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Structural analysis of disordered dimer packings

Esma Kurban and Adrian Baule *

Jammed disordered packings of non-spherical particles show significant variation in the packing density

as a function of particle shape for a given packing protocol. Rotationally symmetric elongated shapes

such as ellipsoids, spherocylinders, and dimers, e.g., pack significantly denser than spheres over a narrow

range of aspect ratios, exhibiting a characteristic peak at aspect ratios of amax E 1.4–1.5. However, the

structural features that underlie this non-monotonic behaviour in the packing density are unknown.

Here, we study disordered packings of frictionless dimers in three dimensions generated by a

gravitational pouring protocol in LAMMPS. Focusing on the characteristics of contacts as well as

orientational and translational order metrics, we identify a number of structural features that accompany

the formation of maximally dense packings as the dimer aspect ratio a is varied from the spherical limit.

Our results highlight that dimer packings undergo significant structural changes as a increases up to

amax manifest in the reorganisation of the contact configurations between neighbouring dimers,

increasing nematic order, and decreasing local translational order. Remarkably, for a 4 amax our metrics

remain largely unchanged, indicating that the peak in the packing density is related to the interplay of

structural rearrangements for a o amax and subsequent excluded volume effects with unchanged

structure for a 4 amax.

1 Introduction

Jammed disordered particle packings have been used as a
model to understand the structures of liquid crystals, glasses,
self-assembly of nanoparticles, biological systems and granular
media.1 While there has been considerable recent progress in
our understanding of jammed sphere packings,2 the effect of
particle shape on the properties of jammed packings has been
much less explored.3 Considering one of the simplest macro-
scopic observables of packings – the packing density – one
finds that many non-spherical shapes pack denser than
spheres, which achieve maximal packing densities of fj E
0.64 for a wide range of packing protocols (although denser
packings can also be achieved for specific protocols, see
the discussion in ref. 4). For example, many polyhedra,5–9

ellipsoids,10–13 spherocylinders,14–20 and dimers,21,22 as well
as irregular shapes such as those composed of a number of
overlapping spheres23,24 achieve packing densities fj Z 0.7,
with the densest disordered packings so far found for tetra-
hedra at fj E 0.78.5 Plotting the packing density as a function
of a continuous shape descriptor, such as the aspect ratio a
(for rotationally symmetric elongated shapes), exhibits a non-
monotonic behaviour with a peak at a E 1.4–1.5 for ellipsoids,
spherocylinders, and dimers, with some variations due to the

packing protocol. For larger aspect ratios, the packing density
decreases, following, e.g., an approximate scaling behaviour
fj B 1/a for spherocylinders.25

In this study, we revisit dimer packings simulated with the
MD platform LAMMPS using a gravitational pouring protocol.
Our goal is to identify structural features that characterize the
peak in the packing density by focusing on details of the
contact statistics as well as positional and orientational order
metrics. In this context, it is important to emphasize the role of
the protocol in the packing generation. The interplay between
the packing density and the degree of order that arises by
tuning the protocol parameters has been widely discussed for
spheres, most notably in the critique of the well-posedness of
the concept of ‘‘random close packing’’.26 For non-spherical
particles, the protocol dependence is manifest in the relatively
large variance of results reported for fj for the same shape,
e.g., for spherocylinders.14–20 Our viewpoint is thus to focus on
packings generated by a specific protocol, namely the widely
used pouring under gravity, and understand how shape varia-
tion changes the structural features of these packings.

Previous studies of ordering effects in random packings of
elongated particles obtained inconsistent results, which might
be due to different protocols and boundary conditions used.
For example, simulations of prolate ellipsoids by pouring into a
container under gravity found considerable nematic order,
whereby the ellipsoids’ symmetry axes (the semi-major axes)
tend to lie within the plane normal to the gravity direction.10,11,27
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This ordering effect has been explained as a result of the
particles’ tendency to minimize the gravitational potential
energy.10 On the other hand, simulations that compress or
inflate the non-spherical particles from an initial random state
such as the Lubachevsky–Stillinger algorithm (applied to
ellipsoids12,28) or a mechanical contraction algorithm (applied to
spherocylinders29–31) do not find any significant order as is also
observed with other geometric simulation methods.32,33 While
3D experiments of ellipsoids13 and elongated colloids34 did not
observe any signatures of order, experiments of asymmetric
dumbbells in 2D showed strong orientational correlations
between neighbours due to mutual restrictions on positions.35

The order characteristics of dimers in 3D have so far not been
investigated to our knowledge.

The remainder of this article is organized as follows: in
Section 2 we present the details of our simulation method with
LAMMPS. In Section 3, we present results on our analysis of the
packing fraction, contact number, and orientational/positional
order metrics. Finally, we conclude in Section 4 with a discus-
sion of our results.

2 Simulation method

Disordered packings of monodisperse frictionless symmetric
dimers in three dimensions are generated with the molecular
dynamics platform LAMMPS.36,37 The dimers are obtained by
overlapping two identical spheres with diameter d and mass m.
We study dimers with aspect ratios a in the range 1.0005 r ar 2,
where a is given as the ratio of the length over the width, see
Fig. 1. In this packing protocol, N = 12 000–15 000 monodisperse
dimers are poured under gravity into a three-dimensional box of
side length E20d. The lateral (x̂–ŷ-plane) boundary conditions are
chosen to be periodic and the box is bounded in the ẑ-direction by
a rough surface at the bottom (implemented by the ‘‘fix wall/gran
hertz/history’’ command). During a simulation run, a gravita-
tional force acts on the dimers in the ẑ-direction. The pouring
protocol makes use of LAMMPS’ ‘‘fix pour’’ command, which
repeatedly inserts particles into the simulation box every few
timesteps within a specified insertion region 30–40d above the
bottom and releases them until N particles have been added
overall. In the insertion region, particles are added with random
positions and orientations and without any overlap. Particles are
only inserted again after the previously inserted particles have
fallen out of the insertion region under the gravitational force.

