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We theoretically investigate the apparent contact angle of drops on liquid infused surfaces as a function
of the relative size of the wetting ridge and the deposited drop. We provide an intuitive geometrical
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interpretation whereby the variation in the apparent contact angle is due to the rotation of the
Neumann triangle at the lubricant—drop—gas contact line. We also derive linear and quadratic correc-
tions to the apparent contact angle as power series expansion in terms of pressure differences between

the lubricant, drop and gas phases. These expressions are much simpler and more compact compared
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1 Introduction

In recent years there has been expanding interest in a novel
class of functional surfaces commonly termed as lubricant
impregnated/liquid infused surfaces (LISs) or slippery liquid
infused porous surfaces (SLIPSs).'™ On LISs, a lubricant is
trapped in between the surface textures by capillary forces, and
its presence can result in numerous advantageous surface
properties, such as self-cleaning, enhanced heat transfer,
anti-fouling and anti-icing. LISs are also considered superior
compared to other liquid repellent surfaces (e.g. classical super-
hydrophobic surfaces) because they are robust against low
surface tension liquids and pressure-induced failures. These
features make LISs potentially transformative for a wide range
of applications,*® including for marine and medical coatings,
product packaging, heat exchangers, water harvesting and drop
microfluidics.

Fundamentally, the presence of the lubricant also distin-
guishes LISs from other wetting scenarios. In classical wetting
phenomena, we typically consider three phases, corresponding
to the solid, drop and gas phases, and there is one three-phase
contact line. In contrast, for an LIS system, there are four
phases to consider: the solid, lubricant, drop and gas phases;
and there can be up to 3 distinct three-phase contact lines: the
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to those previously derived by Semprebon et al. [Soft Matter, 2017, 13, 101-110].

lubricant-gas-solid, lubricant-drop-solid, and lubricant-drop-
gas contact lines. These various three-phase contact lines are
connected at the wetting ridge at the foot of the drop, and this
wetting ridge is key to understanding many static and dynamic
behaviours of drops on LISs. These range from the shape of a
drop on LISs'"*™* and its adhesion to the substrate' to what
dominates the pinning force'® and viscous dissipation®™°
during drop motion.

In this work, we will focus on the suitable measure of
wettability on LISs, a key design parameter for any application
involving LISs. Since the solid-drop-gas contact line is not
present on LISs, the standard Young’s equation for contact
angle cannot be employed. Instead, we recently proposed the
notion of an apparent contact angle,”*>' and demonstrated its
applicability both against simulation"® and experimental'®
data. The simplest case for the apparent angle is in the limit
where the wetting ridge size is negligible compared to the drop.
In this case, the apparent angle relation can be compactly
written as a function of six independent surface tensions due
to the presence of 4 separate phases for LISs, and the solid
surface geometry. When the wetting ridge size is not negligible,
the apparent angle is no longer uniquely defined by material
parameters, but it is also a function of the shape and size of the
wetting ridge. The previous expression derived by Semprebon
et al.,** however, was complex, and more importantly, lacking a
clear physical interpretation.

The key contribution of this work is two-fold. First, we
provide a simple and intuitive geometrical interpretation for
the apparent angle for non-vanishing wetting ridges, which we
attribute to the rotation of the Neumann triangle at the
lubricant-drop-gas contact line. Second, we derive a power
series expansion of the apparent angle for small but non-
vanishing wetting ridges. We validate all the analytical
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expressions quantitatively against numerical results using Sur-
face Evolver.

This paper is organised as follows. In Section 2, we provide
the mathematical derivation for the geometrical interpretation
and an expansion of the apparent contact angle in terms of
pressure differences between the lubricant, drop and gas
phases. In Section 3, we list the essential physical assumptions
and describe the computational method (Surface Evolver) we
employ to calculate drop morphologies on LIS. We then com-
pare the derived analytical expressions against the numerical
results in Section 4. Finally, we summarize our results in
Section 5.

