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Tracer dynamics in crowded active-
particle suspensions

Julian Reicherta and Thomas Voigtmann *ab

We discuss the dynamics of active Brownian particles (ABPs) in crowded environments through the

mean-squared displacement (MSD) of active and passive tracer particles in both active and passive host

systems. Exact equations for the MSD are derived using a projection operator technique, extending to

dense systems the known solution for a single ABP. The interaction of the tracer particle with the host

particles gives rise to strong memory effects. Evaluating these approximately in the framework of a

recently developed mode-coupling theory for active Brownian particles (ABP-MCT), we discuss the

various dynamical regimes that emerge: While self-propelled motion gives rise to super-diffusive MSD,

at high densities, this competes with an interaction-induced sub-diffusive regime. The predictions of the

theory are shown to be in good agreement with results obtained from an event-driven Brownian

dynamics (ED-BD) simulation scheme for the dynamics of two-dimensional active Brownian hard disks.

1 Introduction

The observation of active motion of self-propelled micro-
organisms and the peculiar collective effects that it gives rise
to, is a fascinating topic of biophysics that has stipulated a vast,
rapidly growing research field in soft matter and non-
equilibrium statistical physics.1,2 Since microswimmers are
subject to both passive Brownian motion as well as to active
driving, the active Brownian particle (ABP) model3 has emerged
as a convenient model system to study the interplay of the two
kinds of forces. Interest in the ABP model is further stirred by
the experimental realization through colloidal Janus particles.4

Direct observation in quasi-two-dimensional (2D) setups makes
the mean-squared displacement (MSD) a key quantity to
discuss.5 The MSD of a single ABP can be obtained analytically,
and this already displays some interesting features: After a
short-time asymptote that is passive-diffusive, Bt, a cross-
over to a super-diffusive transient, Bt2, signals persistent
swimming, before Brownian rotational diffusion leads to a
long-time asymptote that is again diffusive, but with an
activity-enhanced diffusion coefficient. The appearance of a
super-diffusive regime in the MSD also signals the non-
equilibrium nature of the motion.

Analytical solutions for interacting ABP are not available. Yet
the motion of both active and passive colloids in a crowded
host suspension (passive or active) is of high interest. Active

tracer particles in passive suspensions can potentially be
exploited as heat engines.6 Recent observations specifically
focussed on how a single Janus colloid changes its dynamics
when embedded in a glass-forming suspension of passive
colloids,5 and how colloidal motion is influenced by bacterial
baths.7 The latter case, that of a passive colloid in an active
fluid, is a widely used micro-rheology technique to infer proper-
ties of the host medium through the tracer-particle motion.8

The MSD of a passive tracer in active suspension shows clear
signs of the non-equilibrium bath dynamics.9–16 The passive
tracer thus acts as a ‘‘thermometer’’ to define an effective
activity-induced temperature17–19 and to quantify the devia-
tions from equilibrium.19,20 In general this poses the question
how the activity of the host suspension ‘‘transfers’’ to the
probe.21

Here we derive evolution equations to describe the MSD of
ABP in dense systems. We demonstrate the general structure of
the evolution equations, where the effect of the surrounding
bath is ‘‘integrated out’’ to appear in a set of well-defined
memory kernels. The equations are derived rigorously within
the Mori–Zwanzig projection-operator approach for the angle-
resolved tagged-particle density correlation function, to obtain
in the limit q - 0 two coupled integro-differential equations
that contain the coupling to the dense host system in three
memory kernels corresponding to translational (angular mode
l = 0) and dipolar-like (l = �1) couplings. The equations reduce
to ordinary differential equations whose solution is the well
known analytical result for a single ABP, if these memory
kernels are dropped. The memory kernels have explicit micro-
scopic expressions, and are the target of approximation
schemes. Modeling the memory kernels by a recent extension
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of the mode-coupling theory of the glass transition, the mode-
coupling theory for active Brownian particles (ABP-MCT),22–24

we obtain theoretical predictions for the MSD in the various
cases of active and passive tracers in active and passive host
systems, and we compare those results to event-driven
Brownian dynamics (ED-BD) computer simulation. As one nears
kinetic arrest in the host system, there emerges an interplay
between the time scales of the free active motion, and that of
steric-hindrance induced caging provided by the host particles.

2 Theory

We consider the active Brownian particle (ABP) equations of
motion in 2D,

d~rj ¼ m~Fjdtþ
ffiffiffiffiffiffiffiffi
2Dt

p
d ~Wj þ v0~nðjjÞdt; (1a)

djj ¼
ffiffiffiffiffiffiffiffi
2Dr

p
dWjj

: (1b)

The orientation of the ABP, -
nj = -

nj (jj) = (cosjj,sinjj)
T evolves

purely through rotational diffusion, where translational and
rotational diffusion are driven by independent Wiener pro-
cesses d

-

Wj and d
-

Wjj. The
-

Fj = �rjU({-rk}) are potential inter-
action forces that are taken to be steeply repulsive to model
hard-disk behavior. In absence of active driving, the system is
in thermal equilibrium, thus the mobility obeys the fluctua-
tion–dissipation theorem, m = Dt. In the active system, each
particle experiences a constant self-propulsion force given by
the swimming speed v0, along its current director -

nj.
Into the N-particle system of ABP with self-propulsion velo-

city v0, we embed a single tracer particle (position -
rs, orienta-

tion js) with self-propulsion velocity vs
0, whose equations of

motion are again given by the equivalent of eqn (1). We allow
for the case of a tracer of different interactions than among the
host particles, and also different short-time diffusion coeffi-
cients Ds

t and Ds
r, although in the discussion we will focus on

otherwise identical particles that merely differ in their self-
propulsion speeds. In particular this covers the experimentally
relevant cases of a passive tracer in an active host system (vs

0 = 0,
v0 a 0) and the reversed case of a single ABP that is embedded
in a passive glass-forming fluid (vs

0 a 0 but v0 = 0).
The MSD is defined by

dr2(t) = h|-rs(t) �
-
rs(0)|2i, (2)

where h�i denotes the ensemble average over realizations of the
ABP system. We distinguish two important cases of averages:
that of the stationary non-equilibrium active system, leading to
the stationary MSD that we obtain from computer simulation.
For reasons that become apparent below, of theoretical interest
is also the transient MSD which is obtained by averaging over
the passive-equilibrium ensemble, keeping the active driving
term in the time evolution. A tacit assumption made in com-
paring theory with simulation is that in the parameter regime
discussed below the different averages do not yield qualitatively
different results. This is corroborated by direct comparison of
stationary and transient averages in computer simulation,24

where it was observed that in the parameter regime that we
study here, for time scales t c 1/Dr, the differences in how the
density-correlation functions probe the respective ensembles
becomes small. In the following derivation of the theory, h�i
denotes the equilibrium distribution function of the corres-
ponding passive system.

Without interactions,
-

Fj = 0, eqn (1) are readily solved3 to
provide dr2(t) for a single, non-interacting ABP. Our aim is to
extend this solution to interacting particles, encoding the
interactions in retarded-friction memory kernels akin to a
GLE description of the motion in a fluctuating environment.

