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Dissipative Particle Dynamics (DPD) is a powerful mesoscopic modelling technique that is routinely used
to predict complex fluid morphology and structural properties. While its ability to quickly scan the
conformational space is well known, it is unclear if DPD can correctly calculate the viscosity of complex
fluids. In this work, we estimate the viscosity of several unentangled polymer solutions using both the
Einstein and Green—-Kubo formulas. For this purpose, an Einstein relation is derived analogous to the
revised Green—Kubo formula suggested by Jung and Schmid, J. Chem. Phys., 2016, 144, 204104. We
show that the DPD simulations reproduce the dynamical behaviour predicted by the theory irrespectively
of the values of the conservative and friction parameters used and estimate a Schmidt number compati-
ble to that of a fluid system. Moreover, we observe that the Einstein method requires shorter trajectories
to achieve the same statistical accuracy as the Green—-Kubo formula. This work shows that DPD can
confidently be used to calculate the viscosity of complex fluids and that the statistical accuracy of short
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|. Introduction

Dissipative Particle Dynamics (DPD) is a mesoscopic method
widely used to predict the morphology of complex fluids in
both toy models'™ and systematically parametrized models for
specific chemical systems.*” Despite its popularity to quickly
scan large shallow energy surfaces, the ability of DPD to predict
dynamical properties (e.g. viscosity) is more debated since the
methods used to calculate these properties are subject to
significant statistical error.®°

Non-equilibrium simulations, where shear is applied to the
simulation box, are routinely employed in DPD to calculate the
system viscosity with minimal computational cost’ " and have
been tested on both simple fluids®*'* and polymers."*'* How-
ever, it remains unclear whether the equilibrium approaches
for the viscosity calculation can be confidently used with DPD.
This is a crucial point as one wants to calculate the viscosity of
the morphologies resulting from the simulations without per-
turbing them. Due to the soft inter-bead potential typically
employed in DPD models and the high shear rates required by
non-equilibrium methods to be computationally tractable,
the fluid microstructure is easily lost.”> Another drawback of
the non-equilibrium approaches is that the low shear plateau is
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trajectories can be improved by using our revised Einstein formula.

not easily achieved in some polymer cases,'* and the zero-shear
viscosity can only be obtained by extrapolating from the lowest
shear rate values."® Thus, equilibrium techniques are preferred
if the zero-shear viscosity is required.

The equilibrium approach uses the integration of the
pressure autocorrelation function to calculate viscosity.
The major drawback of this approach is the large fluctuations
associated with the pressure tensor elements’ values, leading
to poor accuracy in the resulting viscosity and therefore
requiring very long simulations to ensure good statistics in
the pressure autocorrelation function. The viscosity resulting
from equilibrium simulations is usually calculated using the
Green-Kubo (GK) relation. However, the use of the GK rela-
tion to calculate bulk viscosity using DPD has been under
question since the presence of stochastic force creates extra
noise into the resulting stress tensor.>'* Moreover, in DPD
simulations, uncertainty in the results has also been linked to
the use of the dissipative force, where the error in viscosity
increases with increasing the friction coefficient.® Different
integration algorithms'* and the effect of finite time step on
the dissipative and random terms"® also play a role in the low
statistical accuracy. The latter issue, along with the lack of the
time reversibility invariance of the dissipative force, were
addressed by the recent suggestion of a revised GK formula
for DPD simulations proposed by Ernst and Brito'®'” and
implemented by Jung and Schmid."® In the revised GK expres-
sion, the potential and dissipative forces are integrated, and
the random force contribution to the stress is taken outside of
GK integral as an additional term.
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An additional challenge associated with the equilibrium
method is to decide on the limit of the integration point.
Jung and Schmid'® integrate the autocorrelation function up
to the point where the curve reaches 1% of its initial value and
the remaining values are fitted with a decaying exponential
function. In some studies, the entire viscosity integral is fitted
by an analytical expression and the infinite analytical limit of
this expression is used to obtain the viscosity value.'® Various
analytical expressions for fitting the viscosity integrals have
been suggested in these cases, following the work done with
conventional molecular dynamic simulations.”® Both
approaches contain a certain level of arbitrariness and lack
solid physical reasoning.

