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Migration of nanoparticles across a
polymer–polymer interface: theory and simulation

Nigel Gibbions, *a Nigel Clarkea and Didier R. Long b

We proposed recently a theoretical description for hydrodynamic flows in inhomogeneous liquids in the

vicinity of solid interfaces, consistent with current theoretical descriptions of the thermodynamical

equilibrium of liquids in the vicinity of solid surfaces and with the Onsager formalism for linear response

theory in out-of-equilibrium liquids. We showed that these equations allow for describing diffusio-osmosis

along a capillary and also wetting/dewetting dynamics of liquids on a solid substrate. We now apply

this physical model to the wetting/dewetting dynamics of nano-particles in polymer blends, showing

how they reach equilibrium at the interface between two liquids at rest and how they migrate from the

non-preferred polymer to the preferred one under applied flow.

1 Introduction

The behaviour of liquids in contact with solids is a field rich in
theoretical interest and practical applications. These applications
include the formulation of paints, the design of car windscreens,
and the manufacture of contact lens solutions.1,2 Theoretical,
computational, and experimental studies have explored the static
equilibrium properties of droplets on solid substrates, and the
dynamics of both wetting and dewetting. Such studies have
examined the effects of physical defects or chemical impurities
in the substrate on wetting behaviour,3,4 and the wetting
properties of thin rubber films where dissipation due to visco-
elastic effects may significantly modify the dynamics.5

The starting point for any discussion of wetting is the
equilibrium state of a liquid droplet on an ideal solid substrate,
as depicted in Fig. 1. At equilibrium, the balance of forces in
the x-direction leads to Young’s equation:

gS = gSL + gL cos ye (1)

where gS, gL, and gSL are the surface tensions of the solid, liquid and
the solid–liquid interface respectively, and ye is the equilibrium
contact angle. It is common to categorise solid–liquid interfaces
according to their spreading parameter, S, defined as:

S = gS � (gSL + gL) (2)

Physically, the spreading parameter represents the surface
energy difference, per unit area, between a dry substrate and
the same substrate covered with a thin film of liquid. If S 4 0,

the liquid spreads without limit (in principle), forming a thin
film of microscopic thickness, and total wetting is said to occur.
If S o 0 partial wetting occurs, and the liquid takes the form of
a droplet on the solid, with an equilibrium contact angle
determined by:

S = gL(cos ye � 1) (3)

Fig. 2 illustrates the various regimes, from total wetting,
through partial wetting, to no wetting, which can occur on
extremely hydrophobic surfaces. On scales smaller than the
so-called capillary length, the effect of gravity is negligible.
This length scale is typically of order a few millimetres.2

The physical picture represented in Fig. 1 results from a
virtual work principle applied by moving the contact line and
considering the variation of the total interfacial energy considered
at the coarse-grained level of surface tension description.1 It is a
simplification since it ignores the effects of non-localised forces
(e.g. van der Waals) in the vicinity of the interface. Although
the range of these forces is small (up to tens of nanometres),
their finite range is essential for describing diffusio-osmosis and
wetting dynamics.6 The interfacial forces can be accounted for by
body forces in the Stokes equations localized in the vicinity of
interfaces. In ref. 6 we introduce an interaction potential G(c,r)
localized in the vicinity of the solid interface, and show how the
non-localised forces this gives rise to may be integrated over a
region of size a in the z direction (perpendicular to the surface),
and x in the x direction (parallel to the surface) to recover the net
force gS� gSL, which acts close to the surface. In this integration, a
represents the length scale over which the interfacial potential
acts, x represents the interfacial width of the droplet, and we
approximate the concentration profile at the droplet boundary to
be a delta function. The net force due to the interaction potential,
gS � gSL, combined with the �gL cosye term from the surface
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tension of the liquid (contained in the body forces of the
generalized Stokes equations), recovers the net force at the
triple line, as represented in Young’s equation. Instead of Fig. 1
where surface forces act at a well-define triple line, a more
realistic physical description is that of Fig. 3, where surface
forces are shown as acting over a finite region in the vicinity of a
notional triple line.