LAMMPS treats a dimer defined by a fixed distance between
its two constituent spheres as an independent rigid body
(implemented by the ‘‘fix rigid/small’’ command). The total
force and torque on each dimer rigid body are computed as the

sum of the forces and torques on its constituent spheres in
every time step. The coordinates, velocities, and orientations of
the constituent spheres are then updated so that the dimer
moves and rotates as a single entity.

LAMMPS can natively implement different models for calcu-
lating the contact forces between the spheres. In this study, a
Hookean model is chosen because of its convenience to dis-
sipate residual kinetic energy and hence to reach a static state
quickly.38 In the Hookean model, when two spheres i and j
having positions ri and rj, respectively, are in contact, they
experience a relative normal compression with overlap
d = d � rij, where rij = ri � rj and rij = |rij|. The resulting force
is Fij = Fn

ij + Ft
ij, where Fn,t

ij are the normal and tangential contact
forces, respectively, given as:38

Fn
ij ¼ Kndnij �

m

2
gnvn Ft

ij ¼ �KtDst �
m

2
gtvt: (1)

Here, nij = rij/rij, vn,t are the normal and the tangential compo-
nents of the relative velocity of the spheres i and j, and Kn,t and
gn,t are the elastic and viscoelastic constants, respectively. The
quantity Dst denotes the elastic tangential displacement
between the spheres.38 The total force Ftot

i on sphere i in a
gravitational field g = �gẑ is then given as:

Ftot
i ¼ mgþ

X
iaj

Fn
ij þ

X
iaj

Ft
ij ; (2)

where the sum runs over all j spheres in contact with sphere i.
Throughout the investigation we set our basic units as d = 1,

m = p/6, and g = 1. Distances, times, velocities, forces and elastic

constants are then measured in units of d,
ffiffiffiffiffiffiffiffi
d=g

p
,
ffiffiffiffiffiffi
gd
p

, mg, mg/
d, respectively. We generally use a normal spring constant
Kn = 2 � 105mg/d unless otherwise indicated. Additionally, we
simulate also harder dimers with Kn = 2 � 106mg/d and softer
ones with Kn = 2 � 104mg/d to examine the effect of particle
hardness on the contact number of the dimers at small aspect
ratios. We set gt = 0 and the remaining parameters used are
given in Table 1. The choice of most of these values follows the
discussion in ref. 39.

Simulations are run until the system reaches a static equili-
brium when the kinetic energy per particle is less than 10�8mgd
for small Kn and up to three orders of magnitude less for large
Kn. For example, when Kn = 2 � 105mg/d the simulation takes
3–8 � 106Dt to reach equilibrium, which depends on the
chosen aspect ratio and also on the random initial configura-
tions when particles are poured into the container. For further
details of any of the LAMMPS commands used, we refer the
reader to the LAMMPS documentation.37

Fig. 1 Dimer shape defined by the aspect ratio: (a) a = 1.05, (b) a = 1.4, (c)
a = 2.

Table 1 Material parameter values and time step Dt used in the
simulations

Kn(mg/d) Kt/Kn gn (mg/d) Dt
ffiffiffiffiffiffiffiffi
d=g

p� �
2 � 104 2/7 15 0.003
2 � 105 2/7 50 0.001
2 � 106 2/7 150 0.0003
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3 Structural analysis
3.1 Packing fraction

We calculate the packing fraction of the dimer packings for
various aspect ratios. The packing density is determined for the
bulk region shown in Fig. 2. The particles within 5–8d from the
container floor are excluded from the bulk region since they
can be highly crystallized. The thickness of this crystallized
region depends on many factors such as the box dimension and
the pouring height. Excluding the particles within 5–8d pro-
vides results that are largely unaffected by the crystallization.
The particles within 5d from the upper-most particles have also
been excluded from the bulk because their Voronoi volumes
can not be decided accurately due to deficiencies in their
neighbourhood.

In order to determine the packing density in the bulk region,
we calculate the Voronoi volume of each dimer in the bulk,
which is defined as the space that is closer to the surface of a
given dimer than to that of any other dimer. While a formal
parametrization of the Voronoi volume of a dimer is analytically
tractable,40 a straightforward computational method makes use
of LAMMPS’ built-in routine to determine the Voronoi volume
of the individual spheres in the packing using a conventional
Voronoi tessellation. The Voronoi volume Wi of a dimer is then
found by summing the Voronoi volumes of its two constituent
spheres. The bulk volume Vb occupied by Nb dimers in the bulk

is calculated as Vb ¼
PNb

i¼1
Wi. We then obtain the packing frac-

tion as fj = NbVa/Vb where Va is the volume of a dimer with
aspect ratio a. The volume Va is found by subtracting the
overlap volume from the sum of its constituent sphere volumes.
The overlap volume contains two equal spherical caps whose
volume can be calculated exactly, see Appendix A. Note that a
dimer is considered to be part of the bulk region only if the
centres of both constituent spheres are within the bulk.
All average quantities discussed in the following are calculated
for dimers in the bulk only.

