadily oscillating. In Fig. 4 we
display an example of d(r) that is representative for all studied
cases. Qualitatively, it shows a circulation of fluid inside the
droplet with fluid travelling up through the center of the
droplet and down along its free surface in a single toroidal

vortex, which covers the interior of the droplet completely.
We return to this observation after considering the shape of
the droplet.

To quantify changes in the droplet shape, one can use, e.g.,
the dynamic contact angle ydyn or the droplet height h. In Fig. 5
we plot two oscillation cycles of yeq(t) in graph (a) together with
the corresponding h(t) and its time derivative

:
h(t) in graph (b).

We first observe that the height of the droplet adjusts faster to a
decrease in wettability than to an increase; meaning, the upward
slope of h(t) corresponding to an increase of yeq(t) is larger than
the magnitude of the downward slope. We understand this
by studying the mobility of the contact line as a function of
the dynamic contact angle. When the droplet is equilibrated, i.e.,
yeq = ydyn and a small change in wettability occurs, i.e. yeq -

yeq + dyeq, we calculate the contact line mobility m by linearizing the

Fig. 4 Displacements d(r) of tracers after one full period in a cross section
of a droplet on a substrate with oscillating wettability with ymin

eq = 601,
ymax

eq = 1201, and f = 10�3t�1.

Fig. 5 Droplet shape changes for f = 10�3t�1, ymax
eq = 601 and ymin

eq = 301.
(a) Wettability of the substrate as a function of time characterized by the
equilibrium contact angle yeq. (b) Deformation of the droplet quantified by
the height h(t) and rate of deformation quantified by

:
h(t) plotted versus

time. Note that
:
h(t) indicates unequal upward and downward slopes for the

height dynamics.
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Cox–Voinov law, eqn (5). The velocity of the contact line becomes

vcontact � �mdyeq with m ¼ gyeq2

3m lnðh=lÞ (22)

Apparently, the mobility m can be smaller or larger for droplets with
the same ydyn, depending on yeq. If the wettability is increasing
(smaller yeq) m is decreased. Respectively, if the wettability is
decreasing (larger yeq) m is increased. Thus, when wettability
increases over time, contact line mobility decreases and the
droplet’s shape adjusts more slowly than when wettability decreases
over time. This explains the behavior of h(t) in response to yeq(t).

However, varying rates of deformation are insufficient to explain
a net pumping of the liquid because the equations of Stokes flow,
eqn (2), are independent of time. Therefore, a different aspect of
the deformation must be responsible for the pumping.

Unlike the spherical cap model our BEM simulations are not
constrained to a single degree of freedom. So as a minimal
extension for describing the temporal shape variations of the
droplet, we investigate the coupled dynamics of two degrees of
freedom, contact angle ydyn and droplet height h. In Fig. 6 we
represent the droplet dynamics in the configuration space
spanned by these two variables; one oscillation of the droplet
corresponds to a closed trajectory. Interestingly, the non-zero
area enclosed by the trajectory reveals the dynamics of the
droplet as non-reciprocal, meaning under time-reversal the
dynamics looks different. In our concrete case the droplet
assumes slightly different shapes during increasing and
decreasing wettability in the course of one period. The non-
reciprocal dynamics is clearly due to the flow field generated
inside the droplet. Since the spherical-cap model only has one
dynamic variable, its dynamics can only be reciprocal. The
dashed line in Fig. 6 shows the model prediction for vanishing
frequency.‡ Note the non-zero area also means that contact
angle and height oscillate out-of-phase with each other. From
the study of microswimmers at vanishing Reynolds numbers,
we know Purcell’s scallop theorem51 which states that non-
reciprocal shape changes are needed for microswimmers to
move forward. Similarly, the pumping displacement mentioned
in the beginning is linked to the non-reciprocal droplet
deformation.

To quantify the non-reciprocal shape dynamics of the droplet,
we take the area enclosed by the trajectory in configuration space,
which, in general, is high-dimensional. However, projecting this
trajectory into the two-dimensional space spanned by droplet
height h and contact angle ydyn, we can immediately calculate
the projected area as

A ¼ lim
s!1

þsþT
s

hðtÞ _ydynðtÞdt (23)

where the limit s -N ensures that h(t) and ydyn(t) perform steady
oscillations. In the following, we call the parameter A shape non-
reciprocity.

The closed trajectories or loops in the configuration space
presented in Fig. 6 extend further in both dimensions and
enclose a larger area A as frequency decreases. An increasing
area A means the dynamics of the droplet shape becomes less
reciprocal. Fig. 7(a) displays the dependence of A on frequency f
for all three cases of equilibrium contact angles. We always
observe that A decreases for large f, while in the case of ymin

eq =
601 and ymax

eq = 1201 the non-reciprocity A has a maximum and
decreases toward small f. The latter is expected since in the
quasistationary case of vanishing f the motion has to become
reciprocal. Notably, even at small frequencies A is relatively large
which means even though the dynamic response approaches that
of the spherical cap model, there is still a significant difference
between our BEM dynamics and the spherical cap model.