An alternative approach for evaluating viscosity is the
Einstein formula initially suggested by Helfand,” whose
equivalence to the GK formula is well known.”* Later, an
intermediate to GK and Einstein formula was suggested to
resolve momentum discontinuity for systems with periodic
boundaries.?*** Furthermore, Espafiol®® recently presented a
generalized Einstein-Helfand form that can be used in the case
of underlying stochastic dynamics. Many researchers have
adopted this method to calculate the viscosity for Lennard-
Jones fluids;**>° however, an application of the Einstein
viscosity formula in the presence of dissipative and stochastic
forces is lacking in the literature to the author’s best knowl-
edge. The importance of testing the validity of Einstein-Hel-
fand relations in DPD simulations has also been pointed out in
the past,"® however, this formalism has not yet been applied to
DPD systems. One of the main advantages of the Einstein
method is that the viscosity can be calculated using the posi-
tions and velocities of the particles that are calculated during
the numerical integration of the equation of motion. In this
way, the unwrapped particles positions and velocities can be
used before the periodic boundary conditions are applied, and
the momentum discontinuity does not constitute any pro-
blems. Moreover, any extra statistical inaccuracy coming from
the pressure tensor is avoided. However, for a generalized
approach where the viscosity is broken down into the various
contributions of the DPD forces, this computational methodol-
ogy cannot be applied as both positions and velocities are
updated using the total force acting on a particle, not the
individual force contributions. Therefore, the GK and Einstein
formulas’ intermediate method is desired in this case.

In this work, we are interested in testing whether DPD
simulations can be reliably used to calculate the viscosity of
complex fluids from equilibrium simulations. To do this, we
simulate various unentangled polymer solutions using a simple
toy DPD polymer model with a range of conservative and
friction parameters. To calculate the viscosity using the
Einstein formalism, we derive an analogous Einstein expres-
sion to the revised GK formula suggested by Jung and
Schmid."® The viscosity values are then compared with scaling
laws from theoretical predictions. Finally, we looked at the
effect of the conservative and friction coefficients on the
viscosity and dynamic behaviour of the polymer systems.
We believe that the long-time relaxation of the polymers make
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them an ideal proxy for structured liquids such as surfactant
solutions, for which DPD has previously been shown to be a
powerful method to reproduce their phase diagram and whose
non-Newtonian viscosity behaviour resembles that of living
polymer solutions.>'

Il. Methodology
A. Simulation details

DPD simulations are run for three different concentrations of
polymers ¢, = {0.3, 0.8, 1.0} and the number of solvent beads in
the system is adjusted so that the total number density is p = 3.
Four different polymer lengths are studied, N = 10, 25, 40, 50,
where N is the number of beads per chain, in a volume of V=L° =
20°. The number of polymer chains for each concentration is
given in Table 1. The FENE (Finitely Extensible Nonlinear
Elastic) potential was used for the bond interactions with the
literature’s parameters.® The simulations are performed in the
canonical ensemble with target thermal energy kg7 = 1.0 where
T is the temperature and kg Boltzmann’s constant. The effect
that the integration algorithm has on properties such as
viscosity been investigated in the past'**> and those studies
were considered here in making the decision of the most
appropriate algorithm to use. Since the results indicate that
the calculated viscosities fall within range of theoretical pre-
dictions and nonequilibrium studies independently on the
algorithm used, the standard and most used Groot-Warren
Velocity Verlet time integration scheme was employed here?? to
solve the equation of motion with a time step At = 0.04. The
production runs are 3 million steps long and 10 independent
runs are used for the viscosity calculations. We accumulate
the pressure tensor every 3At. This value was found to give the
same results as accumulating every 1A¢ whilst reducing the size
of the data to be analysed. All of the simulations are performed
using the DL_MESO software.*"

Although the equations that describe the DPD forces can be
found in the literature,® the conservative, dissipative and
random forces are given here. The form of the conservative
force is

rij
c_ )ag|l—— ez ry<rc
Fjj = ( r

Cc

Oa rij Zrc

2.1)

with r; the distance between 7,/ beads and r, the cut-off radius
beyond which no interactions are taking place. The parameter
a;; is called the conservative coefficient. The vector e;; is the unit

Table 1 Number of polymer chains in the simulation box for each
polymer concentration, ¢, and chain length, N

N =03 ¢ =0.8 ¢ =1.0
10 720 1920 2400
25 288 768 960
40 180 480 600
50 144 384 480
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vector defined by the distance between bead i and bead
J. Similarly, the dissipative force is defined as

2
Ty .
o= v 1=0) (v ey)e, ryp<re
ij re
0, I > re

(2.2)

with v;; the velocity difference vector v; = v; —v;, v; and v; are the
velocities of particles 7 and j respectively and y; is the friction
coefficient.

The stochastic random force compensates for the lost
degrees of freedom after coarse-graining and along with the
dissipative force acts as a thermostat for the system.

Fj = ayw* ("U’)%ei/ (2:3)
where y; is a randomly fluctuating variable that follows
Gaussian statistics with zero mean and unit variance and /At
the square root of the integration timestep. The random weight
function is related to the dissipative weight function through
the relation (2.4).