We plot the packing fraction fj of the dimers as a function
of the aspect ratio a in Fig. 3. As can be seen from Fig. 3, the
packing fraction fj has a non-monotonic relationship with a,
i.e., it increases as a increases until reaching a peak at fj = 0.707
for a = amax = 1.4, beyond that it decreases. These results are in
agreement with previous studies21,22 and also show reasonably
good agreement with results from a mean-field calculation,40

shown in Fig. 3. Systematic deviations between our simulations
and the mean field theory are in particular visible in the
behaviour for larger aspect ratios a 4 1.5, which are likely
due to the strong mean-field assumptions. In fact, the mean-
field theory relies on a reduction of higher-order positional
correlations to pair correlations and also neglects orientational
correlations between particles. The latter become more signifi-
cant for particles of larger aspect ratios, see Section 3.3.1.

3.2 Contact and coordination numbers

We introduce the contact number z as the average number of
contact points of a dimer and the coordination number zc as
the average number of neighbours of a dimer, whereby a
neighbour is defined as another dimer with which at least
one contact point is shared. While z = zc for smooth convex
shapes like spheres, ellipsoids, and spherocylinders, z Z zc for
concave shapes like dimers, since two particles can share more
than one contact point. In general, two dimers A and B share a
contact point if the separation vector of two spheres i and j,
with sphere i in dimer A and sphere j in dimer B, satisfies
rij r d, which can be detected with high numerical precision.
Two dimers can thus share up to four different contact points.
Due to the soft interaction potential the contact ‘‘point’’ is
strictly a small overlap region, which creates some complications
at small dimer aspect ratios, see below.

In Fig. 4(a) we show the behaviour of zc as a function of a
and the associated distributions of zc for a set of aspect ratios.
We observe a smooth increase of zc(a) for a 4 1 with a
maximum at zc = 8.34 for a = 1.5 followed by a slight
decay. The qualitative behaviour is in line with the results of
ref. 22, where dimer packings were generated using an energyFig. 2 The bulk region shown in the x̂–ẑ-plane.

Fig. 3 The packing fraction fj as a function of the dimer aspect ratio a.
Simulation values of fj are shown averaged over 10 independent simula-
tion runs for a Z 1.1 (dots), and for a single run for a o 1.1 (diamonds).
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minimization protocol, although our values of zc are consis-
tently larger over the range of aspect ratios. The distributions
P(zc) are approximately symmetric and Gaussian (Fig. 4(a),
inset).

On the other hand, the contact number z does not exhibit
such a smooth increase, see Fig. 4(b). First establishing the
baseline for sphere packings at a = 1 with our protocol, we find
that z = 6.14 for spheres. This value is slightly above the
isostatic value of z = 2df = 6, where df denotes the degrees of
freedom of a particle, generally found for disordered sphere
packings using a variety of packing protocols.4 We suspect that
this difference is due to the gravitational packing protocol and
the interaction potential with non-zero softness, see also the
comparable values found in the studies of sphere packings21,39

using a similar protocol. Deforming spheres into dimers, the
smallest aspect ratio of dimers for which we are able to report
the contact number reliably is a = 1.05, for which we find
z = 10.39. For larger aspect ratios, z decreases slightly, but then
remains unchanged at z = 10.28 for a4 1.2. The difference with
the isostatic value z = 2df = 10 is approximately of the same
magnitude as the difference for spheres using our packing
protocol. By comparison, the studies in ref. 22, 41 and 42 find
that dimers are almost exactly isostatic, which is thus in line
with our findings. The observation of a constant z for all aspect
ratios of dimers is an important difference with the behaviour
of convex elongated shapes such as ellipsoids and sphero-
cylinders, which are hypostatic (z o 2df) at small aspect ratios
and show a smooth increase upon shape deformation from the
sphere like the coordination number zc here.28,30

We highlight that for very small aspect ratios aA (1,1.05) the
calculation of z is unreliable, since our particle model leads to
incorrect contact detections: the overlap regions due to the
particle softness can extend far enough into the dimer as to
create a contact with an interior sphere as illustrated in Fig. 5.

Such problematic contact configurations for dimers were
also identified in the recent work by Shiraishi et al.22,41 and
separated into ‘‘double’’ and ‘‘cusp’’ contacts, see Fig. 5.

Shiraishi et al. investigated the contact number of dimer
packings using a compression protocol with soft particle inter-
actions for various packing densities f. For large enough values
of the excess packing density Df = f � fj, where fj denotes the
packing density at jamming onset, ‘‘double’’ and ‘‘cusp’’ con-
tacts were observed. In their analysis, these contacts could thus
be avoided by setting an upper limit for Df at each aspect ratio
studied and they observed that this upper limit approaches zero
as a - 1. In our case, the occurrence of these configurations
depends on the stiffness value Kn as shown in Fig. 6, where it
can be seen that the threshold aspect ratio, at which double
and cusp contacts occur, is shifted to smaller aspect ratios for
larger Kn. For any value of Kn, double and cusp contacts will
occur at sufficiently small aspect ratios and thus the contact
number very close to the sphere shape can not be reliably
established. For Kn = 2 � 105 we see that double and cusp
contacts do not occur for a Z 1.05, which is the lower limit of a
used in our contact number analysis.

In order to refine our analysis of the packing microstructure,
we define five distinct contact configurations according to the
number of contact points that are shared by two neighbouring

Fig. 4 (a) The coordination number zc vs. a and distributions P(zc) for various aspect ratios (inset). (b) The contact number z vs. a and distributions P(z)
(inset). The values of zc and z are shown averaged over 10 independent simulation runs for a Z 1.1 and a = 1 (dots), and for a single run for 1 o a o 1.1
(diamonds).