2 Theory

We begin by discussing the limit where the lubricant pressure
is much smaller than the pressure in both the drop and gas
phases. In this regime the size of the wetting ridge is negligible
compared to the size of the drop, and therefore we denote it as
the vanishing wetting ridge limit. Consequently, we define
effective gas-solid and drop-solid surface tensions to capture
the fact that the substrate can be treated as a composite of solid
and lubricant. For simplicity, we do not resolve the details of
the composite surface. Instead, we simply assume that this
gives rise to an effective average surface tension yiﬁf = foVus +
(1 = fo)vwo, With f; the fraction of the projected solid area
exposed to the drop or gas phase. Consequently, the apparent
angle 03,,, of a liquid drop on LISs (note, we use the superscript
S to denote this regime) can be deduced from the force balance
eff eff

9 — 1
S /gs Pws
€08 Oy, = ——

- 1)

Here y,; is the surface tension between phases o and f (drop w,
lubricant o and gas g). Note that if the lubricant is encapsulat-
ing the drop, recent experimental results®>* suggest that the
suitable effective drop-gas surface tension can be taken as the
sum of drop-lubricant and lubricant-gas surface tensions y{i,fé =

Jwo + Yog. Substituting the expressions for 7% to eqn (1) leads to

’y L)
S _ ‘og CB _ Yow CB
08 Oy, = @cos g — @cos 0w > 2

where the angle 057 models the wetting of the composite
substrate in the spirit of the Cassie-Baxter model

cos0Sy = fycos 0y, + (1 — f). (3)

Here, 0,, is defined as the Young’s contact angle of the
lubricant (o) on the solid surface s surrounded by the fluid «
phase, defined via the standard relation

cos 600( — Ysa — Vso (4)

’YOO(

With increasing lubricant pressure, more lubricant flows
into the wetting ridge, and we have to account for the size and
shape of the ridge. Following Semprebon et al.,>" we can derive
the following relation for the height of the wetting ridge
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Fig. 1 Sketch of the geometry of the lubricant ridge showing all curvature
radii (rwg. row and rog), the base radius of the lubricant—drop—gas contact
line (r), and the height of the wetting ridge (h). The inset illustrates the
definition of the Neumann angles (0., 05 and 0,) and the geometrical
angles 4, Y, and ¥z employed in eqn (10), (11) and (12), respectively.

Oapp)] = Tog[cos 055 + cos(app + 0g)]-

)

h = row[cos 05 — cos(0y —

In the above relation, both the lubricant-gas (og) and
lubricant-drop (ow) interfaces are assumed to be represented
by circular arcs with radii 7oy and ry, respectively. This is valid
when the in-plane curvature is much larger compared to the
curvature in the azimuthal direction. Throughout this paper,
this assumption is made in several places and we will system-
atically quantify its accuracy using comparisons against our
numerical results in Section 4. In eqn (5), we have also dropped
the superscript for the apparent angle to denote that the
wetting ridge size is no longer negligible and used the Neu-
mann angles, 0y, 0,, and 0, (0 + 0, + 0, = 2), as illustrated in
Fig. 1. The Neumann angles are related to the surface tensions
via the relation

sinfg sinf, sin0y

Yow

(6)

Yug Yog

Next, we consider the cyclic relation for the drop, lubricant
and gas pressures given by

APyyg = APy + APy, (7)

Let us discuss the 2D case first, for which the azimuthal
curvature is absent and all the fluid-fluid interfaces are exactly
represented by circular arcs. In this case we set AP, = Yyg/Twg,
APoy = —)og/Tog aNd APyq = PyolTo to Write

Twe _ Yow _ Tog (8)

b
Tow  Tog

which, with a straightforward manipulation, leads to
rﬁ;&(l_lAPWg). (9]
Tow  Vow

a APy
Note that we have introduced the parameter o that takes a value
of =1 in 2D.

This journal is © The Royal Society of Chemistry 2021
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For the 3D case, following the geometry in Fig. 1, the Laplace
pressures at the lubricant-drop-gas contact line are

2y 1 sin
Ang = = = ng (‘_ + lpl>7 (10)
rwg ’Wg r
1 sin
APWO = Ywo <_ + i): (11)
Fow r
1 sin
APog = Ywo (77 + i)v (12)
Tog 7

where {; = 0,5, and we have introduced the radius of the
lubricant-drop-gas contact line r = ry,siny/,. Eqn (10) is exact
as the drop-gas interface retains the shape of a spherical cap,
while eqn (11) and (12) are approximated where we assume that
the in-plane shape of the interfaces can be described as circular
arcs. In general, the lubricant-drop and lubricant-gas inter-
faces will assume more complex Delaunay surfaces, with a non-
constant curvature along the radial cross section. Summing the
azimuthal contributions (second terms on the right hand side)
in all three equations, we obtain
L(ng S o S 4 g sings) =0, (13)