We can directly understand the non-zero values for A by
considering the basic mechanisms driving the droplet. When
wettability changes, it gives rise to uncompensated Young
forces52 at the contact line. The contact line starts to move,
which brings ydyn closer to yeq and relaxes the Young forces. At the
same time, the free surface is bent locally thereby introducing
uncompensated surface stresses in the vicinity of the contact line.
Those stresses redistribute liquid inside the droplet and even-
tually affect droplet height h. So, while ydyn adjusts directly to the
changes in wettability, the effect on h is mediated by the initiated
flow and, therefore, delayed.

In the quasistatic limit, f - 0, that delay becomes negligible
relative to f; contact angle and height oscillate in synchrony and
the droplet’s behavior approaches the spherical cap model,
eqn (16). In the limit f - N the surface stresses relax not by
redistributing liquid, but because wettability quickly returns to
its original value, thereby eliminating the uncompensated
Young forces before the contact line moves significantly. Here,
the droplet hardly oscillates and thereby approaches a static
spherical cap shape. So, in both limits the droplet assumes
spherical shapes and only intermediate frequency values f
cause a significant deviation from this form.

Fig. 6 Closed trajectories in configuration space projected onto the
h-ydyn plane for various frequencies f (see legend) for ymin

eq = 601 and
ymax

eq = 1201. The limiting behavior of the spherical-cap model with ft0 { 1
is indicated by the black dashed line.

‡ Note that due to the discretization of the droplet surface, all ydyn of the
simulated curves are systematically shifted downwards by a small angle. Other-
wise, they should center on the dashed line.
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We now investigate the liquid displacement d(r0) inside the
droplet in more depth. To show the link between non-
reciprocity and displacement quantitatively, we consider the
median pumping speed vc = fhdiD w.r.t. the interior of the
droplet, i.e., the 50th percentile value of the spatial distribution
of d = |d(r0)| multiplied by frequency f. In Fig. 7(b) we observe
that vc remains constant for all f with some fluctuations which
means it is purely determined by the material properties of the
liquid and substrate and not the oscillation frequency. We
already mentioned since the spherical-cap model only has a
single degree of freedom, it cannot exhibit any circulatory
pumping according to the scallop theorem. So, just like the
non-reciprocity A, the non-zero median pumping speed vc also
shows that the spherical cap model cannot completely describe
the droplet’s behavior for small f. However, we expect that vc

eventually tends to zero since for sufficiently slow motion of the
contact line, the droplet will go through a sequence of
spherical-cap shapes. Constraints in the simulation time make
it impossible to reach the limit f - 0. However, we observe in
Fig. 6 and the inset that for f o 10�2t�1 the distance between the
two halves of the closed trajectories decreases with decreasing f
such that the area A and therefore also vc should ultimately
vanish. Note, an analogous behavior was observed, for example,
in simulations of the one-armed microswimmer.53 When its
flexible flagellum beats quickly, it bends due to frictional forces
and thereby moves nonreciprocally. But when it beats very
slowly, it behaves like a rigid rod and thus moves reciprocally
and the microswimmer cannot swim forward.

Because the net circulation occurs in the limit of low
Reynolds numbers, as shown in Section 2, inertial effects can be
ruled out a priori as its cause. Inertia is relevant in phenomena
such as microstreaming,54 where sometimes fluid circulation is
observed. Furthermore, because eqn (2) are instantaneous, i.e.,
they do not contain time derivatives, acoustic excitations also do
not play a role in our findings. Rather, we can clearly point to the
non-reciprocal shape change of the droplet as the reason that
underlies the net circulation.

Finally, in Fig. 7(c) we relate the median displacement hdiD
directly to the non-reciprocity A and identify a non-linear
relation. We checked that the scaling from Section 3.1, derived
from the spherical cap model, does not produce a master curve
for either A or h|d|iD. This corroborates further that the
spherical cap model is inapplicable for these quantities.