Fig. 5 Illustrations of ‘‘double’’ and ‘‘cusp’’ contacts shown in 2D as
discussed in ref. 41. (a) Double contact: the yellow sphere is embedded
into the red dimer so deeply that it contacts both red spheres. (b) Cusp
contact: the yellow sphere contacts both red spheres by covering the cusp
point (black point) of the red dimer.
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dimers, see Table 2. Excluding the regime a A [1,1.05), we
determine how the fraction of each configuration type changes
as a function of a, see Fig. 7. We see that even though the
average number of contacts z is approximately constant over
this range of a, the underlying contact configurations change
significantly with a. Most notably, the two most common
contact configurations, Type 1 and Type 2, increase and
decrease, respectively, as a increases up to around amax and
remain approximately unchanged for a 4 amax. The remaining
contact configurations confirm this trend, showing the stron-
gest variations in the regime a o amax. Overall, we see that
contact configurations, in which spheres of neighbouring
dimers only have one contact point (Type 1 and Type 3)
increase, while those with multiple contact points (Types 2, 4
and 5) decrease as the packing becomes denser up to the
packing density peak at amax. This trend is somewhat counter-
intuitive, since the Types 2, 4 and 5 configurations correspond to
more optimal local arrangements between two dimers, which

locally reduce the packing density. Similar results for the fractions
of these five configuration types have been found for packings of
shapes composed of four overlapping spheres.43

Rather than excluding the aspect ratio regime where the
problematic double and cusp contacts occur it might be
tempting to re-assign such contacts and thus infer the proper-
ties of the small aspect ratio regime in an ad hoc way. For
example, a double contact as in Fig. 5(a), which creates two
overlaps of sphere pairs and is thus counted as two contact
points, could be counted as only one, effectively ignoring the
incorrect overlap with the interior sphere. This can be done
likewise for other contact configurations, which require a care-
ful consideration of the relative position and orientation of the
overlapping dimer pair, see the full discussion in Appendix D.
Re-assigning contacts in this way leads to a rapid but smooth
decrease of z to the corresponding value of spheres z E 6 as
a - 1 (Fig. 21), but also exhibits seemingly unphysical

Table 2 Five distinct contact configurations of two dimers. We show illustrations for aspect ratios a = 1.2 and a = 2. The total number of contact points
for each type is: one (Type 1), two (Types 2 and 3), three (Type 4), four (Type 5)

a Type 1 Type 2 Type 3 Type 4 Type 5

1.2

2

Fig. 6 The fraction of double (solid lines) and cusp contacts (dashed lines)
in the dimer packings for small a and three normal spring constants Kn. Fig. 7 The fractions of the five contact configuration types of Table 2 for

packings of dimers with different a.
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behaviour, such as sharp peaks in the fractions of the Types 1–5
contact configurations around a E 1.05, i.e., at the aspect ratio
where double and cusp contacts start to occur (Fig. 22).

3.3 Order metrics

We employ several order metrics to measure global and local
ordering in the dimer packings at various aspect ratios. The
nematic orientational order parameter and the orientational
pair correlation function are used to evaluate orientational
ordering. Translational ordering is investigated with bond
orientational order parameters, the radial distribution function
and bond angle distributions. All calculations are made for the
particles within the bulk volume so as to discard the crystal-
lized region observed at the bottom of the container.

3.3.1 Metrics for orientational order. The nematic orienta-
tional order parameter S has traditionally been applied to
identify different ordered phases of liquid crystals by charac-
terising the average molecular orientation.44 S is defined as:

S ¼ P2ðcos bÞh i � 1

Nb

XNb

i

P2 cosbið Þ (3)

where P2ðxÞ ¼
1

2
3x2 � 1
� �

is the second Legendre polynomial

and bi the angle between the orientation of dimer i and the so-
called director, which specifies the average orientation of the
particles. The dimer orientation is described by the unit vector
u(i) measured along the dimer’s long axis.

We apply this parameter to the dimer packings to quantify
the global orientational order. When all u(i) are randomly
oriented, S = 0, while if all u(i) are oriented in a plane normal
to the director, S = �0.5, which corresponds to a perfect oblate
phase. When all u(i) are aligned with the director, we have
perfect nematic order with S = 1.

In order to determine the director and S, we first evaluate
the tensor O defined as:

Okl ¼
1

Nb

XNb

i

3

2
u
ðiÞ
k u
ðiÞ
l �

1

2
dkl

� �
(4)

Denoting by lmax the eigenvalue of O with the largest
absolute value, we identify the director as the eigenvector
corresponding to lmax. For all aspect ratios, we find that the
director is aligned with the ẑ-axis (gravity direction). We then
obtain S directly as:

S = lmax. (5)

We also determine the orientational pair correlation func-
tion S2 in order to quantify local ordered structures at a radial
distance r from a reference particle. S2 is calculated as:

S2ðrÞ ¼ P2 cos bij
� �

d r� ri � rj
		 		� �
 �

�

PNb

i¼1

P
j2niðrÞ

P2 cos bijðrÞ
� �

PNb

i¼1
niðrÞj j

(6)

where cosbij = u(i)�u( j) and ni(r) denotes the set of particles in a
spherical shell of width D(r) = 0.025d at a distance r from the
centre of dimer i in the bulk. The expression |ni(r)| refers to the
size (cardinality) of the set ni(r). We note that the spherical shell
considered in S2 can extend into the boundary region beyond
the bulk and thus include particles in partially crystallized
regions, although the effect on the average should be small.
In general, due to the non-periodic boundary conditions in the
ẑ-direction our packings are not rotationally invariant and thus
the restriction to a radial coordinate is only an approximation.