2.1 Transient correlation functions

Eqn (1) describe a Markov process with configuration space
elements G = ({-rj},{jj}) whose probability distribution p(G,t)
evolves through the Smoluchowski equation qtp = Op, with the
Smoluchowski operator

O ¼
XN
j¼1

Dt
~rj � ~rj � b~Fj

� �
þDr@jj

2 � v0~rj �~nj : (3)

This operator consists of three parts that for later convenience
we will split according to O(Dt,Dr,v0) = Oeq(Dt,Dr) + dO(v0) =
OT(Dt,v0) + OR(Dr) depending on context. Here, Oeq is the well-
known equilibrium Smoluchowski operator whose stationary
distribution peq p exp[�bU] defines the equilibrium averages
of observables with the inverse temperature b. The time evolu-
tion of the tracer particle is driven by the equivalent Smolu-
chowski operator including the tracer index in the particle sum,
allowing for its possibly distinct parameters (Ds

t,D
s
r,v

s
0).

Microscopic observables of interest to describe the motion
of the ABP are the angle-resolved fluctuating particle densities
to wave vector -

q (of magnitude q = |-q|) and angular-mode
index l,

rlð~qÞ ¼
XN
k¼1

ei~q�~rkeiljk=
ffiffiffiffi
N
p

; (4)

and their counterpart for the tracer particle,

rsl ð~qÞ ¼ ei~q�~r
s
eilj

s
; (5)

where the particle at (-rs,js) is understood to be excluded from
the sum over the N particles comprising the host system.

The ABP-MCT is built on the integration-through transients
(ITT) framework25 that allows to treat formally the dynamical
evolution of a non-equilibrium system with arbitrarily strong
perturbation, and provides a starting point for approximations.
In this framework, quantities of particular interest are the
transient dynamical density correlation functions. In a spatially
homogeneous system they are diagonal in -

q and read

Fll0 ð~q; tÞ ¼ r�l ð~qÞ exp½Oyt�rl0 ð~qÞ
� �

; (6)

where O† is the adjoint, or backward, Smoluchowski operator,

Oy ¼
XN
j¼1

Dt
~rj þ b~Fj

� �
� ~rj þDr@jj

2 þ v0~nj � ~rj : (7)

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 7

/3
1/

20
25

 2
:0

6:
00

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm01092a


10494 |  Soft Matter, 2021, 17, 10492–10504 This journal is © The Royal Society of Chemistry 2021

The correlation function obeys Fll0(
-
q,0) = Sll0(q), where in the

particular case of particles that interact through a spherically
symmetric interaction potential,

Sll0 ðqÞ ¼ r�l ð~qÞrl0 ð~qÞ
� �

¼ dll0 SðqÞdl0 þ ð1� dl0Þð Þ: (8)

Here, S(q) is the ordinary equilibrium static structure factor
known from liquid state theory for the passive system.

In a system that remains statistically isotropic, the dynamical
correlation functions obey specific transformation rules under
rotation. Introducing matrix notation for angular indices,

F(-q0,t) = u†�F(-q,t)�u, (9)

if -
q0 is the vector obtained by rotating -

q by an angle c, and
ull0 = dll0 exp[ilc]. In particular, letting yq be the angle of -

q with
the x-axis normal -

ex, we define

~Fll0 ðq; tÞ � Fll0 ðq~ex; tÞ ¼ eiðl�l
0ÞyqFll0 ð~q; tÞ: (10)

It follows that the diagonal elements of F(-q,t) are isotropic even
functions of -

q. In particular the positional density-correlation
function F00(q,t) is isotropic, even in q and real-valued.

The tracer motion is characterized by the tagged-particle
correlation function,

fs
ll0 ð~q; tÞ ¼ rs

�
l ð~qÞ exp½Oyt�rsl0 ð~qÞ

� �
; (11)

which obeys fs
ll0 ð~q; 0Þ ¼ dll0 . Of particular interest here is the (00)

element of that correlation function in the limit q - 0: it is by the
rotation-transformation property an isotropic, real-valued even func-
tion of q and linked to the MSD; in two spatial dimensions,

fs
00ðq; tÞ ¼ 1� q2

4
dr2ðtÞ þ Oðq4Þ: (12)

2.2 Mori–Zwanzig evolution equations

An exact evolution equation for the density-correlation func-
tions can be obtained through a projection operator scheme. In
essence, one rewrites the propagator exp[O†t] in terms of its
action on the projected subspace P spanned by the fluctuating
densities, and a remainder within the orthogonal projection
Q = 1 � P that gives rise to a non-Markovian evolution of the
projected variables expressed through memory integrals. Spe-
cifically, we project onto all angle-resolved density fluctuations,
P ¼

P
l

rlð~qÞiSll
�1ðqÞhr�l ð~qÞ. Rewriting qt exp[O†t] = O†(P + Q)

exp[O†t] and employing a Dyson decomposition for the

second part, Q exp½Oyt� ¼ Q exp½OyQt� þ Q
Ð t
0
dt 0 exp½OyQðt� t 0Þ�

OyP exp½Oyt 0�, this yields and expression for the evolution of
density fluctuations that takes the form of a GLE, with a
memory kernel given by the projected dynamics. After taking
care to transform the memory kernel into a form that is one-
particle irreducible, one obtains thus for the density-correlation
function22,24

@t ~Fðq; tÞ þ ~oðqÞ � S�1ðqÞ � ~Fðq; tÞ

þ
ðt
0

dt 0 ~mðq; t� t 0Þ � 1@t 0 þ ~oRð Þ � ~Fðq; t 0Þ ¼ 0
(13)

where the memory kernel m̃(q,t) = M̃(q,t)�~oT
�1(q) is given by the

formally exact expression

Ms
ll0 ð~q; tÞ ¼ rsl ð~qÞO

y
TQ exp½Oyirrt�QO

y
Tr

s
l0 ð~qÞ

D E
; (14)

with the one-particle irreducible Smoluchowski operator Oyirr
(see ref. 22 and 24 for details).

An important quantity here and in the following is the
frequency matrix

oll0 ð~qÞ ¼ � r�l ð~qÞOyrl0 ð~qÞ
� �

: (15)

It is decomposed into its rotational and translational parts,
o(-q) = oT(-q) + oR, where oR,ll0 = dll0l

2Dr and oT(-q) is given by the
tri-diagonal matrix

~oT;ll0 ðqÞ ¼ dll0q2Dt � djl�l0 j;1
iqv0

2
SllðqÞ: (16)

An equation analogous to eqn (13) can be derived for the
tagged-particle correlator,

@t~fsðq; tÞ þ ~osðqÞ � ~fsðq; tÞ

þ
ðt
0

dt 0 ~msðq; t� t 0Þ � 1@t 0 þ ~os
R

� �
� ~fsðq; t 0Þ ¼ 0:

(17)

Here, os(-q) is the analog of eqn (15) for the tagged particle (for
which formally Sll(q) = 1).

Eqn (13) and (17) constitute the starting point of our
discussion of the MSD of active Brownian particles. According
to eqn (12), the MSD is obtained from the q - 0 limit of
eqn (17). In practice, evaluation of the memory kernel appear-
ing in this equation, will also require knowledge of the collec-
tive dynamics in the form of eqn (13).