where the terms in brackets vanish as they represent the force
balance in the vertical direction at the triple point. Substituting
this cancellation to the pressure cyclic relation, we find the
same relation as in eqn (8) and (9), except that now o = 2 for the
3D case. As such, both the 2D and 3D cases can be treated in
the same way from this point on. Introducing eqn (9) into
eqn (5) we obtain

sin 0, [cos 0SB — cos(Oy — Oapp)] (1
sin 0y, [cos 05; + 08 (Oapp + Qg)}

1 APy,
- = . 14
o APog) (14)

2.1 Geometric interpretation

In this subsection, we can recast eqn (14) to provide a simple
geometric interpretation for the apparent contact angle.
Expanding eqn (14), it can be shown that it leads to

— [sin Oy cos Oy, + sin Oy, cos O | cOS Oypp
Cw CB CB
= sin 0y cos 05, — sin 0, cos Oy

1AP,,
APy’

—sin Oy, [cos OOCgB + 08 (Oapp + Og)]

Furthermore, recognising that sinfgcos 0, + sin0,cos0, =
sin(0g + Oy) = —sin 0,, sin 0y/Sin 0y = Yog/Ywe, SiN Og/Sin Oy = yow/
Ywgy and (sin Oy/sin 0p) X (APyg/aAPyg) = —Tog/lwg, the above
equation can be simplified to

08 Ogpp = Yo# cos 0(()? - ?ﬂcos 0s®
we we
(16)
-
+ ”Lg[cos 05y + cos(Oapp + Hg)} .

wg
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Fig. 2 Geometric illustration of the rotation of the apparent angle on LIS
by Alapp. The apparent angles 03, and 0,p, represent the vanishing and
finite wetting ridge cases.

The first two terms on the right hand side are in fact our
definition for cos 0, in eqn (2). The numerator of the final
term is nothing else than eqn (5) and the final term can be
simplified to 4/ry,. Therefore

17)

_ S h
08 bapp = c0s Oy, + =
wg

and

h h
Ay = Oy — 05~ — =
app app P e SinOgpp 1

(18)

This states that, with increasing wetting ridge height, the
Neumann triangle and hence the apparent angle rotates from
the value at the vanishing ridge case by the ratio between the
ridge height and the radius of the lubricant-drop-gas contact
line, A/r. Thus, increasing the wetting ridge height reduces the
apparent contact angle. This rotation is illustrated geometri-
cally in Fig. 2.

2.2 Power series expansion

While the geometric interpretation in eqn (17) and (18) are
simple, intuitive and self-consistent, they are not a priori
predictive because we know neither the apparent angle nor
the wetting ridge height. However, eqn (14) can also be recast in
a quadratic equation for cos 0,p,, given by

AC 4+ BV A2+ B2 — C?

€08 Oypp = yEys , (19)
where

. 1APy,\ .

A = sin 6y cos O, + (1 — ;AP(;) sin Oy, cos Oy, (20)
. . 1 APy

B = sin 0, sin HW& APO:’ (21)

. 1AP, .
C = sin 0y cos 0P — (1 - &APO:) sin 6, cos 6. (22)

In this form, once the pressure ratio AP,,/AP,, is known, the
apparent contact angle can be computed, since all the other
quantities correspond to material parameters. Eqn (19) is exact

Soft Matter, 2021,17, 9553-9559 | 9555
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in 2D, but it is only an approximation in 3D due to the circular
arc approximations for the in-plane curvatures of the lubricant-
drop and lubricant-gas interfaces.

To provide additional insights, we can further expand
eqn (19) using the following small parameter

_ _VoglAPyg  Tog

a Ywa 6 APog Fwg (23)
Performing the expansion,
A = —sin0,[1 — &cos O], (24)
B = —¢sin0,sin 0, (25)
C = —sin0,[cos 0§PP + &cos 0‘5;], (26)

and we find that

08 Oapp = €08 Oy, + [€OS(Oapp + Og) + cOs oz ]E + O(E?).
(27)

The linear order term of this expansion is more compact
compared to that presented by Semprebon et al.>' It is also
pleasing to see that the geometric interpretation in eqn (17)
reduces to eqn (27) in the limit of small ridges, since Onpp, —
Oapp- Furthermore, for completeness, we can also carry out the
expansion to quadratic order and the result reads