We present the dependence of S and S2(r) on the aspect ratio
a in Fig. 8. We see that S changes rapidly as a increases from
the sphere value, reaching its minimum at around amax and
remaining approximately constant for a4 amax, in line with the
behaviour of zc and the different contact types. Interestingly, the
behaviour of S(a) as a- 1 appears almost singular, but the range of
values is not sufficient to identify a clear power-law. The minimum
of S at E�0.16 indicates slight oblate ordering, where the dimers’
long axes are oriented close to the horizontal plane normal to the
direction of gravity. This ordering is thus in agreement with that
observed in simulation studies of prolate ellipsoids using also
pouring under gravity.10,11,27 In order to compare the magnitude
of the orientational ordering with these studies, we also calculated
the order parameter w used in ref. 10, 11 and 27, which is defined in
eqn (17). We find a maximum of w E 0.32 for a = 1.4. By
comparison, in ref. 10 the maximum is w E 0.4 for a E 1.5, while
ref. 11 and 27 find w E 0.25 and w E 0.5, respectively, for a E 1.5.
Note that in ref. 11 and 27, w monotonically increases upon further
elongation over the observed range of aspect ratios.

The plot of S2 in Fig. 8(inset) demonstrates how orientational
correlations become more long-range for larger aspect ratios. For
small a, correlations decay rapidly within the first coordination
shell, while for large a oscillations in S2 are visible over the whole
range of r/d, which is here limited by r/d = 5, i.e., the width of the
boundary region on top of the bulk region that restricts the
maximum radius of the spherical shell used in eqn (6).

Fig. 8 The nematic orientational order parameter S vs. the aspect ratio a.
Values of S are shown averaged over 10 independent simulation runs for
a Z 1.1 (dots), and for a single run for a o 1.1 (diamonds). Inset: The
orientational pair correlation function S2 vs. r/d for various aspect ratios.
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3.3.2 Bond orientational order parameters. The bond-
orientational order metrics ql and Ql introduced by Steinhardt
et al.45 have most commonly been used to quantify transla-
tional order in disordered packings of spherical particles.46–51

While Ql is widely accepted as a well-defined parameter to
measure global ordering in a packing, it has been suggested
that the local order parameter ql needs more caution to reliably
identify local crystalline structures in these systems.52,53 It was
assumed that higher values of q6 are associated with higher
degrees of order46 and averages hq6i have been used to quantify
the overall degree of order for disordered sphere packings.48

However, it has been found that some local configurations of
disordered sphere packings that are clearly non-crystalline have
exhibited the same values of q6 as hcp or fcc crystals.52 There-
fore, in this study, we use recently introduced local order
parameters defined by Eslami et al.54 to improve the accuracy
of determining local translational order in the dimer packings.

Steinhardt et al.45 associated with every bond joining a
particle and its neighbours a set of spherical harmonics:

qlmðiÞ ¼
1

jNNðiÞj
X

j2NNðiÞ
Ylm yij ;fij

� �
(7)

where the Ylm are spherical harmonics and yij, fij denote the
polar and azimuthal angles which define the orientation of the
vector (bond) pointing from the reference particle i to another
particle j, see Fig. 9. NN(i) contains the set of neighbour indices
for particle i, which are defined as those particles j that have at
least one contact with i.

The local orientational order parameter ql(i) of particle i is
then defined as the following rotational invariant combination
of qlm:

qlðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l þ 1

Xl
m¼�l

qlmðiÞj j2
vuut : (8)

Moreover, the global orientational order parameter Ql is
defined as

Ql ¼
4p

2l þ 1

Xl
m¼�l

Qlmj j2
 !1=2

; (9)

where

Qlm ¼
1

Nb

XNb

i¼1
qlmðiÞ (10)

Recently, Eslami et al. introduced the local order parameters
�~qlðiÞ to improve the determination of liquid and different
crystallized phases.54 Starting from the qlm of eqn (7), we first
determine

~qlðiÞ ¼
1

jNNðiÞj
X

j2NNðiÞ

Xl
m¼�l

q̂lmðiÞq̂�lmð jÞ (11)

where q̂�lmð jÞ is the complex conjugate of q̂lm( j) and q̂lm(i) is
defined as follows:

q̂lmðiÞ ¼
qlmðiÞPl

m¼�l
qlmðiÞj j2

� �1=2
(12)

Then the order parameters �~qlðiÞ are obtained by averaging
over the first coordination shell of particle i:

�~qlðiÞ ¼
1

1þ jNNðiÞj ~qlðiÞ þ
X

j2NNðiÞ
~qlð jÞ

2
4

3
5 (13)

The advantage of �~qlðiÞ over ql is that they can distinguish the
liquid phase and different crystalline phases in a more accurate
way.54 They indicate in fact the correlation between the order in
the first and the second coordination shell of a reference
particle.54 It has been observed that �~q6ðiÞ is large E1 for
crystalline phases, while �~q6ðiÞ assumes values close to zero for
disordered (liquid) phases, which thus allows to easily discri-
minate between such phases. On the other hand, the values
of �~q4ðiÞ are sensitive to the crystal type, so �~q4ðiÞ is able to
distinguish bcc, fcc, and hcp crystals.

