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Machine learning real space microstructure
characteristics from scattering data†

Matthew Jones * and Nigel Clarke

Using tools from morphological image analysis, we characterise spinodal decomposition microstructures

by their Minkowski functionals, and search for a correlation between them and data from scattering

experiments. To do this, we employ machine learning in the form of Gaussian process regression on

data derived from numerical simulations of spinodal decomposition in polymer blends. For a range of

microstructures, we analyse the predictions of the Minkowski functionals achieved by four Gaussian

process regression models using the scattering data. Our findings suggest that there is a strong

correlation between the scattering data and the Minkowski functionals.

1 Introduction

De-mixing is one of the most ubiquitous examples of material
self-assembly, occurring frequently in complex fluids and living
systems, as well as being of great importance to the develop-
ment of metallic alloys. It has enabled the development of
multi-phase polymer blends and composites for use in sophis-
ticated applications, including structural aerospace compo-
nents, flexible solar cells, and filtration membranes. Even
though superior functionality is derived from the microstruc-
ture, our understanding of the correlations between micro-
structure characteristics and material properties remains
largely empirical.

One of the major obstacles to developing such correlations
is the challenge of characterising microstructures. Morpholo-
gical image analysis (MIA) has been proposed as a method of
characterising real space images of phase separated
structures.1 Collectively, the key characteristics of such an
image are referred to as Minkowski functionals. There are four
of these in three dimensions: the total volume occupied by one
of the phases, the combined surface area of the interfaces
between the phases, the average curvature of the interfaces
and the connectivity between the two phases. Such measures
have the potential to be invaluable in enhancing our under-
standing of material performance since we can expect that all of
them correlate with functionality. Experimentally, the determi-
nation of the Minkowski functionals of a two-phase blend
requires real space three dimensional images, using techniques
such as Confocal microscopy.2 Three-dimensional mapping of
two-phase materials becomes challenging to obtain when the

microstructures of interest are sub-micron. In contrast, scatter-
ing experiments (light, X-ray or neutron) are powerful techni-
ques which offer the opportunity to undertake real time
measurements at a wide range of length-scales, from nano-
metres to microns, during microstructure evolution3. The chal-
lenge in dealing with scattering data is that although model-
free length scales can often be inferred directly from the peaks,
for example, the extraction of other features is dependent on an
appropriate choice of model to fit the data. This often leads to
ambiguous, model dependent, results, partly as a consequence
of limitations in the measured data introduced by the phase
problem4.

In this paper, we explore the use of machine learning as a
promising route to the model-free extraction of microstructure
characteristics from scattering data. We will focus on the
process of spinodal decomposition in binary polymer blends
as an exemplar, using numerically generated data to test our
approach. Spinodal topologies have generated significant inter-
est over recent years,5–9 as has the application of machine
learning to problems in the field of soft matter10. We use
Gaussian process regression11 to make predictions of the
Minkowski functionals of spinodal decomposition microstruc-
tures from the corresponding scattering data. Based on the
quality of the predictions, we assess whether there is a correla-
tion between the two. We are partly motivated by the well-
established Porod invariant12, which provides an analytical tool
to extract the volume Minkowski measure from scattering.

2 Theory
2.1 Polymeric spinodal decomposition

Spinodal decomposition occurs when a blend becomes
unstable. In this stability regime, there is no energy barrier to
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phase separation. Therefore, infinitesimal fluctuations in com-
position induce a continuous phase transition to an immiscible
state. The time evolution of composition fluctuations during
spinodal decomposition is described by the Cahn–Hilliard
equation,13–16 which, in dimensionless form, can be written as

@fðx; tÞ
@t

¼ r2dFðfðx; tÞÞ
dfðx; tÞ (1)

where f is the volume fraction of one of the components, F is
the total free energy and d/df is a functional derivative.