€08 Opp = €08 Oqpp + A1E + A3E% + O(E) (28)
where
Ay = [cos(05pp + Og) + cos Oz ], (29)
sin(03 40
Ay = [cos <9§pp + 0g> + cos HggB}w (30)

- S
sin Happ

3 Numerical implementation

To numerically compute the equilibrium shapes of the drop
and lubricant interfaces, we employ a finite element approach
based on the free software Surface Evolver’” to minimise the
total energy of the system that is given by

E=> 754up+ > VusAus + APygViy + APoy V.
a#f o

(31)

Here 7,4 and A, denote the surface tension and interfacial area
between any two fluid phases (water w, lubricant o and gas g),
while 7,5 and A,s correspond to those between any fluid phase «
and the solid surface. In this work, we use volume ensembles
for the drop and lubricant phases such that the pressure
differences, AP,,, and AP, act as Lagrange multipliers to the
volume of the liquid drop V,, and the lubricant wetting ridge V.

Both 2D and rotationally symmetric 3D systems are mod-
elled by representing the interfaces through geometric ele-
ments such as nodes and edges. To optimise the convergence
the algorithm, at the beginning of the calculation and whenever
one control parameter is modified, we typically coarsen the
mesh to allow efficient displacement of the geometric
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elements. This is then followed by a progressive mesh refine-
ment to obtain more accurate shapes. For a minimised configu-
ration, we then extract all the relevant geometric parameters,
including the apparent angle at the lubricant-drop-gas contact,
the curvature radii of various fluid—fluid interfaces, the ridge
height, and the Laplace pressures. Different values of pressure
ratios are obtained by varying the target value for the lubricant
volume constraint.

4 Validation

We now provide a validation of the model for the 2D case and a
benchmark for the accuracy of the approximations in the 3D
case for a wide range of surface tension parameters.

We begin by assessing the accuracy of the circular arc
approximation for the in-plane lubricant-drop and lubricant-
gas curvatures as we vary the wetting ridge height. The ridge
height depends on the pressure ratio —AP,o/AP,.. In Fig. 3 we
report a comparison between two different estimates for the
curvature radii when the following parameters are used: 0, =
40°, 0,, = 0, =160°, and 05y = 0Gg = 15°. The first estimate fits the
numerically computed shapes of the interfaces with circular
arcs using three points (the two end points and the middle
point of the interfaces). The second estimate is obtained by
inverting the Laplace pressures, which can be extracted from

LOF o Tog (fit o
a) | o rue &
0.8F [ Tog (pressure) al
[ Twg (pressure) [
E
=
©
e]
04 o 70 (i ' o o
b) | o rug v - .
03 [ Tog (pressure) .
- O
[] "wg (pressure) 0O L
[ ]
[ ]

radius

o
e
e
e

0.0 0.5

1.0 15 2.0 25

~APyg/APog

Fig. 3 The lubricant—drop and lubricant—gas curvature radii as functions
of the pressure ratios —AP,,g/APoq4 for the 2D (panel a) and 3D (panel b)
cases. Two measures for the curvature radii are presented, by inverting the
Laplace pressures measured and through fitting the interface shapes with
circular arcs. The parameters used here are 0, = 40°, 0,, = 160°, 0y = 160°,
058 = 15° and 05§ = 15°.

This journal is © The Royal Society of Chemistry 2021
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Surface Evolver as the Lagrange multipliers of the volume
constraints enforced. Since we have constrained the drop and
lubricant volumes, the corresponding Lagrange multipliers
describe the Laplace pressures of the drop-gas and lubricant-
gas interfaces. Hence, rog = —)og/APog and 7oy = Yow/(APywg —
AP,;). As can be observed in Fig. 3, for the 2D case the two
estimates coincide with high accuracy. For the 3D case, assum-
ing the fit (first method) estimate represents a more accurate
representation of the in-plane curvature, we can take its dis-
crepancy with the pressure (second method) estimate to eval-
uate the effects of neglecting the azimuthal curvatures. The
pressure approach overestimates the in-plane radius of curva-
ture for the lubricant-gas interface, and underestimates the in-
plane curvature for the lubricant-water interface. Overall, the
circular arc approximation is a better assumption for the
lubricant-drop than for the lubricant-gas interface. As
expected, the different estimates converge as —APy,/AP,, goes
to zero, when we approach the vanishing wetting ridge limit.
To further assess the impact of the radius of curvature
estimates for the prediction of the apparent contact angles,
we report in Fig. 4 the comparison between the measured
lubricant ridge height %, and those calculated based on
eqn (5), where r,, and r,g are either fitted from the interface
profiles or estimated via the Laplace pressures. For the 2D case,
the correspondence is accurate in both cases, while for the 3D
case, the values calculated using fitted r,,, and r,, agree better
than those from Laplace pressures. This is a consequence of