We display the pairs �~q4; �~q6
� �

for each dimer in the bulk
region of the packing in Fig. 10 for various aspect ratios.
By comparing these results to empirical data for liquid, bcc,
hcp, and fcc phases of Lennard-Jones particles from ref. 54, we
observe that the distributions at large aspect ratios (a 4 1.4)
are quite clearly in a liquid phase where �0.05 o �~q4 o 0.3 and
0 o �~q6 o 0.4. As the aspect ratio decreases, the region
occupied by �~q4 and �~q6 expands and approaches the region
occupied by the bcc/hcp crystal phases indicating the presence
of a large proportion of dimers exhibiting some local transla-
tional order intermediate between a liquid and bcc/hcp
crystalline order.

We also calculate the averages �~q4

 �

, �~q6

 �

and compare their
values with the global order parameters Q4, Q6 for different
aspect ratios, see Fig. 11. While Q4 is close to zero for all aspect
ratios, there is a slight increase in Q6 for ao 1.4 implying some
global ordering at small aspect ratios. In line with the observa-
tions in Fig. 10, we see that both �~q4


 �
and �~q6


 �
are non-zero and

monotonically decreasing as a increases, whereby �~q6

 �

varies

over a larger range than �~q4

 �

. For small aspect ratios, both

Fig. 9 Parametrization of the separation vector (bond vector) rij = rj � ri

connecting the reference particle i (red) with j (yellow). The definitions of
the polar and azimuthal angles, yij and fij, respectively, are indicated.
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averages are considerably larger than the corresponding
averages of a fluid phase, which were determined as �~q4


 �
�

0:06 and �~q6

 �

� 0:2 in ref. 54. Overall, we observe that at large
aspect ratios the packing is more translationally disordered
than at small aspect ratios.

3.3.3 Radial distribution function. We calculate the radial
distribution function g(r) to further examine the translational
correlations between the dimers. The radial distribution

function of the bulk dimers is determined as

gðrÞ ¼

PNb

i¼1
niðrÞj j

NbrVshellðrÞ
(14)

where ni(r) denotes the set of particles in a spherical shell of
width D(r) = 0.025d at a distance r from the centre of dimer i in
the bulk, r is the particle number density, and Vshell(r) is the
volume of the shell. As discussed for the orientational correla-
tion function S2(r), eqn (6), the restriction to a radial coordinate
is only an approximation due to the fact the our packings are
not rotationally invariant. As before the spherical shell can
extend into the boundary region beyond the bulk. We plot g(r)
as a function of r/d for various aspect ratios in Fig. 12. We see
that for small aspect ratios g(r) exhibits the characteristic shape
of sphere packings with a main peak at r/d = 1 and a split
second-peak at r/d E 1.7 and r/d E 2.14,29,32,39,55 For larger
aspect ratios, these sharp peaks broaden and reduce in height.
These results are consistent with the variation of the bond

Fig. 11 The global bond orientational order parameters Q4, Q6 and the
averages �~q4


 �
and �~q6


 �
vs. a. By comparison, �~q4


 �
� 0:06 and �~q6


 �
� 0:2 for

the liquid phase of Lennard-Jones particles.54

Fig. 12 The radial distribution function g(r) of the dimer packings,
eqn (14), for different a. Inset: Enlargement of the regime r/d A [1.125,3].

Fig. 10 The local order parameters �~q4 and �~q6 defined in eqn (13). Every
data point corresponds to a dimer in the bulk region of the packing. The
sketched regions for bcc, hcp, fcc, and liquid phases of Lennard-Jones
particles are taken from ref. 54.
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orientational order parameters with the aspect ratio discussed
above, where elongation in the dimers results in a reduction of
translational correlations.

3.3.4 Bond angle distribution. We measure the probability
for a dimer to have a contact at a particular direction relative
to its long axis. For each dimer pair i, j, we determine the
polar angle yij and the azimuthal angle fij of the bond vector
rij = rj � ri in the reference frame of particle i, see Fig. 9. The
probability density functions (PDFs) of yij and fij are shown for
various aspect ratios in Fig. 13. It can be clearly seen from
Fig. 13 that at small aspect ratios dimers have primarily
contacts at yij = 901. As the aspect ratio increases, the narrow
band around 901 widens and finally almost disappears at a = 2.
For small aspect ratios, there are also symmetric secondary
peaks visible at yij = 301 and yij = 1501, with all contacts
occurring within the range yij A [301,1501] up to a E 1.4.

To get a better insight into the origin of these structures, the
PDFs of yij, fij are further refined according to the contact

configuration type between neighbouring dimers, see Fig. 14–16.
For aspect ratio a = 1.05 (Fig. 14), we see that for Types 2–5 only
configurations with yij E 901 are possible due to the geometric
constraint of these configuration types. The structure observed in
the overall bond diagram at very small aspect ratios (Fig. 13a and
b) is thus primarily due to Type 1 configurations and the peak at
yij E 901. For larger aspect ratios a = amax = 1.4 and a = 2, the
bands for Types 2–4 widen due to the increase in possible relative
orientations that still satisfy the contact constraint (see Fig. 15 and
16). This excludes Type 5 configurations which are available only
in a narrow range of possible polar angles by definition.
As expected, Type 1 configurations with only a single contact
point between neighbours, which thus least constrains the relative
orientations, exhibit a wide band of possible polar angles at all
aspect ratios, see Fig. 14(a), 15(a) and 16(a). Interestingly, this
band still exhibits some structure, with a main peak at yij = 901
and symmetric secondary peaks at yij = 301 and yij = 1501 for both
a = 1.05 and a = 1.4, which disappear for a = 2.