3.3 Oscillations of nonuniform wettability profiles

We now extend our investigation to oscillating nonuniform patterns
of wettability. Specifically, we choose a pattern where the wettability
varies periodically along the contact line of the droplet. As an
example, we take the six-fold pattern illustrated in Fig. 8, where
the equilibrium contact angle is modulated in space and time:

yeqðr; tÞ ¼ ymax
eq � ymax

eq � ymin
eq

� �
� sin2 pftð Þ

� sin2
n

2
f

� �
1� exp �10 rj j2

R0
2

 !" # (24)

Fig. 7 Shape non-reciprocity A (a) and pumping velocity vc = fhdiD (b) as a
function of oscillation frequency f determined for the three combinations
of ymin

eq and ymax
eq (colored points with dashed lines to guide the eye, see

legend). (c) Displacement hdiD plotted directly against A for the same
combinations, with an arrow indicating the direction of increasing f.
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with r = (r cosf, r sinf, 0)T and n = 6. The droplet initially sits with
its base area centered at r = 0. In an experiment, an equivalent light
intensity pattern can be realized with Laguerre–Gauss laser
modes.55

After an initial transient behavior, the droplet settles into
steady oscillations analogous to the initial behavior in Section 3.1.
However, in this case the droplet shape is not axisymmetric but
instead it follows the six-fold symmetry of the wettability pattern. A
snapshot of the droplet shape is presented in Fig. 8 and the whole
dynamics can be seen in a Video in M04 (ESI†).

To study the steady oscillations quantitatively, we introduce
the 6th harmonic mode a6 of the dynamic contact angle along
the contact line,

a6 ¼
1

L

ðL
0

ydynðsÞ cosðk6sÞds (25)

with k6 = 6�2p/L, the instantaneous length L of the contact line,
and the dynamic contact angle ydyn(s) parameterized by the arc

length s of the contact line. In the same way, we calculate the
6th harmonic mode ã6 of the equilibrium contact angle yeq(s).
Both, a6 and ã6, are periodic functions in time t when the
droplet has reached steady oscillation and so the ratio of their
Fourier transforms in time gives again a susceptibility w( f ). In
Fig. 9 we display the absolute value |w( f )| and the phase shift
Dj given by w = |w|eiDj. The principal behavior is similar to that
of an oscillating uniform pattern shown in Fig. 3. However, now
the linear model derived from the spherical cap model does not
provide a master curve anymore since the droplet shape
deviates strongly from the spherical cap. In detail, we observe
while |w| is shifted toward larger f when compared to the linear
model (dashed line), Dj is shifted toward smaller f.

As before in Section 3.2, we study the periodic deformation
of the droplet by combining two aspects of its shape, a6 and the
droplet height h. For steady oscillations we display closed-loop
trajectories for several frequencies f in Fig. 10 and observe that
their extent in the h-a6 plane increases in all directions as f
decreases. This is unlike the enclosed area for uniform wett-
ability in Fig. 6, which decreased for f o 10�3 t�1.

As mentioned before in Section 3.2, an increase in the
enclosed area in configuration space means that the shape
dynamics deviates more strongly from a reciprocal motion.
While for the oscillating uniform pattern we have the sperical
cap model as a reference, which shows reciprocal dynamics and
which the droplet should approach for sufficiently small f, such
a reference is missing for the nonuniform patterns and the
droplet dynamics need not be reciprocal in the limit of small f.

4 Conclusions

We have studied liquid droplets on substrates with oscillating
wettability focussing on their shape and internal fluid flow.
When starting the wettability oscillations, the droplets go
through a transient period, where the mean contact angle
relaxes, and then settles into steady oscillations w.r.t. shape

Fig. 9 Absolute susceptibility |w| and phase shift Dj (inset) as a function of
oscillation frequency f in units of f0 = t0

�1 determined in the simulations
for two combinations of ymax

eq and ymin
eq (coloured crosses and dots with

solid lines to guide the eye, see legend). The dashed grey lines indicate the
prediction of the linear model in eqn (18) and (19), respectively.

Fig. 10 Closed trajectories in configuration space projected onto the
h-a6 plane for various frequencies f (see legend) for ymin

eq = 601 and
ymax

eq = 1201.

Fig. 8 Snapshot of a droplet on a substrate with a nonuniform wettability
pattern with six-fold symmetry. The equilibrium contact angles varies
between ymin

eq = 601 and ymax
eq = 1201.
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and contact angle. The amplitude of the contact-angle oscillations
decreases with increasing frequency and, of course, increases with
the amplitude of the wettability oscillations. At small frequencies
the amplitude and phase shift of the oscillations follow the
linearized and parameter-free spherical-cap model, while they
deviate from it for larger frequencies, where the free droplet
surface deviates noticeably from a spherical cap. As a result,
amplitude and phase shift fall onto a master curve for small
frequencies when we scale frequency with the decay time of the
linearized spherical-cap model.

Upon further analysis of the droplet shape and the interior
flow field, we have found that also for small frequencies the
spherical cap model cannot account for the droplet’s behavior
completely. The droplet shape deforms non-reciprocally which
becomes evident when tracking its contact angle and height
over time. The non-reciprocal dynamics of the droplet
shape gives rise to a time-dependent internal flow field which
displaces point-like tracer particles over the course of a full
period of oscillation rather than returning them to their original
position. Notably, the volume median of the displacement per
period, the pumping speed, is constant w.r.t. frequency in the
investigated frequency range and only depends on material
properties of the droplet and substrate. Most importantly, the
circulatory pumping of fluid inside the droplet is captured only
by solving the full equations of Stokes flow, which we did using
the boundary element method.