WP (ry)

(2.4)

I
—
=
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The fluctuation-dissipation theorem relates the y and ¢ para-
meters with the relation ;7 = 29;7#T.*® The DPD beads are
topologically connected using the FENE potential with constant
kg T
kreng = 40.0 (B—z) , T'max = 1.37c and r, = 0.77.
re
2
Fij—r
I_M y Fij <To 4 I'max
F'max '
I'jj 2 Fo + Fmax

(2.5)

! 2
Urene (1) = ~ K FENE/max ln(

o0,

We study six combinations of a;, 7; In all cases the
conservative and friction coefficients between like-particles
are kept constant and are given in Table 2 where the letter P
refers to the polymer beads and S to the solvent beads. We
consider an a thermal solvent where a; = 25, y; = 4.5, two
additional a; (15, 20) values at y; = 4.5 and two additional y;
values (5, 10) at a; = 25. Varying a; and p; corresponds to
modifying the solvent quality and bulk solvent viscosity, respec-
tively. The cut-off radius is kept constant at . = 1 in all the cases
and the mass is equal for all beads (m = 1). These two
quantities, together with the energy kg7 = 1 set the distance,
mass, and energy scales respectively.

Table 2 DPD model parameters used in the current study. P and S stand
for polymer and solvent beads, respectively. The conservative, a; and
dissipative,y;, cross-terms parameters are varied as follows a; = 15, 20, 25
and y; = 4.5, 5, 10. In the polymer melts, the parameter of self-particle type
interactions is varied as y; = 4.5, 5, 10 while a;; = 25 always

agp p S Vep p S
s ay 25 S Vi 4.5
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Since the cut-off radius of the beads (and mass) is the same
regardless of the bead type, the polymer concentration in the
solution is equivalent to its volume (or mass) fraction, ¢. Thus,
a concentration of ¢, = 0.3 is the same as volume fraction
¢ = 0.3. From now on, both notations will be used interchangeably
to express the polymer concentration and/or volume fraction.

B. Structural and dynamic analysis

We calculated some static properties of the polymer chains, i.e.
the end to end distance and radius of gyration, to check the
consistency with previously published data.’> The end-to-end

vector, R_e;, is defined as the vector between the first and last
monomer of a polymer chain and its value indicates whether
the polymer is in an extended or coiled conformation.?”
The Euclidean norm of e defines the end-to-end distance,

. . - .
R... The autocorrelation function of R.. gives a measure of the
equilibration of the system. Usually, an exponential function
of the form of eqn (2.6) is fitted to the autocorrelation function of

the Re to calculate the relaxation time of the polymer chain.®®

—

(R(0) Ra()), = Aexp(~1/x) 26)

where A and 7, are the fitting coefficients, 7, is the relaxation time

of R‘;, and ¢, the time origin (for an autocorrelation function
example, see Fig. S5 in ESIt). We then use 1, to determine the
cutting point for the viscosity integral. More specifically, the final
viscosity values reported below are averaged over the time interval
[21, 37,]."* The autocorrelation function in eqn (2.6) is calculated
using multiple time origins for accuracy.

Another measure of the expansion or contraction of the
polymer chain is the radius of gyration, R,. The R, is calculated
as the average over all time frames and monomers of the
distance between the chain monomers and centre of mass of
the polymer chain. Monitoring R, as a function of the polymer
molecular weight (which in the present case corresponds to the
number of chain beads, N, since m = 1) provides an indication
of the solvent quality.

For the dynamic properties, we calculated the diffusion
coefficient, D from the particles mean squared displacement,
and the Schmidt number, which is a dimensionless number
defined as the ratio between the kinematic viscosity, u, and the
diffusion coefficient,*?

Sc = (2.7)

Sl=

In this work, we use the polymer contribution to the solution
viscosity, i.e., n — ns for the Schmidt number calculation

(eqn (2.8))

Sc n—"ns

=15 (2.8)

where p is the density of the fluid, 5 is the viscosity of the
solution, 7 is the viscosity of the solvent (s = 1.1 in our case,
see Fig. S1, ESIf) and D is the diffusion coefficient of the
polymer chain. When simulating polymer melts, the viscosity
used in eqn (2.8) is the bulk viscosity #. In this work, D was
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calculated through the mean squared displacement of the
chains’ centre of mass rather than the displacement of a single
chain monomer.

C. Viscosity from Green-Kubo formula

Green-Kubo (GK) relations have been extensively applied to
calculate transport coefficients from DPD simulations.**'7:3
The relation that is used for the viscosity calculation is the
integral of the pressure autocorrelation function and has
the following original form:

o0

Mg = kBLTL (Poplto) Paplto + 1), )t (2.9)
with P,g being the pressure tensor’s off-diagonal off element
with «, = x, y, z. The symbol (...), refers to the evaluation of
the autocorrelation function over multiple time origins ¢,.
All the off-diagonal terms of the pressure tensor are used to
reduce the statistical error.’®*° Mondello and Grest have
suggested using all nine pressure tensor components by
adequately weighting the diagonal elements.** Our simulations
are extremely long and using only the three off-diagonal
elements is sufficient to ensure good statistics.