An experimental quantity of interest in the study of polymer
blends undergoing spinodal decomposition, or any mixtures
for that matter, is the structure factor.17–19 It is directly propor-
tional to the intensity measured in scattering experiments and
provides information about the amplification of composition
fluctuations. The structure factor can be calculated from simu-
lated composition data using a Fourier transform relation19.
For a cubic simulation lattice with L3 lattice sites and coordi-
nates denoted by (x, y, z), the structure factor is

Sðk; tÞ ¼
XL�1
z¼0

XL�1
y¼0

XL�1
x¼0

fðx; y; zÞ exp 2pi
L

xkx þ yky
� �� �" #�����

�����
2

(2)

where k = (kx, ky) is the two-dimensional dimensionless Fourier
wave vector, t is the dimensionless time and f is the volume
fraction of one of the blend components. The signal to noise
ratio of the structure factor can be increased by considering its
radial average since phase separation is isotropic.16,18

In scattering experiments, the scattering intensity can be
used to calculate the volume Minkowski measure Vm via the
following relationship with the Porod invariant12

VðDrÞ2fð1� fÞ ¼ 1

2p2

ð1
q¼0

IðqÞq2dq (3)

where f = Vm/V, I is the scattering intensity, q is the scattering
wavevector, V is the total volume and Dr is the difference in the
scattering length densities of the phases. This relationship does
not hold in cases where the phases are partially mixed or the
interface between them is broad.

2.2 Morphological image analysis

In most applications of MIA, some form of image processing is
required as a prerequisite – this is discussed in Section 3.1.
Once an image has been made amenable to MIA, the procedure
for calculating the Minkowski functionals can be formulated
into a straightforward counting problem1. Firstly, each pixel
needs to be decomposed into its constituent parts: eight
vertices, twelve edges, six faces and a cubic interior. Then the
following counting relations can be employed

Vm = nc, (4a)

Sm = �6nc + 2nf, (4b)

2Bm = 3nc � 2nf + ne, (4c)

wm = �nc + nf � ne + nv (4d)

where Vm is the volume, Sm is the surface area, Bm is the mean
breadth, wm is the connectivity, nc is the number of cubes, nf is
the number of faces, ne is the number of edges and nv is the
number of vertices. The mean breadth is proportional to the
curvature and from here on out the mean breath will be
referred to as the curvature and labelled as Cm.

2.3 Gaussian process regression

Gaussian process regression is a non-parametric, Bayesian
method for solving regression problems11. It is straight forward
to implement20 and gives rise to interpretable models.

To use Gaussian process regression to predict the Min-
kowski functionals of a given microstructure from the corres-
ponding scattering data, we assume that the input x (a vector of
the structure factor at time t) and output y (one of the
Minkowski functionals at time t) are related through a general
function f, such that y = f (x) +e where e is a random noise
term, which is independent of x. It is assumed that the noise
is additive and Gaussian distributed with zero mean and
variance sn

2.
To make predictions for new, previously unseen, inputs x*,

assumptions need to be made about the characteristics of the
function. In Gaussian process regression, this is done by
defining a prior probability distribution over all possible func-
tions. No assumptions are made about the functional form
hence Gaussian process regression is a non-parametric techni-
que. Conditioning the prior on the observations yields a poster-
ior distribution, which contains functions from the prior that
agree with the observations. By plotting the mean of the
functions drawn from the posterior, predictions can be made.
This is Bayesian inference: the probability distribution over
functions changes as more information becomes available.

The prior distribution is constructed using a Gaussian
process. Formally, a Gaussian process is defined as a collection
of random variables, any number of which have a joint Gaus-
sian distribution. Mathematically, a Gaussian process can be
written as

f (x) B GP(m(x), k(x, x0)) (5)

where

m(x) = E[ f (x)] (6a)

k(x, x0) = E[( f (x) � m(x))( f (x0) � m(x’))] (6b)

are the mean and covariance functions of f (x) respectively. The
symbol E denotes the expectation.

The covariance function defines how ‘close’ two inputs are.
Under the assumption that inputs that are close together
correspond to similar values of the output, training inputs that
are close to a previously unseen input should be instructive in
making a prediction at that point. There are many different
covariance functions to choose from. The characteristics of the
functions imposed by the prior are encoded in the covariance
function. Choosing a suitable covariance function can be
achieved using prior knowledge, an automatic search or man-
ual trial and error21. The precise shape of the covariance
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function is determined by the values of its free parameters,
called hyperparameters. The values of the hyperparameters
need to be learnt11.