2.3 Low-density solution

We first recapitulate the solution at vanishing host-system
density n. Since eqn (13) and (17) have been written such that
the corresponding memory kernels are irreducible, these mem-
ory kernels are at least of O(n), and can be dropped in the dilute
limit. The low-density theory is thus given by

qt
~F(q,t) + ~o(q)�S�1(q)� ~F(q,t) = 0, (18)

where in leading order in the density, also S(q) = 1. Formally
this is solved by ~F(q,t) = exp[~o(q)�S(q)�1t]S(q), and the corres-
ponding expression holds for ~fs(q,t). We note in passing that
an alternative representation of the exact low-density solution
is in terms of suitable eigenfunctions of the Smoluchowski
operator for a free ABP,26,27 the Mathieu functions in 2D. It can
be shown that the two representations are indeed equivalent.24

Specializing the tagged-particle equivalent of eqn (18) to the
positional density correlator fs

00(q,t), making use of the tri-
diagonal structure of ~os(q), we get

@tf
s
00ðq; tÞ þ q2Dtf

s
00ðq; tÞ ¼

X
�

iqvs0
2

~fs
�1;0ðq; tÞ: (19)

The low-density limit of the dipole correlator ~fs
�1,0(q,t) is

similarly given by
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qt
~fs
�1,0(q,t) + ~os

�1,�1(q) ~fs
�1,0(q,t) + ~os

�1,0(q) ~fs
00(q,t)

+ ~os
�1,�2(q) ~fs

�2,0(q,t) = 0. (20)

In the low-q limit, observe that

f̂
s

�10ðtÞ ¼ lim
q!0

1

q
~fs
�10ðq; tÞ (21)

is well-defined and nontrivial since the (ll0) = (�1,0) correlator is
of O(q) by the rotation property eqn (9). In leading order for
q - 0, we can replace ~fs

00(q,t) = 1 and drop the last term in
eqn (20), because ~fs

�2,0(q,t) = O(q2) due to the rotation property.
Inserting the explicit expressions of ~os(q), one obtains finally
the coupled differential equations that determine the MSD,

@tdr2ðtÞ ¼ 4Ds
t � 2

X
�
ðivs0Þf̂

s

�1;0ðtÞ; (22a)

@tf̂
s

�1;0ðtÞ þDs
rf̂

s

�1;0ðtÞ ¼
ivs0
2
: (22b)

Eqn (22) are readily solved. From

f̂
s

�1;0ðtÞ ¼
ivs0
2Ds

r

1� e�D
s
rt

� �
(23)

one gets finally

dr2ðtÞ ¼ 4Ds
tt 1þ Pes 1þ e�D

s
rt � 1

Ds
rt

	 
	 

; (24)

where we have introduced the Péclet number Pes = vs2
0 /2Ds

rDs
t.

This indeed agrees with the well-known solution for the mean-
squared displacement of a single ABP obtained by direct
solution of the corresponding stochastic differential
equation.3 It should be noted that for this re-derivation of the
result based on the Mori–Zwanzig equations, it is essential that
the projector P includes all angular-index values l. In principle,
one could aim to derive an evolution equation for the MSD by
projecting only on the l = 0 density fluctuations, but then a
memory kernel would appear that does not vanish in the low-
density limit.

It is worth recalling the typical time- and length-scales that
are inherent in eqn (24). After a short-time passive-Brownian
regime, dr2 C 4Ds

tt for t { tv, a ballistic regime, dr2 C (vs
0)2t2 for

tv { t { tl is followed by a final cross-over to an activity-
enhanced diffusive regime, dr2 C 4Ds

t(1 + Pes)t for t c tl. Here,
tv and tl mark the characteristic time scales of the free ABP, and

they are associated with length scales ‘v;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr2ðtv;lÞ=4

p
. From

balancing the asymptotic expressions against each other, one
obtains (dropping s superscripts for convenience)

tv ¼
2

DrPe
; ‘v ¼

2Dt

v0
; (25a)

tl ¼ tvð1þ PeÞ; ‘l ¼ ‘v þ
v0

Dr
: (25b)

2.4 General equations for the MSD

To derive expressions for the MSD, eqn (17) needs to be
evaluated in the limit q - 0. This requires an expression for

the inverse of the frequency matrix os
T(-q) that appears in the

definition of the memory kernel. The simple tri-diagonal
structure,

~os
T;ll0 ð~qÞ ¼ dll0q2Ds

t � djl�l0 j;1
iqvs0
2
; (26)

allows to derive an analytical expression,24

ð~os
TÞll0�1 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDs

tq
2Þ2 þ ðvs0qÞ2

p iqvs0
Ds

tq
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDs

tq
2Þ2 þ ðvs0qÞ2

p
 !jl�l0 j

:

(27)

The result is readily verified by direct multiplication. It demon-
strates an intricate feature of the low-q limit of the theory: the
q - 0 asymptotes of eqn (27) are distinct for the passive case,
vs

0 = 0, and the active case, vs
0 a 0. Explicitly, one gets

ð~os
TÞll0�1 ’

1

Ds
tq

2
dll0 ; passive; (28)

ð~os
TÞll0�1 ’

1

vs0q
1� jl � l0j q

q�

	 

þ OðqÞ; active; (29)

with q* = vs
0/Ds

t. This peculiar feature encodes that even an arbitrarily
small activity of the tracer is felt, given that one probes length scales
that are sufficiently large. In order to establish the correct q - 0
asymptote, the inversion of the matrix ~os

T(q) needs to be performed
on the infinite-dimensional algebra of matrices labeled by angular-
mode indices. Care has to be taken when introducing a cutoff for the
angular modes, as is customary in numerical implementations: the
cutoff matrix ~os

T(q) has an inverse that has the wrong q - 0
asymptote (eitherB 1/q2 or constant for the (00) element, depending
on whether the cutoff is performed at even or odd angular modes).
The recognition that the inverse has to be performed before
introducing a cutoff is crucial in deriving the correct MSD equations
of motion.

To complete the derivation, the q - 0 limits of the memory
kernels M̃s(q,t) are needed. Note first the case of a passive

tracer: there, ~fs(q,t) and ~os(q) remain diagonal matrices, and
M̃s

00(q,t) = O(q2). Hence, only the memory integral involving m̃s
00

remains in the equation determining the MSD. For an active

tracer, one needs to recognize that for l 4 0, ~fs
l0(q,t) =

O((iqvs
0)|l|), and that the memory kernels M̃s(q,t) are of at least

O(q0). Combined with the terms 1/q and 1/q2 that appear in
~oT
�1(q), the potentially relevant terms are ~ms

ll0 ðtÞ for l0 = �1. In

the q - 0 limit the powers of q stemming from ~fs
l0(q,t) leave the

quantities m̂ll0 ðtÞ ¼ lim
q!0

~mll0 ðq; tÞ=qjl�l
0 j for |l � l0| r 1 as the

relevant memory kernels.24

Hence, we arrive at the coupled integro-differential equa-
tions that describe the time-evolution of the ABP-MSD in a
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crowded environment,

@tdr2ðtÞ þ
ðt
0

dt 0m̂s
00ðt� t 0Þdr2ðt 0Þ ¼ 4Ds

t

� 2
X
�
ðivs0Þf̂

s

�1;0ðtÞ

þ 4
X
�

ðt
0

dt 0m̂s
0;�1ðt� t 0Þð@t 0 þDs

rÞf̂
s

�1;0ðtÞ;

(30a)

together with

@tf̂
s

�1;0ðtÞ þDs
rf̂

s

�1;0ðtÞ ¼
ivs0
2

� 2

ðt
0

dt 0m̂s
�1;�1ðt� t 0Þð@t 0 þDs

rÞf̂
s

�1;0ðt 0Þ:
(30b)

Eqn (30) are the generalizations of the low-density result,
eqn (22), to arbitrary density of the host system.