In DPD, the pressure tensor is the sum of four different
contributions: the pressure due to the dissipative force, Py, the
conservative force, Pgﬁ, the random force, Pgﬁ and the kinetic
part of the energy, Pys. In literature,**’ the total pressure
resulting from these four contributions is mainly used with
the GK relation. However, recently it has been shown that, for
high density systems (p > 4), if all the contributions are
included within the integral of eqn (2.9), the resulting viscosity
in the linear regime deviates from the value obtained by using
non-equilibrium approaches.”® Thus, a revised GK formula,
eqn (2.10), was suggested'®'® to achieve results comparable
to non-equilibrium simulations and resolve the time reversi-
bility issues arising from the dissipative force.'®"”

4
GK _  GK
Nap =Moo +k37T

x ‘m<(P5B(zo> = Pi0) (Phptto+0) +P?I3(t°+l)>m>d[

Jo
(2.10)

VoAt po
where GK:——<PR‘>.
oo Zlegr 2\
The random pressure is decorrelating instantly within the
first integration time step A¢ and thus its integral can be

calculated by the basic geometry rule which, with the appro-
. V . . . . GK
priate factors o7 ) gives the instantaneous viscosity 75, in
B

eqn (2.10)."® The instantaneous viscosity term is important for
retrieving viscosity values comparable to non-equilibrium
methods (see for more details ref. 18). The revised relation
(2.10) gives the same viscosity as the non-equilibrium simula-
tions irrespectively to the system density."®

Therefore, due to the extended applicability of eqn (2.10)
over eqn (2.9), the relation (2.10) is used in this work. In the
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literature****

it has been shown that the highest contribution to
the overall pressure autocorrelation function comes from the
bonding, the conservative and kinetic forces. Thus, the pressure
in eqn 2.10 includes all these terms (i.e. Py = P2 + PSy + PXy) and

the total viscosity is computed as follows:

ﬂGK _ ”xy + Nz + ’7)':

3 (2.11)

To estimate the error, we follow the time decomposition
method™® over 10 independent runs. This number of indepen-
dent trajectories is sufficient to ensure a standard deviation
lower than the mean viscosity value. In contrast to ref. 19 the
viscosity cut-off point is decided according to the value of
the relaxation time of the end-to-end vector, and the average
viscosity is averaged over the interval [27,, 37,].

D. Viscosity from Einstein formula

An equivalent expression to the GK relation was derived by
Helfand,”" taking into account the momentum diffusion in the
system. It is an Einstein type relation and has the original form:

Vod

Ny = Jim ma<<6<’> — G(O))2> (2.12)

1 N
with G(t) = —=> ry(t)p;;(t) where r and p are the position and
1% iff P P

i=1

momentum of the particles, respectively and o,f = x, y, z. To
overcome the discontinuity introduced by the periodic bound-
ary conditions, an alternative formula was suggested using the
integral of the pressure tensor P,5.>**® So, eqn (2.12) becomes:

vV d to+1 2
= lim —— — Poy(n)d
Top = A kT dt< (J, p(1) t) r

To make a direct comparison with the revised GK formula of
eqn (2.10), an equivalent Einstein formula is suggested in this
work, which is defined as

(2.13)

v d Vo1
E _p.. Y d/pp  pp Vo L/ RR
M = fhl?oszsz<”“/f T >,0+kBT1,§% AL >,0 (2.14)

where each term 5" is given as in eqn (2.15).

= o) [ ")

A and B are the potential, P, dissipative, D, or random, R,
contributions. If A = B then it is simply the integral squared.>®

The derivation of this formula is straightforward if one starts
from the equivalent relation (2.10). For the derivation, the indexes
off indicating the directions are omitted from the general P(f)
symbol. However, the derivation holds in all directions. In what
follows, the symbol P refers to the total pressure due to the total
force contributions. It is known that the GK and Einstein formulas
are equivalent and related through the relation:

| B V . d to+t 2

lo

(2.15)

(2.16)
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Starting from eqn (2.10), we have

nGK=n§F+;£%JO<(PP00)7PD00»(PPUO+4}+PDUO+0)><ﬂ

o
- (J (PP(ta) PP (t0+1)), di+
0

JOC<PP(IO)PD(IO+I)>IOdI
0

00

—F(PD(tO)PP(t0+t)>todt—J

<PD(tO)PD(zO+z)>[Odt)
0

(2.17)

0

”IGKZVISCK"_I

Keeping only the integral terms, I, and substituting them with the
Einstein form due to eqn (2.16):

1 :2kB Ttlggc

% <(J:+ZPP(t)dz)2> +<<J:+IPD(t)dt) (J:HPP(f)dl»l

([ o) ([, o)) (1, o))

o

174 d [ to+t 2 to+t 2
:mgﬂ;a (J PP(t)dz) - (J PD(z)dz>
fo lo fo lo
v . d [ to+1 , 2 o+t 5 2
“osTrRdl <<J% P<”d9 _(Jh g “yh) ,

i Vv d PP DD
= Jim g (0 =),
(2.18)