When a liquid droplet is placed on a solid substrate, it is
usually far from thermodynamic and mechanical equilibrium,
and will relax towards equilibrium by wetting the surface, either
totally or partially. Instead of an equilibrium contact angle, we
observe a dynamic contact angle, yd 4 ye, and the radius of the
droplet increases, potentially without limit when total wetting
occurs, leaving a molecular scale film on the substrate. The
dynamics of wetting is governed by the balance between
capillary and viscous forces. For small contact angles, and
low Reynolds number, the lubrication approximation applies,
implying Poiseuille flow within the droplet, and the spreading
velocity V is given by:1

V ¼ ydgL cos ye � cos ydð Þ
3Z ln r

(4)

where Z is the viscosity of the liquid, and r is the ratio of the
droplet radius, R, to a characteristic microscopic length scale
(so, typically, ln r B 10). The dynamics of spreading resulting
from interfacial tension effects has been the subject of intense
research for many years.7,8

In contrast dewetting refers to the retraction of a droplet, far
from equilibrium, to its equilibrium state, exposing a dry
region of the solid substrate as it retreats. Dewetting is also
observed when a thin liquid film on a solid substrate ruptures
(creating, in effect, a droplet of semi-infinite extent), exposing a
dry region, which then expands as the fluid retreats. In both
cases, a fluid ridge forms at the solid–liquid boundary, due to
conservation of matter and, in the early stages of dewetting,
grows in volume (Fig. 4). At longer time scales, following the
rupture of a thin film, the fluid ridge itself may break into
droplets (due to the Rayleigh–Plateau instability), which then
continue to dewet by retracting to form smaller droplets. Note
that when the liquid interface is between two different liquids,
liquid A and liquid B, wetting for one liquid is dewetting for the
other. There is no fundamental difference between wetting and
dewetting in this respect. It is essentially a matter of initial
conditions seen from the point of view of liquid A or liquid B.

A closer analogy to dewetting is the spinodal decomposition
of a binary system quenched below its critical point. Below this
point, the system is unstable and local concentration fluctuations
are amplified, giving rise to phase separated domains.
Furthermore, exponential growth (in the linear regime typical
of the early stages of spinodal decomposition) results in a

Fig. 1 The balance of forces at the triple line of a liquid droplet on an
ideal, solid substrate, showing the equilibrium contact angle ye.

Fig. 2 Wetting regimes, from total wetting, to no wetting, characterised by the spreading parameter, S, and the equilibrium contact angle ye.

Fig. 3 The balance of forces in the vicinity of the triple line where a liquid
droplet meets a solid substrate, taking into account non-localised forces
arising from the interaction potential between the liquid and the solid
substrate. These forces typically, have a range of up to tens of nanometres,
thus the surface forces act over a more diffuse region than Fig. 1 suggests.
For simplicity, we show the net effect of gS and gSL close to the solid
surface, while gL is shown as acting at the triple line.
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favoured length-scale, which grows much more rapidly than its
competitors. When the volume fraction ratio is close to 50 : 50,
this gives rise to co-continuous regions of each phase, randomly
orientated, but with a uniform width, determined by the
favoured length scale.9–11 In a similar way, dewetting occurs
when local fluctuations in the height of a thin film are amplified,
and cause the film to rupture. The instability may be induced by
local chemical impurities, or physical irregularities in the sub-
strate or may arise spontaneously for films thin enough.12,13 The
former situation arises when the film is in a metastable state,
and is known as dewetting by nucleation and growth, while the
latter is known as spinodal dewetting. Again, the analogy with
binary systems in metastable and unstable regions of the phase
diagram is apparent. The fact that spinodal dewetting has a
characteristic length scale often results in patterns of small
droplets, or other structures, with long range order, which may
be fine-tuned by varying the thickness of the initial film.
This ability to fine tune the resultant structure opens up the
possibility of a range of applications in, for example, the surface
treatment of materials, metallic film manufacturing, and the
development of organic semiconductors.14

In addition to the macroscopic description discussed above,
various approaches have been used for describing wetting
dynamics. Molecular dynamics (MD) simulations is one of
the leading approaches, but has the drawback of being
computationally intensive: even on fast supercomputers, it
has only been possible to simulate systems of billions of
particles for a few hundred nanoseconds.15

Thus, many problems of great interest to interfacial science
and the study of soft condensed matter are inaccessible to an MD
approach. Dissipative particle dynamics and its refinements16–18

address this difficulty by coarse graining the system into a
collection of point-like particles interacting via both conservative
and dissipative forces, in a way that aims to maintain thermo-
dynamic consistency. While such an approach improves
computational efficiency it does so at the expense of artificiality,
and the underlying physics is somewhat obscured. A similar

criticism may be made of other modelling techniques, including
the Lattice–Boltzmann method.