Further evaluation requires specific expressions for the
memory kernels. In principle, these have exact microscopic
expressions as derived above. Due to the appearance of the
irreducible projected dynamics, they are not straightforward to
evaluate, but one could in principle use any suitable micro-
scopic dynamic theory of the system (such as dynamic density
functional theory) to approximate them. The results that we
discuss in the following are obtained by employing ABP-MCT.
This theory approximates the memory kernel M̃s(q,t) as a
bilinear functional involving the density correlation functions,

Ms
l1l10
ð~q; tÞ � d~q~q1d~q~q10

X
l3l4~q3~q4

Ws
l1 l10 l3l4

ð~q1;~q3ÞFl3;0ð~q3; tÞf
s
l4 l2
ð~q4; tÞ:

(31)

Eqn (13) and (17) are then closed by the ABP-MCT expression
for the collective memory kernel,

Ml1l10 ð~q; tÞ � d~q~q1d~q~q10
X
343040

V
y
134F330 ðtÞF440 ðtÞV103040 : (32)

The vertices V, V†, and W are given in terms of the equili-
brium static structure factor S(q) of the passive system; the ABP-
MCT expressions can be found in ref. 24. As also shown there, a
somewhat tedious procedure confirms that the MCT approxi-
mation preserves the correct low-q behavior of the memory
kernels, so that the correct q - 0 limit of the evolution
equations, eqn (30), is obtained within ABP-MCT.

The first line of eqn (30a) corresponds to the expression
derived earlier for the MSD of a passive tracer in a dense
system.28,29 In a passive host system, the memory kernel m̂s

00

(t) is a completely monotone function, i.e., it is positive and a
continuous superposition of purely relaxing exponentials; as a
consequence, the MSD of a passive tracer in a passive host
system is always slowed down compared to free diffusion, and
it follows an increasingly pronounced sub-diffusive regime with
increasing host-system density. Within ABP-MCT, the effect of
activity in the host system enters through a modification of the
dynamics in the collective density correlation function ~F00(p,t),
cf. eqn (31). Since within the theory, the collective density
correlations decay faster with increasing activity,22,24 this

suggests enhanced diffusivity for the tracer particle due to
active host-particle motion. However, there is also an explicit
dependence of the coupling vertices W on the host-system
activity, whose structure admits more complex solutions; in
particular, as we will discuss below, there appears a super-
diffusive regime in the MSD even of a passive tracer particle.
This is remarkable since it demonstrates the non-equilibrium
nature of the motion: For dynamics driven by the equilibrium
Smolchowski operator, it can be shown exactly, that there can
be no superdiffusive regimes in the MSD. A brief proof for this
statement is given in Appendix A.

2.5 Numerics and simulation

In the following, we discuss exemplary features of the solutions
of eqn (30) for the case of 2D hard disks of diameter s. The
single control parameter for the passive system is then
the dimensionless number density n, or the packing fraction
j = (p/4)ns2. The size s sets the unit of length, and s2/Dt the
unit of time. We consider tracer particles that are of the same
size as the host particles, and unless otherwise noted, Dt =
Ds

t = 1 and Dr = Ds
r = 1 are chosen. We briefly outline

the numerical evaluation of eqn (30) within ABP-MCT, and the
ED-BD simulation scheme whose results we discuss in the
following. Further details can be found in ref. 24 and 30.

The ABP-MCT expressions for the memory kernels were
discretized on an equidistant grid of 128 points in wave
numbers q, with cutoff 40s. A cutoff of L = 1 was used for the
angular-mode indices, which allows to study the regime of not
too large self-propulsion velocities in the theory. The current
implementation suffers from numerical instabilities at large vs

0

that arise from the specific details of the implementation of the
integral solver, and the prohibitive memory and runtime
requirements for matrices with larger cutoff L. We thus restrict
the discussion of the theory to vs

0 r 8Dt/s. To obtain the
dynamics, ABP-MCT requires as input quantity the equilibrium
static structure factor of the system, for which we use a recent
result from density-functional theory (DFT).31

Simulations were carried out with N = 625 particles with
uniform size polydispersity to avoid crystallization (standard
deviation 0.2s). The ED-BD scheme is essentially a rejection-
free Monte Carlo approach32 where random Gaussian displace-
ments are chosen at every time step in order to implement
Brownian motion, and potential particle overlaps are resolved
by performing elastic collisions between the particles. The
inclusion of a suitable drift in the Gaussian displacements
implements the active motion.33–35 Simulation trajectories were
equilibrated for at least 104 time steps, and averaged over at
least 200 realizations, and over initial times in the stationary
regime.

3 Results
3.1 Passive tracer in passive bath

To establish a baseline for the comparison of MCT with our
simulation data, we first briefly demonstrate the results
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obtained for a passive tracer particle in a passive host system
(Fig. 1). In this comparison, we follow a well-established
procedure to account for the fact that the theory predicts
dynamical arrest at a packing fraction jc whose numerical
value is different from the one seen in simulation. In particular,
with the specific choice of numerical parameters and DFT static
structure factor in our MCT calculations, we obtain jc,MCT E
0.699 in close agreement with the result obtained from a
modified hypernetted-chain (MHNC) approximation of S(q)
and a somewhat different numerical integration scheme for
the memory kernel.29 From the ED-BD simulations we estimate
jc,BD E 0.78.

Since the relevant parameter describing the long-time
dynamics in MCT is asymptotically linearly related to the
control-parameter distance e = j � jc, up to a prefactor of
O(1), one expects that the theory describes the dynamics of the
system after mapping the packing fraction jBD asymptotically
linearly to a (smaller) packing fraction jMCT that enters the
MCT calculations. This has been discussed in detail for three-
dimensional (3D) hard spheres.36 Note that the mapping of
packing fractions that we use here differs somewhat from the
one that gives best agreement between theory and simulation
for the density correlation functions at finite q;24 this also has
previously been discussed in the 3D system36 and is attributed
to a further quantitative error of the MCT approximation in the
low-q regime of the memory kernel.

Keeping this caveat in mind, we find (cf. Fig. 1) that after the
adjustment of packing fractions, MCT provides an excellent
quantitatively accurate description of the MSD obtained from
our ED-BD simulations in the regime of packing fractions
approaching jc.