The only terms that remain from expression (2.17) are 5** and n°®
since the terms #*° and 4" are equal and opposite and thus
eliminate each other. Following Jung’s et al.'® derivation we define
the Einstein correction term due to the random force as follows,

2
R E_i J~t0+l R
<P >o 2 _At<( fo P o

By multiplying with the volume on each side, we get

vV N At V1 to+1 2
W (PY) S=——— R _.E
) S e () ) o e

Alternatively, and in compliance with the Einstein formalism the
1%, term can be also written as in eqn (2.21),

vV 1
E _ : RR
noc_kB T}E}?);<n >l“

(2.19)

(2.21)
Eqn (2.21) together with eqn (2.18) constitute the revised Einstein

formalism (eqn (2.14)). As for the GK case, the viscosity was
calculated over the time interval [27,, 3t,] where the system was
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well equilibrated, and the statistical accuracy was less than half of
the viscosity value."®

[ll. Results
A. Scaling of static properties

In polymer theory, the structural and dynamical properties of
polymer chains scale with the number of chain monomers, N,
following specific scaling laws. The scaling laws and the scaling
coefficient values depend on two factors: the polymer-polymer
overlap and solvent quality.*” For highly dilute solutions, where
polymer-polymer overlap can be neglected, the quality of the
solvent determines the magnitude of the swelling of the chain
as a function of N and the radius of gyration scales with N as
Ry ~ N’ where v is the Flory exponent. If the solvent effect is
unimportant (i.e., f-conditions) v = 0.5, whilst v & 0.6 indicates
that the interactions between the polymer and solvent beads
are energetically favourable (i.e., good solvent conditions).
Upon increasing the polymer volume fraction, ¢, above an

overlap value, ¢* =

7 , Flory screening sets in, and the
§TE'0Rg3

Flory exponent v again becomes equal to 0.5 for all solvents.
Upon increasing polymer concentration, a change in the dynamic
properties mirrors the scaling of the structural ones. For dilute
solutions, hydrodynamic interactions (HI) are dominant, and the
Zimm model describes the scaling with N of the polymer viscosity
and diffusion coefficient as # oc N**"" and D oc N ¥ respectively.
For highly concentrated solutions and polymer melts, HI are
screened, and the dynamical properties of the system follow a
Rouse model where  oc Nand D oc N '.%7

The crossover between the dilute and concentrated regimes
does not occur suddenly, and for semidilute solutions, the
polymer properties scale with the polymer volume fraction.*®
Here we consider the semidilute and concentrated solutions
where the polymer volume fraction is above the overlap volume
fraction (¢*). As the scaling behaviour is fully developed for
% > 2%, we expect to see scaling exponent coefficients in better
agreement with the theory in this region although the fitting of
the data are reported for 1 < % < 2 in some of our plots.

Jiang and co-workers® have shown that for dilute and
semidilute athermal polymer solutions, DPD models reproduce
the correct scaling of the polymer radius of gyration (Ry) and
end-to-end distance (R..) as a function of the polymer volume
fraction. Here we perform a similar scaling analysis to check
the dependence of the Flory parameter value, v, on the DPD
interaction parameters. As said above, in semidilute solutions,
the scaling of the R, depends on the polymer volume fraction,
¢, as described by eqn (3.1)."

&% (ﬂ)—(Zu—l)/((w—Z)
RgO ¢*

where Ry is the radius of gyration of a polymer chain at infinite
dilution. The values of the rescaled R, as a function of the

(3.1)
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Fig. 1 (left) The radius of gyration as a function of overlapping volume fraction. The circles stand for the polymer concentration ¢, = 0.3 and the squares

the concentration c, = 0.8. The colours represent the different interaction parameters with black for a, = 15, blue for ag, = 20, cyan for ag, = 25 all with
ysp = 4.5, green for as, = 25 and ys, = 5 and red for ag, = 25 and 7, = 10. (right) Mean square radius of gyration as a function of polymer length for the

polymer melt (c, = 1.0) simulations.

rescaled volume fraction for all conservative and dissipative
coefficients at ¢, = 0.3 and 0.8 are presented in Fig. 1 (left).
Fitting the data with eqn (3.1) we obtain a slope of 0.13 for the
two lowest conservative parameters (as, = 15 and 20), and 0.10
for ay, = 25. Regardless of the conservative interaction para-
meters, these values are in agreement with the scaling beha-
viour expected for real chains dissolved in good solvent for
which v = 0.59.”” For a polymer melt, i.e. ¢, = 1.0, for which
excluded volume interactions are thoroughly screened, and
the polymer chains follow the Rouse statistics, R, scales as
R, ~ (N — 1)", where (N — 1) is the number of bonds, with
v=0.5""" (Fig. 1 (right)). In addition, no evident effect of the y;
parameter on R, is observed. Similar results are obtained
calculating the R.. (see ESIT document and Fig. S3, ESIt).