Fig. 13 PDFs of the polar and azimuthal angles yij, fij of the bond vectors rij for all neighbour pairs i, j and different aspect ratios.

Fig. 14 PDFs of the polar and azimuthal angles yij, fij of the bond vectors rij for all neighbour pairs i, j with a specific contact type. Aspect ratio: a = 1.05.
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4 Conclusions

One of the main results of our study is the identification of
structural features that accompany the formation of the peak in
the packing density of jammed dimer particles. In particular,
we find that (i) the coordination number zc; (ii) the fractions of
Types 1–4 contact configurations; and (iii) the nematic order
parameter S undergo rapid changes upon deforming spheres
into dimers with aspect ratios up to a E amax, while further
elongation of the dimers leaves these metrics largely
unchanged. This highlights that the peak in the packing
density of Fig. 3 arises due to microscopic re-arrangements
up to aE amax and subsequent excluded volume effects: the
contact configurations remain statistically unchanged for a 4
amax, but since the particles are longer the packing can sustain
more empty space while being mechanically stable, in line with
the phenomenological description of spherocylinder packings
using the random contact equation, which predicts a decay
fj B 1/a.56

Dimers are a convenient shape model, because their contact
interactions can be easily implemented by overlapping spheres.
As such they represent one of the simplest non-spherical and
concave shapes. However, our analysis shows that such a
particle model does not allow to resolve the contact configura-
tions at very small aspect ratios when interactions are not truly
hard. As such we are not able to probe in our simulations, e.g.,
the analytical predictions from effective medium theory on the
contact number scaling for very small shape deformations.57

The problematic double and cusp contacts should generally
occur for shapes composed of overlapping (soft) spheres as
used, e.g., in the optimization studies of ref. 23 and 24, which

might prevent a detailed analysis of the contact properties of
such simulated packings.

Our investigation highlights the competition between orien-
tational and translational order as a result of elongation. While
the translational order is larger for small aspect ratios, the
elongation induces the dimers to have both more orientation-
ally ordered local structures (with slight global oblate ordering)
and less translational order akin to those of a liquid. Dimers at
large aspect ratios thus exhibit structures that resemble a liquid
crystal in terms of these metrics. Importantly, the structural
features identified here might be specific to the gravitational
packing protocol used and might not occur in dimer packings
obtained with other packing methods such as energy minimi-
zation from a random initial configuration.22 Nevertheless, due
to the simplicity of the protocol, which is also relevant in many
real world scenarios, we expect our results to be significant to
understand the packing density and structural properties of
real granular matter composed of non-spherical particles.

Conflicts of interest
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Appendix
A Calculation of the dimer volume

The overlap volume of the two constituent spheres of a dimer
contains two equal spherical caps which lie above/below the
plane through the cusp points at the dimer’s centre, see Fig. 17.

Fig. 15 PDFs of the polar and azimuthal angles yij, fij of the bond vectors rij for all neighbour pairs i, j with a specific contact type. Aspect ratio: a = amax = 1.4.

Fig. 16 PDFs of the polar and azimuthal angles yij, fij of the bond vectors rij for all neighbour pairs i, j with a specific contact type. Aspect ratio: a = 2.
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The volume of a spherical cap Vcap of height h is found as:

Vcap ¼
1

3
ph2ð3R� hÞ (15)

where R is the sphere radius. The dimer volume Va is then
calculated by subtracting the overlap volume from the sum of

its constituent sphere volumes Vsphere ¼
4

3
pR3 as:

Va = 2Vsphere � 2Vcap (16)

B Algorithm for the identification of double and cusp
contacts

Double and cusp contacts are identified by checking if there is
any overlap between the circle enclosing the cusp on the dimer
surface and a contacting sphere of its neighbouring dimer, see
Fig. 18(a). This circle with centre cc, radius rc and unit normal w
and a sphere with centre cs, radius rs are shown in Fig. 18(b).
The next steps are followed for the identification:

1. The distance dcs = |w�(cc � cs)| between the plane of the
circle and the sphere’s centre is calculated to check if the plane
cuts the sphere or not. If dcs 4 rs then there is no intersection,
so the plane passes above/below the sphere entirely.

2. If there is an intersection, i.e., dcs o rs, it will be between
the original circle and a new one formed where this plane
meets the sphere, with centre cp = cs + dcsw.

3. If dcs = rs then this is the sole point of intersection with the
plane, otherwise a new circle with radius rp occurs as displayed

in Fig. 18(c), where rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs2 � dcs2

p
. Then, the problem has

been reduced to a circle–circle interaction.
4. If |cp � cc| o rc + rp, then there is overlap between the

circle and the sphere, so the contact is identified as a cusp
contact. If there is no overlap, then the contact is either a
double contact or a Type 2 configuration.

5. To distinguish a double and a Type 2 configuration, two
vectors v1 and v2 from the contacting sphere’s centre to the
centres of the constituting spheres of the reference dimer are
determined as illustrated in Fig. 19. The projections of these
two vectors onto the unit normal w of the circle enclosing cusp
are determined and the directions of these projections are
checked. If both of them have the same direction, the contact
is identified as a double contact, otherwise it is regarded as a
Type 2 configuration.