The MSD show the typical features known from glass-
forming Brownian systems: after a short-time diffusive
asymptote, dr2 C 4Dtt (in our systems where hydrodynamic
interactions are absent), a regime of subdiffusive motion, i.e.,

of sublinear growth in dr2(t) as a function of time, marks the
transient cageing of particles by their neighbors. On the fluid
side of the glass transition that we study here, j o jc, the MSD
eventually crosses over to a long-time diffusive asymptote,
dr2 C 4DL

t t, where DL
t (j) is the long-time translational self-

diffusion coefficient that decreases strongly as j is increased
and is predicted by MCT to vanish at jc. Hence, as the density
of the system is increased, the cageing regime extends to
increasingly long times, and in the ideal glass predicted by
MCT the MSD arrests to a finite plateau value, dr2(t) C 4cc

2 as
t -N for jZ jc. The length scale cc quantifies a typical ‘‘cage
size’’ in the glass, and by a simple argument due to Lindemann
is expected to be some fraction of the particle size, typically
around 10%. Indeed, from inspection of Fig. 1 we estimate
cc E 0.087s in our system, in excellent agreement with the MCT
prediction.

We restrict the discussion in the following to densites
jBD r 0.77, where the system still represents a fluid. At larger
densities, the simulated MSD do not show the kinetic arrest in
our 2D system that is predicted by MCT. This is a known effect
from passive MCT in 3D.36 Although our systems should be
small enough to observe kinetic arrest, in principle the effect of
2D-specific Mermin–Wagner fluctuations should also be taken
into consideration, for example by studying the cage-relative
MSD.37–41

3.2 Active tracer in passive bath

Having established the accuracy of MCT for the passive system
after a suitable mapping of densities, we now turn to the
dynamics of a single active tracer in a system of passive hard
disks. The ED-BD simulation results and the predictions of
MCT without further adjustment of parameters again are in
very good agreement (Fig. 2), in the parameter range of vs

0

within which we can obtain numerically stable solutions of the
MCT equations of motion.

We exemplarily discuss the case vs
0 = 8 for the densities

j = 0.50 and j = 0.77. Recall from eqn (25) that for a free ABP
with vs

0 = 8, a ballistic regime appears in the MSD for 4cv
2 =

1/4 { dr2 { 1089/4 = 4cl
2. In the case of a moderately dense

host system, j = 0.50, the MSD or the ABP tracer still evidences
this regime of persistent active motion. Yet, as the density of
the passive host system is increased to j = 0.77, both our
simulations and theory indicate that a superdiffusive regime is
not encountered any more. Here, the strong influence of the
cage effect that is responsible for the glassy dynamics sup-
presses the persistent motion of the single active tracer particle.

Recall that cc E 0.087 { cv for the choice of parameters that
we discuss here. It is thus plausible that the passive-host
dynamics suppresses the persistent active motion of the tracer
at sufficiently high densities, and as a result, the MSD at
j = 0.77 qualitatively appear as one would also observe for a
passive tracer particle; the activity in this regime is only seen
through an enhanced long-time diffusion. In fact, the data for
j = 0.77 can be fit with the MSD of a passive tracer, at an
effectively reduced host-system packing fraction jeff(vs

0) (dotted
lines in Fig. 2). The jeff-vs.-vs

0 relation (inset of the figure) shows

Fig. 1 Mean-squared displacements dr2(t) of a passive hard disk in a bath
of passive hard disks, at various packing fractions jBD as indicated. Symbols
are results from Brownian-dynamics computer simulations, lines are
predictions of mode-coupling theory with packing fraction jMCT adjusted
to account for the different glass-transition points. The inset shows the
employed relation between jMCT and jBD, which follows a linear variation.
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the expected quadratic dependence on vs
0 that conforms to the

vs
0 - –vs

0 symmetry of the ensemble. In this system of active
hard disks, where temperature is irrelevant (and only sets an
overall time scale of the motion), jeff can be seen as the analog
of an effective temperature, Teff(v

s
0) � T0 p (vs

0)2 in the sense
that active motion reduces the coupling strength to the bath.
From the low-density solution, eqn (24), one would identify
Teff � T0 = Pe, and the corresponding enhancement of diffu-
sivity for the parameters exemplified in Fig. 2 is a factor of 32.
For the passive long-time dynamics, a change in (effective)
temperature would bring about an even larger change in the
long-time diffusivity, while the enhancement seen in Fig. 2 for
j = 0.77 is only around a factor 2. This clearly indicates the
limitations of the effective-temperature picture42 for an ABP in
a crowded medium.

The appearance and disappearance of superdiffusive motion
is best seen by the effective power-law exponents associated to
the MSD. Recall that for any function that is a power law, its
logarithmic derivative a(t) = d log dr2(t)/d log t will be constant
and equal to the power-law exponent. The effective exponents
a(t) corresponding to the MSD shown in Fig. 2 confirm the
interplay between subdiffusive cage motion, a o 1, and super-
diffusive persistent active motion, a4 1, for the active tracer in
the dense passive host system (Fig. 3). For the choice of
parameters represented in the figure, the cage effect sets in at
times earlier than the free-particle crossover to persistent
motion, since cc { cv. As a result, the effective exponent in
all cases follows an S-shaped curve that first drops to values
below unity, and increases to values above unity in the time
window tv { t { tl that follows the cageing dynamics. The
cross-over where the subdiffusive cage motion is modified by
the tracer activity is, even at the density j = 0.73, well predicted
by tv (vertical dashed lines in Fig. 3).

At very large vs
0, one expects the transition to persistent

motion (on time scale tv, respectively length scale cv) to occur
even before cageing becomes effective. Currently, the required
large vs

0 do not allow us to solve the MCT equations reliably. We
thus turn to ED-BD simulations in this regime (Fig. 4). Indeed,
even at the density j = 0.77 for which the passive host system
induces subdiffusive cageing motion over about three decades
in time for the passive or moderately active tracers, we observe
in our ED-BD simulations for large vs

0 an increasingly rapid
cross-over to superdiffusive motion that replaces the subdiffu-
sive regime entirely once cv { cc. This is exemplified for
vs

0 \ 32 by the ED-BD data (Fig. 4; where we have also set
Ds

r = 0.05Dt/s
2 to emphasize the effect). In essence, strong

Fig. 2 MSD dr2(t) of a single active Brownian particle in a bath of passive
hard disks. Symbols are results from Brownian-dynamics simulations at
packing fraction jBD as labeled (color-coded), for different self-propulsion
velocities vs

0 of the tracer (as labeled, increasing from bottom to top in
each group of curves). Lines are results from MCT, with the adjustment of
packing fractions shown in Fig. 1. Dotted lines for j = 0.77 show fits using
the MSD of a passive tracer at a reduced host-packing fraction jeff(vs

0)
(inset).

Fig. 3 Effective exponents a(t) = d log dr2(t)/d log t obtained from the MSD
of an active tracer in a passive host system, corresponding to the data
shown in Fig. 2. Panels (a)–(d) show the results for the different self-
propulsion velocities vs

0 of the tracer. Symbols are BD simulation results,
lines are MCT results. Thick black lines correspond to the analytical
solution for a free active particle. Vertical dashed and dot-dashed lines
indicate the time scales tv and tl characterizing the free-particle MSD,
cf. eqn (25).