Once a model corresponding to a particular covariance
function has been trained, i.e. the values of the hyperpara-
meters have been learnt, its performance can be assessed using
previously unseen test inputs and outputs. The predictive
equations for Gaussian process regression are

%f* = m* + K*[K + sn
2I]�1(y � m) (7a)

cov f�ð Þ ¼ K�� � K�½K þ sn2I ��1KT
� (7b)

where %f* is posterior mean function, cov( f*) is the variance,
m = m(X) (m* = m(X*)) is the mean vector formed by aggregating
the values of eqn (6a) at each training (test) point, y is the output
vector formed by aggregating the values of the training outputs,
and K*, K, K** are the covariance matrices formed by evaluating
eqn (6b) element-wise at all pairs of training and test points, all
pairs of training points, or all pairs of test points, respectively.

3 Methodology
3.1 Building the data sets

Spinodal decomposition was simulated in ten three-
dimensional polymer blends with average compositions span-
ning the range 0.05 r �f r 0.5 in increments of D �f = 0.05.
Details on the simulations of spinodal decomposition in three
dimensions are provided in Section 1.1 of the ESI.† In each
simulation, the microstructure of the blend was saved at
integer values of t in the range 0 o t r 39. For each micro-
structure, the radially averaged structure factor was calculated
by taking the radial average of eqn (2). The Minkowski func-
tionals were calculated by applying the procedure outlined in
eqn (4a)–(4d). This was implemented using the algorithm
provided and outlined in ref. 1 for binary images. To make
the microstructures amenable to the algorithm they were first
thresholded such that

fdðx; y; zÞ ¼
1 if fðx; y; zÞ4ft

0 otherwise

�
(8)

where fd is the discretised volume fraction and ft is the
threshold value of the volume fraction, chosen to be ft = 0.5.

A lower-resolution version of the data set described above
was constructed using an approximation of the scattering data.
The scattering data was fit using the universal scaling function
proposed by Furukawa for the late stage of spinodal
decomposition22. The universal scaling function is given by

Sðk; tÞ ¼ A

1þ g
2

� 	 k

km

� �2

g
2
þ k

km

� �2þg (9)

where A is a constant to be fit, g = d + 1 for an off-critical mixture
and g = 2d for a critical mixture with d as the spatial dimension,
and km is the Fourier wave number of the fastest growing
composition fluctuation.

Spinodal decomposition was also simulated in a two-
dimensional polymer blend with average composition �f = 0.5.
Details on the simulation of spinodal decomposition in two
dimensions are provided in Section 1.2 of the ESI.† The micro-
structure of the blend was saved at integer values of t in the
range 0 o t r 75. The structure factor and Minkowski func-
tionals were calculated in the same way as described above,
except for the fact that the two-dimensional equivalent1 of
eqn (4b)–(4d) were used to calculate the Minkowski functionals.

To help visualise the construction of the three-dimensional
data set, Fig. 1 shows the time evolution of the scattering data
for the �f = 0.25 blend. Each curve is made up of 128 points
corresponding to dimensionless Fourier wave numbers in the
range 1 r k r 128. Fig. 2 shows the time evolution of the
normalised Minkowski functionals for the same blend (normal-
isation of the Minkowski functionals is discussed in Section 4).
Each curve in Fig. 1 corresponds to one point in each of the
panels in Fig. 2. This illustrates the dimensionality of the data
set: each one-dimensional output (Minkowski functional) is
associated with a 128-dimensional input (scattering data), and
there are 39 of these pairs for each simulated polymer blend.

The time evolution of the Minkowski functionals in Fig. 2
reveals a couple of interesting findings. Firstly, the volume
plateaus before reaching a value of 0.25, which suggests that
the phases are not pure. Secondly, the plateauing behaviour
observed for each of the Minkowski functionals reveals that the
simulations of spinodal decomposition reached the late-stage
scaling regime, where power-law growth of the phase domains
is observed.