B. Numerical verification of revised Einstein formalism

The two equilibrium viscosity methods are initially tested
on a simple DPD ‘“water” model comprising of monomers

N=25,a__=15,c_ =0.3
5 T T P T p T T
Einstein =
----GK e R

1 L L . . "
100 150 200 250

t [DPD units]

300

interacting through a; = 25 and y; = 4.5 The viscosity for this
model was found to be 1.1 using both methods when integrat-
ing the pressure tensor to ¢ = 0.8 (see ESIT document and Fig.
S1, ESIt). This result agrees with non-equilibrium DPD simula-
tions carried out using Lees-Edwards boundary conditions,
which calculated the zero-shear viscosity to be 1.08.

Next, we proceed with the polymer solutions, where ten
independent runs are employed to evaluate the error. The
average value of the viscosity obtained with both methods is
comparable as these methods are numerically equivalent.”?
However, their standard deviation shows a small but significant
difference as the polymer length (and relaxation time)
increases, with the Einstein method having a clear advantage
over the GK one. To compare the two methods, the relative
Mean Absolute Error (MAE) of the mean viscosity values given
in eqn (3.2) is used.

MAE = < (3.2)

|nGK _ nE} >

max (nSK, nE)

N=25,a =15c_=0.3
sp P

0.35 : - : y ;
Ny ‘\h
0.3 e
NI
0.25 .
5 02 :
he]
z
[ 4

0 L L L L .
100 150 200 250

t [DPD units]

300

Fig. 2 Chain length N = 25 simulated with as, = 15, y5p = 4.5 at concentration ¢, = 0.3: (on the left) viscosity integral calculated with the GK and Einstein
formulas. (on the right) Standard deviation calculated from 10 independent runs. The dashed vertical lines correspond to the interval [27,, 3t,] where the

viscosity was evaluated.
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The symbol (...) indicates average taken over all the polymer
concentrations and interaction parameters. On average, the
viscosity obtained from the Einstein relation had a deviation
of ~2.4% from the value obtained by GK (eqn (2.9)) (Fig. 2 and
3). This difference can be attributed to numerical precision
errors and does not depend on the interaction parameters.
Although the MAE values calculated for both methods show
are similar (see Fig. S2 in ESIY), the standard deviations are
different. The results indicate that the Einstein method had a
lower standard deviation, especially for long polymer chain
lengths. Similarly to the MAE for the mean value of # shown
above, we calculate the difference in standard deviations
using eqn (3.3).
stdgk — stdg

MES = — oK “CE
S max(stdgx, stdg)

(3.3)
The absolute value is omitted from the numerator to check
whether the standard deviation is smaller in GK (negative MES)
or Einstein relation (positive MES). As shown in Fig. 4, for
N =40 and 50, the standard deviation calculated using the Einstein
relation can be, on average, 5-8% smaller than the standard
deviation obtained using the GK formula. The difference in
standard deviations is insignificant for chains with N = 10, 25.
We ascribe this result to the fact that the longer the polymer chain
is, the slower is its dynamics and therefore the longer the DPD
trajectory needs to be to reduce the statistical error. We observe
again that the value of the MES does not depend on the interaction
parameters or the polymer concentrations. Our findings are con-
sistent with the literature which finds that the Einstein relation
overcomes the effect of long temporal tails present in the pressure
autocorrelation function.*

Finally, in terms of computational effort, both methods
scale linearly in time as the trapezoidal rule was used for the
evaluation of the integrals in both cases, which scales with 0(n)
where n is the number of input data points.

C. Scaling of dynamic properties

This section analyses the viscosity values calculated from the
DPD simulations and verifies that our revised Einstein formula

N=50,'7=10,cp=0.8

18

0 . . L .
0 200 400 600 800

t [DPD units]

1000

View Article Online

Paper

04—
03} ]
02} -
01t T e 1

MES
o

04— . . . . . . . .
10 15 20 25 30 35 40 45 50

N

Fig. 4 Mean difference between the standard deviations calculated using
the GK and Einstein relations as a function of the polymer chain lengths.
The average for each polymer length, N, is taken over every polymer
concentration and asp, ysp Values. A negative (positive) MES value means
that the standard deviation of GK is lower (higher) than the Einstein one.
The standard deviations considered for this figure correspond to the time
interval [27,, 37,.

can reproduce the rheological behaviour predicted by polymer
theory. The scaling of the dynamical properties with the poly-
mer molecular weight is used in polymer physics to determine
whether the polymer solutions follow the Rouse or Zimm
theoretical model.>*" The scaling of these quantities can be
found using a linear fit and the value of the exponent is
characteristic of the system’s dynamic behaviour. In this work,
we investigate the scaling of the specific viscosity (1,: = %,
S
where 75 = 1.1 is the solvent viscosity and 7 is the viscosity of the
solution) which is a unitless number that measures the polymer
contribution to the solution viscosity.*”