Fig. 4 Mean-squared displacements dr2(t) of a single active Brownian
particle in a bath of passive hard disks of packing fraction j = 0.77, for self-
propulsion velocities vs

0 as labeled, and for Ds
r = 0.05. Symbols are BD

simulation results. A solid line indicates the MSD of a free active Brownian
particle with a self-propulsion velocity of vs

0,free = 16.
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activity of sufficiently large persistence length eliminates the cage
effect for the active tracer. In the simulations it appears that as vs

0 is
further increased, one essentially observes the motion of a free ABP,
with a density-renormalized swim speed. To exemplify this, we
compare the ED-BD results for vs

0 = 128 with the free-particle MSD
for vs

0,eff = 16; both curves agree closely (Fig. 4).
It would be worth further investigation whether the active

tracer undergoes a delocalization transition even in the passive
glass. For a tracer that is driven by an external force of fixed
direction, this effect is known43 and has been studied in the
framework of MCT.44–47 Here, the theory predicts that above a
certain threshold force, the tracer motion delocalizes (as indi-
cated by an MSD that grows without bound even when the host
system is glassy). However, in the present theory the situation is
less obvious, because the active tracer always has a finite
persistence time if Dr 4 0, and the limit Dr - 0 does not
necessarily commute with the long-time limit of interest in
studying glassy dynamics.

For the regime of moderate activity, the active tracer
becomes, within the theoretical idealization, trapped in the
passive host system at densities j Z jc. This is expected
because the cages possess a finite microscopic yield
strength,44 and if the self-propulsion velocity vs

0 translates into
a force exerted by the active tracer that is below this threshold
(and also not infinitely persistent for finite Dr), cages will not
yield due to activity.

Approaching the glass transition, one thus expects the long-
time motion of the tracer to be quantified by a long-time
diffusion coefficient DL

t (j) that approaches zero at j = jc,
and, by bona fide extension of the well established asymptotic
results of MCT for passive systems, vanishes as a power law
close to the transition, DL

t (j) B |j � jc|g for j - jc from
below. The exponent g is a non-universal exponent emerging
from the asymptotic solution of the MCT equations. In practice,
the MCT description of the glass transition is an idealized one,
and one observes in simulations deviations from the power-law
behavior close to and above jc, rendering DL

t finite also there.
Our EDBD simulations confirm this expectation (Fig. 5). In

the density window 0.76 t j t 0.77, the long-time self-
diffusion coefficient DL

t ¼ lim
t!1

dr2ðtÞ=4t follows the power-law

expected from MCT. Deviations are seen for our simulations at
j = 0.78; as mentioned above, the appearance of long-range
fluctuations in the 2D system likely affects the data here, and
we exclude this point from our discussion.

As anticipated from Fig. 2, increasing the self-propulsion
velocity of the tracer enhances its long-time diffusion. The
quantitative agreement with MCT deteriorates with increasing
vs

0, but the qualitative behavior remains the same. With our
choice of parameters, discussing a change in vs

0 at fixed j and
fixed Ds

r, we observe only a monotonic increase of DL
t with

increasing vs
0. One should note that theory and simulations on a

different model of active particles, the active Ornstein–
Uhlenbeck particles (AOUP), demonstrate a non-monotonic
variation with activity48 that has also been reported from some
experiments.49,50

In the low-density regime, eqn (24) establishes that in the
long-time diffusive regime of the ABP, activity only enters
through the dimensionless Péclet number Pes = (vs

0)2/2Ds
rDs

t.
In particular, one obtains DL

t = Ds
t(1 + Pes). At high densities,

this simple relation cannot be expected any more, because the
cage effect provides a further scale for the problem, so that out
of the two parameters that quantify the active motion of the
ABP, vs

0 and Ds
r, two independent dimensionless numbers can

be formed.
It is nevertheless instructive to check the scaling with Pes.

Indeed, both theory and simulation demonstrate that for any
fixed Ds

r the long-time diffusion coefficients are of the form
const.+Pes (symbols in Fig. 6). This quadratic dependence on
the self-propulsion velocity is also expected from the symmetry
of the ensemble under mapping vs

0 - –vs
0. Yet, the prefactors

depend on both Ds
r and the packing fraction. A simple-minded

rescaled description that takes into account the reduced diffu-
sivity in the passive system, DL

t = DL,0
t (f)(1 + Pes) with DL,0

t (f) the
density-renormalized free diffusion of the passive particle, still
fails (dotted lines in Fig. 6). An empirical rescaling, DL

t = DL,0
t

(j)(1 + a(j,Ds
r)Pes) describes the data (dashed lines), and reveals

two trends for the rescaling factor a: it decreases with increas-
ing host-system density, i.e., the enhancement of long-time
diffusion at given tracer-Péclet number becomes weaker. The
prefactor a also increases with increasing Ds

r at fixed packing
fraction. This appears compatible with the intuition that for
Ds

r - N at fixed Pes (implying also vs
0 - N), the active tracer

recovers effectively-free motion with a renormalized Brownian
diffusion coefficient due to the dense host system. It is also
compatible with the limit Ds

r - 0, which at fixed Pes implies
vs

0 - 0 and therefore recovers the case of a passive tracer particle.
A common approach in developing coarse-grained theories

of ABP is to account for a density-renormalized swim velocity:

Fig. 5 Long-time self-diffusion coefficient DL
t ¼ lim

t!1
dr2ðtÞ=4t (in units of

the tracer short-time diffusion coefficient Ds
t) obtained from the MSD of an

active tracer in a passive hard-disk system, as a function of host packing
fraction j. Symbols are results from Brownian dynamics simulations for
different tracer self-propulsion velocities vs

0 as labeled. Small crosses
connected by lines are MCT results with mapped packing fractions to
match the dynamics of the passive system at j close to jc (see text). The
asymptotic power laws are indicated for j Z 0.76 as dotted lines.
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Due to interactions, the average velocity characterizing the
particle motion is no longer the bare self-propulsion speed vs

0

of an individual ABP, but a density-dependent effective swim
velocity vs(j).51 The quantity vs(j) is in principle a non-
equilibrium transport coefficient onto which the ITT frame-
work provides a useful handle. One can derive, using ITT, a
generalized Green–Kubo formula for vs(j), relating it to the
microscopic correlation function of the particles’ orientation-
projected forces.52 We have recently obtained a ABP-MCT
expression for the swim velocity30 that was shown to be in
reasonable qualitative agreement with simulation data.23 Qua-
litatively, vs(j)/vs

0 decays from unity at low densities towards
zero at the glass transition, and thus qualitatively explains the
density-dependent reduction of the empirical prefactor a used
in Fig. 6.

A direct comparison of the ABP-MCT results for the active-
tracer long-time diffusion DL

t with the expression DL
t E

DL,0
t (j)(1 + Pes

eff(j)) (lines and symbols in Fig. 7) demonstrates
reasonable agreement especially at the highest density studied
(j = 0.77) and not too large Ds

r. Here, Pes
eff(j) = vs(j)2/2Ds

rDs
t is

the effective Péclet number formed with the density-dependent
swim speed. The latter has been evaluated from the theory
using the ITT expression,

vsðjÞ ¼ vs0
1þ bm=N

Ð1
0 dtCðtÞ

; (33a)

employing a ABP-MCT approximation for the orientation-
projected force autocorrelation function, expressing the latter
in terms of a bilinear functional of the density-correlation

functions, CðtÞ �Fswim½ ~Fll0 ðk; tÞ; ~Fmm0 ðk; tÞ� where only terms
involving l,l0,m,m0 A {�1,0,1} enter. For a derivation and more
detailed expressions of the swim-speed functional we refer to
ref. 23 and 30. Note that the swim velocity depends on Ds

r

implicitly, however, it does not capture the complete

dependence on rotational diffusion for the active tracer that
is displayed by the results for the long-time diffusivity in Fig. 6
and 7. In principle, one would also expect a description in
terms of the swim velocity to only hold on sufficiently coarse-
grained scales, while ABP-MCT provides a microscopic
approach for which the bare model coefficients are the relevant
parameters.