3.2 Implementation of Gaussian process regression

Several investigations were carried out using four different
Gaussian process regression models. Each model consisted of
a zero mean function and one of the squared exponential,

Fig. 1 Example scattering data for the �f = 0.25 polymer blend calculated
using data from numerical simulations of spinodal decomposition. The
radially averaged structure factor is plotted as a function of the dimension-
less Fourier wave number in time increments corresponding to multiples
of t = 3.
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rational quadratic, Matern 5/2 and exponential covariance
functions. Isotropic versions of the covariance functions were
used. Since there are many covariance functions to choose
from, the choice was informed by the fact that these covariance
functions are well documented in the literature11,21 and that
they enforce a range of smoothness assumptions on the
functions f. In other words, the trial and error approach to
choosing the covariance function was adopted. Further details
regarding the covariance functions are provided in Section 2 of
the ESI.†

The models were trained and tested using the data corres-
ponding to each value of �f separately. The training was
implemented using a MATLAB code package called GPML20.
In all but one of the investigations, the data used for training
and testing were randomly determined (where this was not the
case is made clear in Section 4). A caveat to the randomly
determined training data is that the training set always
included data corresponding to the first and last time steps
in the spinodal decomposition simulations. This condition
ensured that all testing was interpolation. To quantify how well
the models were able to predict the values of the Minkowski
functionals for previously unseen scattering data in the test set,
the test root-mean-square fractional error (RMSE) was calcu-
lated. The RMSE is given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i¼1

yi � f̂ ðxiÞ
yi

 !2
vuut (10)

where m is the number of test cases in the test set, yi is the
actual value of the Minkowski functional corresponding to the
ith test case and f̂(xi) is the predicted value for that case. Smaller
values of the RMSE indicate better predictions and, therefore,
better model performance. To check for overfitting, the coeffi-
cient of determination (CoD) was calculated for both the

training and testing data. The CoD for the training data,
subsequently referred to as the training CoD, is given by

CoDtrain ¼ 1�RSS

TSS
¼

Pm
i¼1
ðyi � f̂ ðxiÞÞ2

Pm
i¼1
ðyi � �yÞ2

(11)

where RSS stands for the residual sum of squares, TSS stands
for the total sum of squares and %y is the mean of the true values
yi. Comparable values of the training and testing CoD indicate
that overfitting did not occur in the training of the models. The
choice of the RMSE for quantifying how well the models were
able to predict the Minkowski functionals and the CoD for
checking for overfitting was a matter of preference, motivated
by easing the analysis.

Training and testing were repeated one hundred times to
deal with statistical fluctuations arising from the randomly
determined training sets. Therefore, the median of the RMSE
and CoD were calculated, as well as their interquartile ranges.
The median, rather than the mean, was chosen as the most
suitable measure of the average because the distributions of the
values of the RMSE and CoD were skewed.

4 Results

It was found that Gaussian process regression worked best
when the data corresponding to the early times in spinodal
decomposition, i.e. t o 3, were discarded; the log (base 10) of
the scattering data was used and the Minkowski functionals
were normalised such that1

~Vm ¼
Vm

L3
; ~Sm ¼

Sm

L2N1=3
; ~Cm ¼

Cm

LN2=3
; ~wm ¼

wm
N

(12)

where N is the number of lattice sites with fd = 1. This refined
form of the data sets was used to obtain all of the results in this
section.

To search for a correlation between the scattering data and
the Minkowski functionals, the Gaussian process regression
models were trained and tested on the data set consisting of the
three-dimensional Minkowski functionals and the original (not
approximated) scattering data. Two different sizes of training
sets were used: twenty training points and thirty training
points. The average performance of the models at predicting
the volume are shown in Fig. 3, where the top panel corre-
sponds to the training set size of twenty training points, and the
bottom panel corresponds to the training set size of thirty
training points. The corresponding figures for the other
Minkowski functionals are provided in Section 3.1 of the ESI.†
Together, the figures reveal that if the average performance for
each training set size is not comparable, it is better for the
training set size of thirty training points. The one exception to
this observation is shown in Fig. 3 for �f = 0.5, where the average
performance of the models for the training set size of twenty
training points is better than that for the training set size of
thirty training points. The remainder of the results in this

Fig. 2 The time evolution of the normalised Minkowski functionals for the
�f = 0.25 polymer blend calculated using data from numerical simulations
of spinodal decomposition. From the top left panel clockwise, the volume,
surface area, connectivity and curvature are plotted.
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section were obtained using a training set size of thirty data
points.