0.35
a)
0.30
0.25
~2 0.20
0.15 — h(measured)
0.10 ® } (radii from fit)
0.05 [ h(radii from pressure)
0.00|
0.0 0.5 1.0 15
—APyg /APOg
T T [J
0.15]
0.10
=
— h(measured)
0.05 ® (radii from fit)
O h(radii from pressure)
0.00E. 2 . N .
0.0 0.5 1.0 1.5 2.0 25

—APyg[APog

Fig. 4 Comparison of the measured lubricant ridge h with those com-
puted according to eqgn (5). The radii ro,, and roq can be obtained by fitting
the interfaces with circular arcs or by inverting the Laplace pressures, as
shown in Fig. 3. The parameters used here are 0, = 40°, 0,, = 160°, 0y =
160°, 0S8 = 15° and 058 = 15°. Panel (a) 2D; panel (b) 3D.
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neglecting the azimuthal curvature in 3D that becomes more
important for larger —APyy/AP,.

We now focus our attention on the accuracy of the various
apparent contact angle descriptions as a function of the pres-
sure ratio —APy/AP,,. We first consider the symmetric sce-
nario in Fig. 5, setting 0., = 0, and varying 0, = 10°, 0, = 30° and
0, = 60°. The two wetting angles are 0SB = 05;; = 15°. For these
parameters the apparent contact angle in the limit of the
vanishing ridge is the same, ngp = 90°, but its variation with
—AP,,/AP,, depends on the value of 6,. We can observe that, in
2D, the values of 4 cos 0,p;, coincide exactly with the measure of
h/ryg for the whole range of pressures. Furthermore, these data
points are also accurately captured by the continuous lines
representing eqn (19). In 3D, we observe that A/r,, system-
atically underestimates the measured values of 4 cos Happ, while
eqn (19) overestimates it. We can attribute the discrepancy
between eqn (17) (the geometric interpretation) and eqn (19) to
the different ways in which the azimuthal curvature affects the
model assumptions. In both models, neglecting azimuthal
curvature influences the accuracy of the pressure ratio as the
control parameter in eqn (14). In addition, for the geometric
interpretation, the azimuthal curvature assumption also enters
the determination of the wetting ridge height £, as analysed in
Fig. 4. In the limit of vanishing pressure ratios, all curves

05
a) i
0.4 /', /'I /
II, Ill
o /
203 ! o Acos,pp (0o =10°)
> o Acosfapp (00 =30°)
S 02 ® AcosBapp (6o =60°)
= O/ (00 = 10°)
01 O h/Twg (60 =30°)
Oh/rwg (6 =60°)
0.0
0 1 2 3 4 5
—APyg[APog
0.5} ¢ Acos gapp (90 _ 100) // G

b) o AcosOapp (00=30°) 7
0.4} * AcosOapp (6o = 60°)

O h/ng (90 = 100)

O h/ryg (60 =30°)

Oh/rwg (6 =60°)

0 1 2 3 4 5
—APyg/APog

Fig. 5 Deviation of the apparent contact angle from the vanishing menis-
cus ridge value as a function of the pressure ratio —AP,,q/APoq for the
symmetric scenario where 0,, = 0g, and 0S8 = HggB = 15° Here, three values
of lubricant Neumann angle are presented, corresponding to 0, = 10°, 0, =
30° and 0, = 60°. The filled points are the measured 4 cos 0, the void
squares are the measured h/r.g; the dashed lines represent the linear
expansion in eqgn (27); and the continuous lines correspond to egn (19).
Panel (a) 2D; panel (b) 3D.
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Fig. 6 The linear slopes of cosf,,, (filled circles) and h/r,g (empty
squares) vs. —AP,,g/APoq as we vary .. The rest of the simulation para-
meters are the same as in Fig. 5. The dashed lines represent the linear
equation derived in eqn (27). Panel (a) 2D; panel (b) 3D.
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Fig.7 The linear slopes of cosf.p, (filled circles) and h/r,g (empty
squares) vs. —AP,q/APoq as we vary 6,,. The other parameters used here
are 0, = 40° and 0S8 = 058 = 15°. The dashed lines represent the linear
equation derived in eqn (27). Panel (a) 2D; panel (b) 3D.
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converge. Any small deviation observed as —APyy/AP,; — 0
between the measured cos0,,, and the analytical models is
mainly due to numerical limitations and inaccuracies. As the
wetting ridge becomes smaller, we require increasingly finer
refinements in Surface Evolver. It is worth noting that the
measured and predicted contact angles are in agreement to
within a degree in this limit.