3.3 Tracer motion in the active bath

We continue by discussing the tracer motion in an active host
system. One interesting case here is exemplified by the MSD of
a passive tracer in a host system of ABP (Fig. 8). Again, for the
range of v0 similar to what we discussed in the reverse case of
an active tracer in the passive host, the MSD show a succession
of subdiffusive cage motion followed by super-diffusive escape
from the cageing plateau. It is a clear signature of the non-
equilibrium character of the host system dynamics, that even
for the passive tracer, the MSD grows faster than diffusive. This
implies that a description of the active host fluid in an effective-
equilibrium framework (such as assigning an elevated effective
temperature to a thermalized fluid with added activity42) can-
not capture this dynamics. Only for the weakly active host
system (v0 = 2Dt/s in Fig. 8) do we find a reasonable description
of the MSD in terms of the fully passive-dynamics MSD at an
effective reduced packing fraction similar to what was dis-
cussed in connection with Fig. 2 (dotted lines in Fig. 8).

Qualitatively, the regime of superdiffusion in the case of the
passive tracer, Fig. 8, appears more pronounced the denser is
the host system; compare this to the reversed case of an active
tracer in a passive bath, Fig. 2, where an increased host-system
density serves to more strongly suppress superdiffusive motion.
This is of course intuitive, since in the latter case, the tracer
activity is suppressed by the passive caging, while in the former
case, activity modifies the effective cage motion that is seen by
the tracer.

Fig. 6 Long-time diffusion coefficient DL
t (j) of an active tracer in a

passive hard-disk system, as a function of tracer Péclet number Pes =
(vs

0)2/2Ds
rD

s
t, for three different host-system packing fractions j as labeled.

Open symbols are Brownian dynamics results, with different Ds
r as labeled;

small symbols connected with lines are MCT results. Dotted lines indicate
the free-particle result DL

t = DL,0
t (1 + Pes) scaled to the passive-tracer long-

time diffusion coefficient DL,0
t . Dashed lines are fits to the data with the

empirical relation DL
t = DL,0

t (1 + aPes), where a is shown in the inset.

Fig. 7 Long-time diffusion coefficient DL
t (j) of an active tracer in a passive

hard-disk system, as a function of the tracer Péclet number Pes, for the
parameters shown in Fig. 6. Solid lines repeat the ABP-MCT results from
Fig. 6. Symbols show DL

t = DL,0
t (1 + Pes

eff) were the effective tracer-Péclet
number Pes

eff = (vs(j))2/2Ds
rD

s
t is evaluated with the density-renormalized

effective swim velocity vs(j) (see text).
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ABP-MCT is again able to account for this nontrivial
dynamics qualitatively. The comparison in Fig. 8 becomes even
quantitatively satisfactory if one allows for a further empirical
mapping of parameters besides the density mapping that was
fixed in the fully passive system: We find that the influence of
host-system activity on the relaxation dynamics is stronger in
the ED-BD simulations than it is predicted by MCT. The
quantitative error can be absorbed in a rescaling of the self-
propulsion velocity vMCT

0 that enters the theory calculation. We
find reasonable agreement with a linear rescaling, vMCT

0 E
1.5vBD

0 (inset of Fig. 8).
The fact that the effect of the nonequilibrium perturbation

on the glassy dynamics of the host system, in fluidizing that
system, is underestimated by MCT is in line qualitatively with
previous applications of the theory to, for example, sheared
colloidal suspensions25 or active microrheology;44–47 also there,
the introduction of an empirical scaling factor allowed to bring
the theory in quantitative agreement with simulation data. In
general, one finds that MCT overestimates the glassiness of the
relaxation dynamics, and hence it predicts too slow relaxation
for a fixed density j and fixed self-propulsion strength v0. Since
the effects of both parameters on the structural relaxation are
opposite (increasing density slows down, increasing activity
speeds up the dynamics), it is plausible that the theory curves
for a decreased f and an increased v0 match the simulation
data. The mapping of v0 has also been successful in a descrip-
tion of the relaxation of density fluctuations at finite q.24

As before, an examination of the effective power-law expo-
nent, a(t) = d log dr2(t)/d log t extracted from the logarithmic
derivative of the MSD, allows to study in detail the succession of
sub- and super-diffusive regimes (Fig. 9). It becomes apparent
that as a general trend, MCT overestimates the extent and

strength of both regimes; in particular for the highest self-
propulsion velocity studied here, v0 = 6, the theory predicts a
pronounced super-diffusive regime around t = 1 at densities
close to the glass transition; the ED-BD simulations show
superdiffusion to a lesser extent. This possibly indicates that
the simple-minded mapping of vBD

0 to an increased vMCT
0 does

not account for all observations equally well. (We also expect
such mapping to only work in a limit range of v0 and, in
particular, Dr, but this requires further investigation.) Close
to jc, the exponents reveal that the MSD remains subdiffusive
at all times only for up to v0 = 2Dt/s; this confirms that only for
this weakly active host system, an effective-density passive
description can work.

Finally, we turn to the MSD of an active tracer in a system of
ABP (Fig. 10). The results are qualitatively quite similar to the
ones that we have discussed before; intuitively one expects an
addition of the effects discussed in connection with the active
tracer in a passive system, Fig. 2, and with the passive tracer in
the active system, Fig. 8. Indeed, we observe in the fully active
system (Fig. 10) pronounced superdiffusion succeeding the
subdiffusive cage motion at all the densities that are shown,
for sufficiently large v0: at low host system density, it stems
from the activity of the tracer itself, while at high host system
density, even the passive tracer acquires induced superdiffusive
motion. To emphasize the similarity, we compare the MSD for
the active tracer in the active host system with those of the
passive tracer in that system (different colored symbols in
Fig. 10). Indeed, at the density j = 0.77 close to the glass
transition, both quantities are nearly identical in our simula-
tions, indicating that here, the dominant effect comes from the
host system activity, and any tracer effectively follows the
collective dynamics. At the lower density j = 0.50, the passive
tracer shows a far less enhanced superdiffusive regime, since
here the active bath is not yet as effective in transmitting its
activity to the passive tracer. Note that for sufficiently high
density, the MSD remains nearly diffusive and acquires a more

Fig. 8 Mean-squared displacements dr2(t) of a single passive tracer
particle in dense systems of active Brownian hard disks at packing fraction
j and various self-propulsion velocities v0 as indicated. Symbols are results
from BD simulations, lines are ABP-MCT results with an adjustment of the
packing fraction obtained from the fully passive system, and of the self-
propulsion velocity (see text and inset). For clarity, curve sets for increasing
j are shifted down by one decade each. Dotted lines show fits using the
passive MSD in a passive system at a reduced effective packing fraction for
the case v0 = 2 (see text).