The bottom panels of Fig. 3 and the corresponding figures in
the ESI† reveal that the highest levels of model performance
were achieved for predicting the volume, followed by the sur-
face area, curvature and connectivity. In the case of �f = 0.5, a
higher level of model performance was achieved for predicting
the curvature rather than the connectivity. To help visualise the
absolute quality of the predictions that were made by the
models for each Minkowski functional, Fig. 4 shows the best
predictions that were made by the Matern 5/2 model, while
Fig. 5 shows some of the worst predictions that were made by
any of the models. Specifically, Fig. 5 shows the worst predic-
tions made by the exponential model for the connectivity using
the original scattering data (top panel) and the approximated
scattering data (bottom panel), which is discussed later. It

should be noted that the plots of the best predictions achieved
by the squared exponential, rational quadratic and exponential

Fig. 3 The average performance of four Gaussian process regression
models at predicting the volume from the original scattering data. In the
top panel, a training set size of twenty was used. In the bottom panel, a
training set size of thirty was used. It should be noted that the y-axis in the
top panel has been truncated to make it easier to compare to the y-axis in
the bottom panel.

Fig. 4 A comparison between the best predictions made by the Matern
5/2 model for each Minkowski functional and the true values. The predic-
tions were made from the original scattering data.

Fig. 5 A comparison between the worst predictions made by the expo-
nential model for the connectivity and the true values. In the top panel, the
predictions were made from the original scattering data. In the bottom
panel, the predictions were made from the approximated scattering data.
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models are indistinguishable from that of the Matern 5/2
model. A summary of the best models for predicting each
Minkowski functional from the original scattering data is
provided in Section 3.2 of the ESI.† For each Minkowski
functional, the box plots reveal that the values of the RMSE
achieved in each of the one hundred instances of training and
testing were often grouped closely around the median. There
are some exceptions to this observation, however, and when
they are considered with the small numbers of outliers that
were measured, they reveal that there was significant variability
in the performance of the models between some instances of
training and testing.

To check for overfitting, the values of the median of the
training and testing CoD were calculated for each Minkowski
functional using the predictions made by the models with the
best average performance for each value of �f. Table 1 contains
these values for the volume. The table shows that values of the
median of the training and testing CoD are very close to one for
all values of �f, apart from �f = 0.5 where the value of the median
of the training CoD is negative. For the other Minkowski
functionals, the values of the median of the training and testing
CoD are very close to one for all values of �f. These results
suggest that overfitting was only an issue when the models were
trained to predict the volume for �f = 0.5.

To compare the performance of the models achieved using
the original scattering data with a hybrid machine learning/
physics motivated model approach, the Gaussian process
regression models were trained and tested on the data set
consisting of the three-dimensional Minkowski functionals
and the approximated scattering data. In general, the average
performances of the best models trained using the approxi-
mated scattering data were worse than those trained using the
original scattering data. This is exemplified in Fig. 6, which
compares the average performances of the best models at
predicting the surface area when trained using the original
and approximated scattering data.

To test whether the models were capable of making extra-
polative predictions, the Gaussian process regression models
were trained and tested on the data set consisting of the two-

dimensional Minkowski functionals. Specifically, the models
were trained once on the data corresponding to t = 3 through to
t = 32. Then they were tested on their ability to predict the
Minkowski functionals at t = 33 and t = 75. It should be noted
that the Minkowski functionals were normalised using the two-
dimensional equivalent1 of eqn (12). For each Minkowski
functional, the percentage error of the prediction at t = 75
was much greater than that at t = 33. This is exemplified in
Table 2 for the surface area. It should be noted that the
percentage error of the predictions at t = 75 for the curvature
and connectivity were much larger than for the surface area. It
was roughly 36% for the curvature and between 95% and 130%
for the connectivity.

To help place the performance of the Gaussian process
regression models in a wider context, a comparison with a
simple neural network was made. The neural network was
trained and tested on the �f = 0.25 data in the data set
consisting of the three-dimensional Minkowski functionals
and the original scattering data. Full details on the neural
network are provided in Section 4 of the ESI.† The average
performance of the Gaussian process regression models were
significantly better than the neural network. This is shown in
Fig. 7.