For semidilute polymer solutions, as with the structural proper-
ties, the scaling behaviour of the viscosity depends on the values of
¢ and ¢*. However, if the data are normalized by the solvent
viscosity (specific viscosity) and plotted against the normalized
volume fractions ¢/¢*, the explicit effect of the polymer length

N=50,y=10,c_=0.8
2.5 r ; P r

std(n)

0.5 1

0
0 200 400 600 800
t [DPD units]

1000

Fig. 3 Same as Fig. 2 but for chain length N = 50 at ag, = 25, y5, = 10 and at concentration ¢, = 0.8.
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Fig. 5 (left) Specific viscosity as a function of reduced molar fraction for polymer concentrations c, = 0.3 and 0.8. The circles stand for the polymer

concentration ¢, = 0.3 and the squares the concentration ¢, = 0.8. The colours represent the different interaction parameters with black for as, = 15, blue
for asp = 20, cyan for agp, = 25, green for y5, = 5 and red for ys, = 10. (right) Bulk viscosity as a function of polymer length for polymer melts.

disappears and all of the data should fall onto a single master
curve.”” Fig. 5 (left) shows that indeed the specific viscosities
calculated from the DPD simulations fit the same master curve.
The scaling of the specific viscosity with the polymer concentration
predicted by the theory is given by the following expression:

(2

and v is the Flory exponent. In athermal and 0-

(3.4)

1
where x = ———
ere Gr=1)

solvent (¥ = 0.5), the exponent x =~ 2.0 and the viscosity is
predicted to grow as the square of the polymer concentration.
In a good solvent where we expect hydrodynamic interactions to be
dominant v = 0.6 and x =~ 1.25.*” We fit the data obtained from

¢

*

the lower reduced molar fraction (1 <

the higher ones (2.5 < % < 3.0) separately. In both cases we

observe that the exponent x is approximately 1.3 regardless of the
interaction parameters, but the data fits the theoretical prediction

< 2.5> simulations and

better when % > 2.0.

Next, we check the scaling of the diffusion coefficients, D.
In the cases of ¢, = 0.3 and 0.8, the diffusion should follow
the relation (3.5) and the value of the exponent, w, indicates the
absence or dominance of HI.

20"
Do \¢* - \¢*

1 indicates 0-solvent while w ~ 0.54 good solvent
conditions and D, refers to the diffusion coefficient at infinite
dilution. In agreement with the viscosity scaling analysis, the
exponents calculated from the values of D are closer to the
predictions for good solvent than 0-solvent conditions (Fig. 6, left).

(3.5)

where w ~

It should be noted that in the cases with 1 < % < 2 both excluded

volume and hydrodynamic interactions must be considered.
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The viscosity data calculated from the melt simulations are
reported in Fig. 5 (right). The friction parameter, y;, affects the
value of the viscosity and the scaling exponents. We find that
the scaling of viscosity is below the expected theoretical pre-
diction, 7 ~ N whilst the diffusion data reported in Fig. 6
(right), follows the Rouse theory, i.e., D ~ N ' the latter despite
the chain lengths of some of models are quite short.>® This
difference among the viscosity and diffusion exponents has
been observed previously for polymer melts modelled with
similar DPD parameters as the ones employed here. In parti-
cular, Posel et al.>* showed that the scaling of viscosity severely
deviates from the scaling of the self-diffusion coefficient as the
FENE spring constant increases. The authors point out that as
the values of kpgng increases, the elastic contributions to the
pressure tensor vanish and the viscous contributions dominate.
It may therefore be expected that the scaling behaviour of the
viscosities of models with high kpgne and relative short chain
lengths (as those simulated here) may depart from the Rouse
theory which considers only elastic contributions. Here we see
the same disagreement between the D,  exponent values, with
a krpne = 40.0 which is higher than the bond stiffness coeffi-
cients studied in the work of Posel et al>® However, the
deviation we observe is not as severe as it is in ref. 53 Calculat-
ing the characteristic ratio, Cy, (Fig. S4 in ESIY) for the melts,
we also observe that, despite the higher kggng used here, our
DPD chains are more flexible than some of those modelled by
Posel et al.>*** probably due to the different rp,,, employed.

D. Schmidt number

The Schmidt numbers (Sc) calculated for the polymer solutions
and melts using eqn (2.7) are reported in Fig. 7. It is known
from the literature® that the Schmidt number for a DPD
representation of an ideal gas (i.e., a; = 0) can be approximated
by eqn (3.6).

2
oy L
2 70875m2kgT
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(left) Normalized diffusion coefficient as a function of reduced molar fraction for polymer concentrations c, = 0.3 and 0.8. The circles stand for

the polymer concentration ¢, = 0.3 and the squares the concentration ¢, = 0.8. The colours represent the different interaction parameters with black
forag, = 15, blue for ag, = 20, cyan for ag, = 25, green for ys, = 5 and red for y¢, = 10. (right) Diffusion coefficient as a function of polymer length calculated

for the polymer melts.

which indicates a parabolic dependence of Sc on the friction
parameter, ;. Although we are not in an ideal gas case, this
parabolic dependence seems to be followed in the present case
as well, and the data points are fitted well by a function of the

(2Ttyijprc4)2
BmszT
fittings, see Fig. S6 in ESIT).