Fig. 9 Effective exponents a(t) = d log dr2(t)/d log t for the MSD of a
passive tracer in a host system of active Brownian hard disks, corres-
ponding to the data shown in Fig. 8. Symbols are BD simulation results,
lines are from the MCT fits.
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pronounced superdiffusive regime when decreasing the den-
sity; this has been also discussed in simulations of a system of
active dumbbells.53

The theory correctly captures these two effects: up to the
velocity mapping that is required to quantitatively describe the
host system activity, as described above, both the passive (lines
in Fig. 8) and the active tracer dynamics (lines in Fig. 10) are
quantitatively well described by ABP-MCT. As anticipated from
the previous discussion, some systematic deviations set in for
the largest v0 that we have studied here. It remains a question
for future work to assess the quality of ABP-MCT for very large
self-propulsion velocities, once better numerical integration
schemes are available for the theory.

4 Conclusions

We have derived equations to describe the mean-squared
displacement (MSD) of active and passive tracer particles in
dense systems of passive or active Brownian particles. The
description is based on the integration-through transients
(ITT) framework, a non-equilibrium statistical physics frame-
work that allows to treat the activity of active Brownian particles
(ABPs) as an arbitrarily strong perturbation to the passive-
equilibrium Brownian dynamics. While the formulas,
eqn (30), are exact in principle, their evaluation requires knowl-
edge of memory kernels that encode the interaction with the
host particles in terms of positional and dipolar orientational
density fluctuations.

The dynamics at high densities is qualitatively well pre-
dicted when the relevant memory kernels are evaluated using
the mode-coupling theory for active Brownian particles (ABP-
MCT), as our comparison with event-driven Brownian dynamics
(ED-BD) computer simulations demonstrates. The good

qualitative agreement holds for the range of densities close to the
glass transition and for not too large self-propulsion velocities, even
if the transient correlation functions evaluated within the theory are
compared to the stationary correlations obtained in the simulation.
To achieve quantitative agreement between theory and simulation,
two parameters have to be adjusted: the overall density entering the
mode-coupling theory of the glass transition (MCT) equations is
lower than the one in the simulation, which accounts for the fact
that the theory predicts kinetic arrest at too low density. This
appears already in the passive system and is not a feature of the
extension to ABP. Secondly, the theory underestimates the speedup
of the collective dynamics of ABP, so that in the case of an active
bath, quantitative agreement is obtained when the theory is eval-
uated with a self-propulsion velocity that is higher than the one in
the simulation.

The most prominent feature of the MSD including activity is
the appearance and, at high densities, disappearance of a
ballistic regime of persistent active motion. For a free ABP,
superdiffusion appears in a regime set by time and length
scales connected to the self-propulsion velocity and the reor-
ientational diffusion coefficient. Close to the glass transition,
these time scales compete with the relevant time scales of
structural relaxation, and hence in the MSD we observe a
typical sequence of initial passive diffusion, glassy sub-
diffusion, followed by super-diffusive cage breaking at large
enough activity, and finally long-time diffusion. The simula-
tions also demonstrate that for very large activity, the sub-
diffusive cageing regime can be entirely suppressed by the
active motion. These findings are in qualitative agreement with
recent experimental data on the MSD of a single active particle
in a colloidal glass former,5 as we discuss in detail elsewhere.23

In the low-density regime, absorbing the translational diffu-
sion coefficient Ds

t in the units of time, the two parameters that
quantify active motion, viz. its velocity vs

0 and its persistence
time 1/Ds

r, only enter in a specific combination through a
dimensionless group, the Péclet number Pes. The appearance
of a further length scale through the cage effect at high
densities change this, and as a result the motion of the active
tracer depends on both vs

0 and Ds
r separately.

From discussing the various cases of active/passive tracers in
active/passive host systems it emerges that the active motion of
the tracer is responsible for super-diffusive motion as long as
the host system is not yet too dense; in very dense host systems,
it is the activity of the host particles that drive super-diffusive
motion even for a passive tracer.

The fact that the extension of MCT can describe super-
diffusive MSD at all is not trivial. Theories where the angular
dynamics is integrated out, and hence the dynamics of the
active particles is mapped onto one described by an effective
Smoluchowksi operator are not a priori able to capture this.
Especially, for the case of a passive tracer in an active bath, a
naive application of the theory would just assume the standard
form of the passive-MSD equations of motion, coupled to
enhanced relaxation dynamics in the bath. Instead, a super-
diffusive regime appears in our theory, in good agreement with
simulation.

Fig. 10 Mean-squared displacements dr2(t) of an active tracer particle in a
host suspension of active Brownian disks, at packing fraction j and self-
propulsion velocities as indicated. Colored symbols are results from BD
simulations, lines are MCT fits with empirically mapped densities and
velocities as in Fig. 8. For clarity, groups of curves corresponding to fixed
j are shifted downward by one decade each. Black symbols repeat our
simulation results for a passive tracer in the active host system from Fig. 8
(shown only for j = 0.77 and for v0 = 0, 6 for j = 0.50 for clarity).
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A Features of the passive-equilibrium
MSD

Recall that for a colloidal system in equilibrium, the dynamics

is described by a backward Smoluchowski operator Oyeq that is

self-adjoint in the scalar product weighted with the equili-

brium distribution, i.e., h f �Oyeqgieq ¼ hðOyeq f �Þgieq. The structure

of Oyeq implies h f �Oyeq f ieq ¼ �Dhðrf �Þrf ieq ¼ �Dhjrf j2ieq 	 0

(assuming the diffusion coefficient to be positive), so that the

operator Oyeq has non-positive real eigenvalues only.

The density correlation functions are hence completely
monotone functions,54,55 i.e., they can be written in the form
(specializing to the tagged-particle correlation function for the
sake of the following argument) fsðq; tÞ ¼

Ð
exp½�gt�daqðgÞ with

some positive definite measure daq that is concentrated on the
nonnegative real axis. For a completely monotone function,
there holds (�)kqk

tf
s(q,t) Z 0.

The MSD (in d spatial dimensions) follows from dr2ðtÞ ¼
lim
q!0
ð2d=q2Þð1� fsðq; tÞÞ and thus qtdr2(t) again is a completely

monotone function. (The MSD is thus confirmed to be a
monotonically increasing function of time.) As a consequence,
using the fact that dr2(t) itself is positive,

@ log dr2ðtÞ
@ log t

¼ t

dr2ðtÞ
@dr2ðtÞ
@t


 0; (34)

and, since dr2(0) = 0,

@ log dr2ðtÞ
@ log t

� 1 ¼ t

dr2ðtÞ
@dr2ðtÞ
@t

� dr2ðtÞ
t

	 


¼ t

dr2ðtÞ
@dr2ðtÞ
@t

� 1

t

ðt
0

dt
d

dt
dr2ðtÞ

	 


	 t

dr2ðtÞ
@dr2ðtÞ
@t

� 1

t
� t@dr

2ðtÞ
@t

	 

¼ 0:

(35)

The latter inequality follows from complete monotonicity:
qtdr2(t) Z 0 and qt

2dr2(t) r 0 imply qtdr2(t) Z qtdr2(t) for
t r t, so that we obtain an upper bound for the integral. We
therefore get

0 	 @ log dr
2ðtÞ

@ log t
	 1: (36)

In other words, the effective exponent of the equilibrium
Brownian-dynamics MSD is bounded and below unity. Hence,
the MSD under these conditions can grow at most diffusively.
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