C The order parameter v

In ref. 10 the following order parameter has been introduced to
measure the orientational order of prolate ellipsoids

w ¼ 3

2

1

Nb

XNb

i

cos2 bi �
p
2

� �
� 1

3

( )
¼ 1

Nb

XNb

i

P2 bi �
p
2

� �
(17)

where bi is the angle between the semi-major (long) axis of
particle i and the ẑ-axis (gravity direction). Since the director
identified with the Q-tensor in Section 3.3.1 is also aligned with
the ẑ-axis, the expression for w is the same as that for S, eqn (3),
apart from the shift �p/2 in the argument of P2. The parameter
w of eqn (17) thus takes values in the interval [�2,1]: when
all particles are randomly oriented, w = 0, while if all particles’
long axes are oriented in the horizontal plane normal to the

Fig. 17 The overlap volume of a dimer contains two equal spherical caps
of height h (coloured in yellow).

Fig. 18 Detecting double and cusp contacts. (a) First, it is checked if there
is any overlap between the black circle (dashed) enclosing cusp located on
the yellow dimer’s surface and the contacting sphere of the red dimer.
If there is an overlap between the circle and the sphere, it is identified as a
cusp contact. (b) 3D visualization of the circle and sphere interaction, it is
determined if the plane of the circle cuts the sphere or not. (c) If the plane
of the circle cuts the sphere, it forms a new circle (red) and then it is
checked if there is overlap between the original circle and the new red
circle.

Fig. 19 Two vectors v1 and v2 from the contacting red sphere’s centre to
the centres of the constituting spheres of the yellow dimer are determined.
The projections of these two vectors onto the unit normal w of the circle
enclosing cusp are determined and the directions of these projections are
checked. (a) If both of them have the same direction, it is identified as a
double contact (b) otherwise it is regarded as Type 2 configuration.
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gravity direction w = 1. When the long axes of particles are
oriented along the gravity direction we have w = �2. A plot of

w as a function of a for our dimer packing data is shown
in Fig. 20.

D Mapping between different contact configuration types

We introduce a heuristic method to re-assign configurations
with double and cusp contacts to one of the Types 1, 2, and 4
configurations. The precise mapping depends on the number
and the location of double and cusp contacts as summarized in
Table 3. In general, double contacts are mapped to one contact
point and cusp contacts to two. For Type 3 configurations, no
double or cusp contacts have been found. For Type 5 config-
urations, two cusp contacts do occur, which leave the configu-
ration as Type 5 after the mapping.

With this mapping, we count a smaller number of contact
points and thus the average number of contacts z decreases.
In fact, we obtain a rapid but smooth decrease of z as a - 1,
whereby z approaches the corresponding value of spheres
(Fig. 21). Resolving the contact counting by Types 1–5 confi-
gurations, we see that, as expected, the fraction of Type 1 config-
urations now increases for a o 1.05, while the fractions of Types
2, 4 and 5 configurations decreases in the same regime (Fig. 22).

Fig. 20 The orientational order parameter w vs. a. Values of w are shown
averaged over 10 independent simulation runs for a Z 1.1 (dots), and for a
single run for a o 1.1 (diamonds).

Table 3 Two-dimensional illustrations of configurations with double and cusp contacts. These configurations are re-assigned to Types 1, 2, and 4 as
indicated in the table

Configuration
type

Re-assigned configuration type

Type 1 Type 2 Type 4

Type 2

A double contact is counted as
one contact point: two contact
points are reduced to one.

Type 4

Two overlapping double contacts
are counted as one contact point:
three contact points are reduced
to one.

One double and one cusp contact (cusp 2
overlaps with the red sphere) are counted as
two contact points: three contact points are
reduced to two.

Type 5

Two overlapping double contacts
are counted as one contact point:
four contact points are reduced to
one.

Two distinct double contacts are counted as
two contact points: four contact points are
reduced to two.

One double contact (cusp 1 is not covered by
one of the yellow spheres) and one cusp
contact (cusp 1 overlaps with the other
yellow sphere) are counted as three
contact points: four contact points are
reduced to three.
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In fact, the adjusted counting of contact points leads to sharp
peaks at a E 1.05, i.e., at the aspect ratio at which double and
cusp contacts start to occur, that appear unphysical.
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31 C. Ferreiro-Córdova and J. S. V. Duijneveldt, J. Chem. Eng.
Data, 2014, 59, 3055.

32 J. Zhao, S. Li, R. Zou and A. Yu, Soft Matter, 2012, 8, 1003.
33 L. Meng, Y. Jiao and S. Li, Powder Technol., 2016, 292, 176.
34 S. Sacanna, L. Rossi, A. Wouterse and A. Philipse, J. Phys.:

Condens. Matter, 2007, 19, 376108.
35 Y. Han and M. Kim, Soft Matter, 2012, 8, 9015.
36 S. Plimpton, J. Comput. Phys., 1995, 117, 1.
37 LAMMPS, http://lammps.sandia.gov.
38 L. Silbert, D. Ertas, G. S. Grest, T. Halsey, D. Levine and

S. Plimpton, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2001, 64, 051302.

39 L. Silbert, D. Ertas, G. S. Grest, T. Halsey and D. Levine,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, 65,
031304.

40 A. Baule, R. Mari, L. Bo, L. Portal and H. Makse, Nat. Commun.,
2013, 4, 2194.

41 K. Shiraishi, H. Mizuno and A. Ikeda, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2019, 100, 012606.

42 C. F. Schreck, N. Xu and C. S. O’Hern, Soft Matter, 2010, 6,
2960.
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