Focussing on the small but non-zero —APy,/AP,, limit, we can
measure the slopes of cos0,,, and h/ryg vs. —AP.e/AP,, and
compare these against the prediction from the linear expansion in
eqn (27). Fig. 6 shows the results for a wide range of 0,. All the other
parameters are the same as in Fig. 5. Overall, the agreement is
excellent both in 2D and 3D with the trends as a function of 0,
clearly reproduced. We do find that the discrepancy is larger in 3D
because the 3D model is more complex and hence the energy
minimization is more difficult to converge in Surface Evolver.

To complete our validation we also consider asymmetric
cases, where we fix the lubricant Neumann angle at 0, = 40° and
vary the drop (0,) and gas (0;) Neumann angles. The wetting
angles are again set constant at Ogg = 05 = 15°. In this case
cos 0y, varies. As before, we compute the linear slopes of
€08 Oapp and h/ryg vS. —APye/AP,, for various 0,. Here, the
physically meaningful values of 0, are restricted to the interval
[180° — 0,,180°]. As shown in Fig. 7, the maxima in the slopes
occur when 0, = 0,4, and they symmetrically decrease and go to
zero as we approach the limits of the physical interval for 0,,. As
in the symmetric scenario in Fig. 6, the agreement between the
measured and predicted slopes is excellent. Minor deviations
can be seen for the 2D results, which we can attribute to the
inaccuracies in our fitting procedures. The larger deviations in
3D are again due to the more difficult convergence of the model
in Surface Evolver. It is worth emphasising that, when compar-
ing the values of the contact angles, the predicted and mea-
sured values all agree within a degree.

5 Conclusions

In this work we have provided several new insights on the effect
of finite wetting ridge size on the apparent contact angle of
drops on an LIS. Importantly, we have deduced a simple and
intuitive geometrical interpretation that the reduction of the
apparent angle with increasing ridge size is due to the rotation
of the Neumann triangle at the lubricant-drop-gas contact line.
This rotation is given by the ratio of the ridge height and the
lubricant-drop-gas contact line radius. Comparing the analy-
tical predictions against numerical data from Surface Evolver,
we find that this interpretation is highly accurate in 2D across
the whole range of ridge height, while in 3D this approximation
becomes poorer with increasing ridge height. The latter is due
to our assumption to ignore the azimuthal curvature for the
lubricant-drop and lubricant-gas interfaces. In addition, we
have also performed power series expansion of the apparent
angle in terms of a small parameter ¢ (see eqn (27)) that is
related to the pressure differences between the lubricant, drop
and gas phases. The expressions derived here are much

This journal is © The Royal Society of Chemistry 2021
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simpler, and yet equally accurate, compared to those previously
described in the literature.

Our theory here focuses on cases where no cloaking occurs.
An important direction for future study is to extend the model
to include scenarios where there is cloaking, both as the
lubricant encapsulates the drop and/or the solid corrugations.
The former happens when yyg > Ywo + Yog, While the latter takes
place if the lubricant is perfectly wetting the solid surface. For
these scenarios, to first approximation, our previous works in
ref. 9, 14 and 23 suggest that the apparent contact angles in the
vanishing ridge limit are in reasonably good agreement with
our model (see eqn (2)) if (i) we replace the drop-gas surface
tension by an effective tension corresponding to the sum of
drop-lubricant and lubricant-gas tensions, and (ii) we use
05y = Oow = 0°. Nonetheless, the possible roles of molecular
interactions between the drop-lubricant and lubricant-gas
interfaces, as well as between drop-lubricant and lubricant-
solid interfaces, remain an open question, especially beyond
the vanishing ridge limit. We also hope that this work will inspire
future experimental investigations to validate the changes in the
measured apparent contact angle, and its associated rotation of
the Neumann triangle, for various ridge heights.
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