From Fig. 7, it appears evident that Sc depends on both the
interaction parameters and the length of the chain, N. Irrespec-
tively of the value of ), the lowest value of Sc is observed for ¢,
= 0.3 and ay, = 25. For this conservative coefficient, the chains

form 4 + where A, B are fitting coefficients (for the

create “blobs” with a small radius of gyration (R,) which diffuse
faster within the solvent than an extended polymer chain,
leading to a low Sc number. In this work, D refers to the
diffusion of the chain’s centre of mass rather than the diffusion
of a single chain monomer. This definition is expected to
increase the value of Sc compared to using the diffusion of
single chain monomers.>’

Additionally, we can build a master curve for the Schmidt
number plotting its normalized value (Sc/Sc,) against the
reduced polymer molar fraction (Fig. 8). The data can be fitted
with eqn (3.7) which is obtained using the definition the

cp =0.3 cp =0.8 cp =1
350 T T T T T 1 200 T T T T T 3000 T T T T T
- _ O--a =157 =45 _ _
O ap =18,y =45 O ps " ps e 5 op =25 1, =45
: a =204 =a.
o] aps =20, T =45 &} ps Yps o =25, =5
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O 8pe =26, 7 =4 1000 - P o i 2500 k@, =25,7,.=10 S
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A a,= 25, Yos= 10 ; Q VAN a, =25,7,=10 é
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& ¥ 8 eo0f iB 4 & 1500 .
150 - 1 * o
* 400 . 1000 - .
100 8
0 * :
A
200 e 1 500 - _ .
1 1 1 0 1 1 1 0 1 1 1 1
30 40 50 30 40 50 20 30 40 50
N N N

Fig. 7 Schmidt number at different polymer concentrations and interaction parameters. Sc values above the horizontal line are characteristic of liquid

systems, while below this line, the system is in the gaseous regime.
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Schmidt number (eqn (2.7)) and the scaling equations for the
viscosity and diffusion coefficient (eqn (3.4) and (3.5))

2—v
3v—-1
Sc = Scy (%) (3.7)
2—v 2—v
where = 1.83 for good solvents and —— = 3.0 for 0-
3v—1 3v—1

conditions. As observed for the viscosity exponent coefficient,

2
the fitting value of 371/1 ~ 2.0, which suggests that we are

closer to good solvent conditions. The term Sc, here is the

Schmidt number calculated for infinite dilution, ie.,
s

SC() = .
pDo

Finally, the ability of DPD to simulate liquid phases is
evident by the fact that Sc > (10%). which is indicative of a
liquid.">® The ability of DPD to simulate liquids was debated
in the past® mainly because in DPD simulations typically Sc ~
0(1). Here we observe that the order of Sc is increased by a
factor of 10> for the lowest polymer concentration, ¢, = 0.3 and
up to 10° in polymer melts, ¢, = 1. With the correct choice of
conservative interaction parameters, the modelling of high
Schmidt number liquids using DPD is possible.

V. Summary

The performance of Einstein-Helfand formalism was examined
in this work in the presence of stochastic and dissipative forces
and compared with the revised DPD Green Kubo (GK) formula
suggested by Jung and Schmid.'® A revised Einstein-Helfand
formula was proposed for calculating the zero-shear viscosity
from equilibrium DPD simulations and was applied in this
work to calculate the viscosity of polymer solutions of different
concentrations, ¢, = 0.3, 0.8, 1.0 and chain lengths N = 10, 25,
40, 50. In order to numerically verify our revised Einstein

8352 | Soft Matter, 2021,17, 8343-8353
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formalism a comparison with the revised GK formula suggested
by Jung and Schmid'® was carried out, and the transport
properties of the systems were studied.

The viscosities were evaluated over three different conserva-
tive and friction coefficients using the time decomposition
method' to estimate the errors. For both approaches, the
viscosity was calculated as an average in the interval [27,, 37,]
with 7, the chain relaxation time. The average viscosity value
and the standard deviations from Einstein and GK were the
same over 10 independent runs, however a difference of 5-8%
was observed in the standard deviations for chain lengths
N =40, 50 in favour of the Einstein relation, while the average
value of viscosity was the same for both methods. This differ-
ence is attributed to the error propagation in the long chains.
This result indicates that the Einstein relation has higher
statistical accuracy than the Green-Kubo formula at early time
intervals. Additionally, we performed a scaling analysis on the
polymer melts and solutions’ dynamical properties and found
that the scaling laws predicted by the theory are well repro-
duced. Our results indicate that our revised Einstein-Helfand
relation can confidently be used to calculate the zero-shear
viscosity for complex, slow relaxing fluids.
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