Table 1 The average values of the training and testing coefficients of
determination calculated for the volume using the predictions made by the
models with the best average performance for each value of �f from the
original scattering data

�f Model
Median training
CoD

Median testing
CoD

0.05 Mat 5/2 1.00000 1.00000
0.10 RQ 1.00000 0.99472
0.15 RQ 1.00000 0.99992
0.20 SE 1.00000 0.99997
0.25 RQ 1.00000 0.99996
0.30 RQ 1.00000 0.99997
0.35 Mat 5/2 1.00000 0.99998
0.40 Mat 5/2 1.00000 0.99995
0.45 Exp 1.00000 0.99939
0.50 Mat 5/2 1.00000 �1.81642

Fig. 6 A comparison of the average performance of the best models at
predicting the surface area from the original scattering data and the
approximated scattering data.

Table 2 The percentage error of the predictions of the surface area made
by four Gaussian process regression models from the original scattering
data that extrapolate beyond the training data by the smallest (t = 33) and
largest (t = 75) amounts possible

Model
Percentage error of
prediction for t = 33

Percentage error of
prediction for t = 75

SE 0.20 1.56
RQ 0.14 1.35
Mat 5/2 0.03 1.39
Exp 0.09 1.46
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5 Discussion

The procedure for normalising the Minkowski functionals in
eqn (12) is essential to take a model trained on simulated,
dimensionless data and apply it to real experimental data. To
apply the normalisation procedure to simulated data, the value
of L can be calculated from the number of lattice sites used in
the simulation, and the value of N can be calculated by
counting the number of lattice sites with fd = 1. It should be
noted that the value of N is time-dependent. Dimensionless
variables, which provide a link between the simulation and
experimental length and time scales, must be defined before
the normalisation procedure can be applied to experimental
data. Once this has been done, the value of L can be calculated
from the sample and the physical spatial discretisation, and the
value of N can be calculated from eqn (3). It follows that the
normalisation procedure can only be justifiably applied to
experimental data in the case where the assumptions under-
pinning the relationship in eqn (3) hold.

Fig. 3 and the corresponding figures in the ESI† reveal
several interesting findings. These include: for each Minkowski
functional, the average performance of each model was differ-
ent for different values of �f; the highest levels of model
performance were achieved for the volume, followed by the
surface area, curvature and connectivity; and, a clear-cut best
performing model to make predictions of the Minkowski func-
tionals from the scattering data was not identified. We suggest
that each of these findings can be understood using the
concept of regression space – the space in which the Gaussian
process regression models are fit to the Minkowski functionals,
which are functions of the scattering data.

First, we try to explain the finding that, for each Minkowski
functional, the average performance of each model was differ-
ent for different values of �f. Physically, each value of �f
corresponds to a different type of microstructure: small values

of �f correspond to dispersed droplet structures, large values of
�f correspond to co-continuous structures, and intermediate
values of �f correspond to an in-between structure. The different
types of microstructure yield different scattering data and
Minkowski functionals. This affects the distribution of the
Minkowski functionals in regression space. We suggest that
some distributions of the Minkowski functionals are easier to
fit than others, giving rise to variability in the accuracy of the
predictions and, therefore, the performance of the models. This
idea explains the high levels of model performance achieved for
�f = 0.05 and �f = 0.10 for each Minkowski functional. Analysis
of the scattering data and Minkowski functionals reveal that
the Minkowski functionals are closely bunched together in the
regression space, which should make them easier to fit.

Next, we try to explain the finding that the highest levels of
model performance were achieved for the volume, followed by
the surface area, curvature and connectivity. Analysis of the
values of each Minkowski functional reveals that, for all values
of �f, the volume spans the smallest relative range, followed by
the surface area, curvature and connectivity. The relative range
of a set of values is the range of the values divided by their
mean. In terms of regression space, this means that, for each
value of �f, the values of the volume are more closely bunched
than the values of the other Minkowski functionals and, there-
fore, possibly easier to fit.