Repeating the same analysis for a droplet which is
controlled by an oscillating nonuniform pattern of wettability
with six-fold symmetry, we observed a very similar behavior.
The droplet settles into steady oscillations, the amplitude of
which decreases when the oscillation frequency increases.
Furthermore, its shape deforms non-reciprocally, which
becomes more pronounced at smaller oscillation frequencies.

Experiments so far have investigated the droplet’s response
when the wettability is switched between two values, for example
in ref. 5, 7, 8, 11 and 12. They demonstrated that large changes
in wettability can be achieved by exposing appropriately
prepared substrates to light for sufficiently long times and they
only measured the droplet’s new equilibrium shape without
monitoring the temporal evolution towards the final shape.
Our investigation applies oscillations in wettability over a large
range of frequencies and explicitely monitors the droplet’s
dynamic ranging from the quasistatic case to fast oscillations
where the droplet can never fully relax to its equilibrium shape.
Early experiments, e.g. in ref. 2, showed that both, the fraction of
isomerized molecules in a light-switchable monolayer (of which
wettability is a function) and the spreading and contraction
of the droplet, can be measured independently in time.
Analogously, for light-switchable structured substrates, e.g.
consisting of switchable pillars,9 the surface topology can be
monitored in time. Future experiments, which build on these
methods, will find in our investigation a guiding prediction of
the droplet response beyond the quasi-static case of slow
oscillations.

Because in our investigation the circulation is stimulated
from outside by oscillations in wettability, it provides a

mechanism for controlling the transport and possibly mixing
of solutes inside the droplet. Internal transport through external
stimuli has been used, for example, to precisely deposit a solute
during the evaporation of droplets with light-responsive
surfactants.56 Note, however, that depending on the contact
angle evaporation contributes to and disturbs the flow field
close to a moving contact line.57 By designing specific spatio-
temporal wettability patterns, such as moving steps in
wettability,24 we envisage to similarly control the precise trans-
port of solutes through substrates with switchable wettability.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We acknowledge financial support from DFG (German
Research Foundation) via Collaborative Research Center 910.

Notes and references

1 D. Bonn, J. Eggers, J. Indekeu, J. Meunier and E. Rolley, Rev.
Mod. Phys., 2009, 81, 739.

2 K. Ichimura, S. Oh and M. Nakagawa, Science, 2000, 288, 1624.
3 T. Seki, Bull. Chem. Soc. Jpn., 2018, 91, 1026–1057.
4 R. Malinowski, I. P. Parkin and G. Volpe, Chem. Soc. Rev.,

2020, 49, 7879.
5 N. Delorme, J.-F. Bardeau, A. Bulou and F. Poncin-Epaillard,

Langmuir, 2005, 21, 12278.
6 B. C. Bunker, Mater. Sci. Eng., R, 2008, 62, 157.
7 J. Lahann, S. Mitragotri, T. Tran, H. Kaido, J. Sundaram,

I. S. Choi, S. Hoffer, G. A. Somorjai and R. Langer, Science,
2003, 299, 371.

8 W. Jiang, G. Wang, Y. He, X. Wang, Y. An, Y. Songa and
L. Jiang, Chem. Commun., 2005, 3550.

9 F. Pirani, A. Angelini, F. Frascella, R. Rizzo, S. Ricciardi and
E. Descrovi, Sci. Rep., 2016, 6, 31702.

10 S. L. Oscurato, F. Borbone, P. Maddalena and A. Ambrosio,
ACS Appl. Mater. Interfaces, 2017, 9, 30133–30142.

11 H. S. Lim, J. T. Han, D. Kwak, M. Jin and K. Cho, J. Am.
Chem. Soc., 2006, 128, 14458.

12 H. S. Lim, D. Kwak, D. Y. Lee, S. G. Lee and K. Cho, J. Am.
Chem. Soc., 2007, 129, 4128.

13 E. Samiei, M. Tabrizian and M. Hoorfar, Lab Chip, 2016, 16,
2376–2396.

14 D. Mampallil and H. B. Eral, Adv. Colloid Interface Sci., 2018,
252, 38–54.

15 H. P. Greenspan, J. Fluid Mech., 1978, 84, 125.
16 F. Brochard, Langmuir, 1989, 5, 432.
17 K. B. Glasner, J. Comput. Phys., 2005, 207, 529.
18 A. Moosavi, M. Rauscher and S. Dietrich, J. Chem. Phys.,

2008, 129, 044706.
19 S. Dietrich, M. N. Popescu and M. Rauscher, J. Phys.: Con-

dens. Matter, 2005, 17, S577.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Se

pt
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

0/
21

/2
02

5 
12

:4
2:

13
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm01113h


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 9469–9479 |  9479
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