Now, we try to explain why a clear-cut best performing model
to make predictions of the Minkowski functionals from the
scattering data was not identified. Each of the Minkowski
functionals has a different distribution in space according to
the value of �f. Therefore, we suggest that functions with
different properties (e.g. smoothness, length scale, periodicity
etc.) are required to fit the Minkowski functionals for different
values of �f. In other words, it is unlikely that there will be a
one-size-fits-all model for any of the Minkowski functionals. It
follows that models with low levels of average performance
probably enforce the wrong assumptions on the functions f. For
example, quite often, the exponential model was identified as
the worst-performing. This could be because of the roughness it
enforces on the functions f, which may not be suitable for
fitting the Minkowski functionals.

Overfitting the models in training did not seem to be a
problem. The only significant discrepancy between the values
of the median of the training and testing CoD was obtained for
the volume for �f = 0.5, as is shown in Table 1. The negative
value of the median of the testing CoD reveals that the values of
the volume for �f = 0.5 are better fit by their mean than any of
the models. Indeed, analysis of the values of the volume for
�f = 0.5 showed that they fluctuate around their mean.

Fig. 4 suggests that all of the Minkowski functionals can be
excellently predicted from the scattering data. This is reflected
by the small residuals between the predictions and the ‘predic-
tions = true’ lines. Even for the relatively bad predictions shown
in Fig. 5, the quality of the predictions is quite good. From the
quality of the predictions made by the Gaussian process
regression models, we infer that there is a strong correlation
between the Minkowski functionals and the scattering data.

Fig. 7 The average performance of four different Gaussian process
regression models and a simple neural network at predicting the volume,
surface area, curvature and connectivity from the original scattering data
corresponding to �f = 0.25.
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This inference is supported by the fact that the model perfor-
mance was worse when the models were trained and tested
using the approximated scattering data, as is shown in Fig. 6.

As is often the case with machine learning, the performance of
the models when making interpolative predictions is far better than
when making extrapolative predictions. This is shown in Table 2 for
the surface area. The errors in the table suggest that the models may
be effective at making predictions that extrapolate beyond the
training data up to a certain distance. Comparing the errors at
t = 75 for the surface area with the curvature and connectivity
suggests that the extent beyond the training data for which decent
extrapolative predictions can be made depends on the Minkowski
functional that is being predicted.

From the above discussion, it is clear that Gaussian process
regression is well suited to make predictions of the Minkowski
functionals of a spinodal decomposition microstructure from
the corresponding scattering data. The method is easy to
implement, and it gives rise to interpretable models. It is
interesting to note that the Gaussian process regression models
outperformed a simple neural network, as is shown in Fig. 7. Of
course, a comparison with a more sophisticated neural network
may well yield a different result. However, other, potentially
better, Gaussian process regression models could be developed
based on different covariance functions.

To end this section, we summarise the main limitations of the
method. Firstly, the normalisation procedure can only be applied to
experimental data obtained from blends in which the phases are
pure, and the interface between them is sharp. Secondly, the ability
of the models to make extrapolative predictions is questionable,
although more so for some of the Minkowski functionals than
others. Thirdly, a high degree of variability is observed between the
performance of some of the models. Care should be taken in the
training and testing stage of their development. Fourthly, no clear-
cut, best-performing model was identified, although this presents
an opportunity to experiment with different models. Finally, the
method has not been tested on experimental data. Thin-film
polymer blends could be a good testbed.

6 Conclusion

From the quality of the predictions made by the Gaussian process
regression models, we infer that there is a strong correlation
between the Minkowski functionals, which are excellent measures
to succinctly summarise complex microstructures, and the much
more experimentally accessible scattering data. We employed four
Gaussian process regression models on different data sets of
scattering data and Minkowski functionals to see how well the
latter could be predicted from the former. The data sets were
derived from numerical simulations of spinodal decomposition in
a range of blends with different average compositions �f. The
Gaussian process regression models were trained and tested on
the data corresponding to each value of �f separately.

Several investigations were carried out to assess the method
and find its limitations. We suggest that the concept of regres-
sion space is useful to understand some of the findings.

Our results suggest there is an opportunity for a more
complete characterisation of phase-separated microstructures
using scattering data. We hope that they motivate further work
into the nature of the correlation between the scattering data
and the Minkowski functionals and the development of an
experimental technique for analysing scattering data.
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