A more straightforward approach is to apply the familiar
methods of continuum fluid mechanics to the problem of
simulating the dynamics of wetting and dewetting. It has been
known for some time19 that the continuum approximation
remains valid at surprisingly short length scales. Thus, it
becomes feasible to apply continuum fluid mechanics to problems
involving the wetting and dewetting of a nanoparticle, and to
the migration of that particle from one liquid phase to another.
A persistent difficulty in simulating wetting and dewetting
behaviour using fluid mechanical models is the treatment of
boundary conditions in multi-phase systems and how to
account for the interfacial forces. Specifically, how can the
no-slip boundary condition commonly assumed in fluid
dynamics be reconciled with the requirement of relative motion
between the liquid and the solid substrate, at their interface, in
both wetting and dewetting? Another issue is where the inter-
facial forces in the liquids should be located, and how they
should be represented. The same no-slip condition also leads to
a divergence in the energy dissipated by the flow close to the
contact line, which forces us to truncate the relevant integral at
both the lower limit (of molecular length scale) and the upper
limit (the size of the droplet, say).4

In order to make progress, it is necessary to correctly
describe the thermodynamics of a system consisting of two
liquid phases in contact with a third solid phase. This entails
showing how driving forces arise due to concentration gradients
in the bulk and in the vicinity of the triple line, and how a non-
zero slip-length emerges naturally when the system is described
in the appropriate physical terms.

In ref. 6 we introduced a formalism regarding Stokes equations
which allows us to describe diffusio-osmosis and wetting
dynamics in a way which is consistent with the thermodynamical
equilibrium state of a liquid in the vicinity of a solid interface.
In particular our description is consistent with the contact value
theorem of colloidal science.20–23 According to this theorem, there

Fig. 4 Dewetting following the rupture of a thin fluid film of thickness e on a solid substrate. The fluid retracts with a velocity of magnitude V, leaving
behind a circular region in its interior, of radius R(t). Conservation of mass implies that a fluid ridge forms at the retracting boundary of the film, with a
dynamic contact angle of yd, relative to the substrate.
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is no excess pressure in the vicinity of a flat surface immersed in a
liquid which would result from the interaction between the
surface and the liquid, whereas it was assumed by Derjaguin that
such a pressure is the cause for diffusio-osmotic flows.24–26 Our
description of the Stokes equation in inhomogeneous liquids in
the vicinity of a solid interface is also consistent with the general
formalism of out-of-equilibrium thermodynamics.27–29 Non-local
contributions to the excess of Gibbs free energy give rise to body
forces in the Stokes equation in the vicinity of an interface and
therefore to convection. The same contributions to the Gibbs free
energy on a more coarse-grained picture are responsible for the
surface tension between two liquids or between a liquid and a
solid surface. The Stokes equations describe then the convective
contribution to the relaxation towards thermodynamic
equilibrium. What is key in this picture is that the driving forces
are purely transverse and have a spatial extension. They are not
applied exactly where a no-slip boundary condition holds which
allows these forces to give rise to a flow. This feature solves the
apparent paradoxes regarding wetting when the forces are
supposed to be applied on the very solid interface. The mobility
is thus proportional either to the range of the interaction or to a
slipping length and may be a combination of both in the
general case.

Thus, this paper’s approach is grounded in continuum fluid
mechanics, supplemented with a diffuse interface approach,
versions of which are also used by Araki & Tanaka, and Patrick
Anderson among others.30 One of the key issues is to model
the hydrodynamic forces in the liquid during wetting and
dewetting, and to model the slipping that must occur at
surfaces and interfaces for relative motion between the solid
and the liquid phases to occur at all. The description of the
thermodynamics of the problem with an appropriate Gibbs free
energy functional resolves both of these difficulties and permits
a de facto slip length of B0.5 nm (the monomer length scale) to
emerge naturally. This enables coupled equations of motion for
the concentration field and the velocity field to be solved
numerically, thereby reproducing realistic wetting and dewetting
dynamics.

Having established that the model realistically simulates the
dynamics of wetting and dewetting in a quiescent system, we
apply the model to a system subject to a constant external
shear. The aim is to further explore the dynamics of dewetting,
and to determine the conditions under which a particle may be
induced to migrate across an interface between two liquid
phases, a problem of great practical interest in the manufacture
of composite materials. Anderson et al. have also addressed
this problem in a series of papers. In ref. 31, a constant external
force, acting on the particle, and perpendicular to the interface,
is introduced to achieve the migration of the particle from one
phase to the other. Without this external force, the particle
remains stuck at the interface between the liquid phases. In a
later paper32 the same effect is achieved by modelling the
interface between a viscoelastic fluid and a Newtonian fluid,
as shear is applied parallel to the interface. In this paper,
we model the effect of shear perpendicular to the interface
between the liquid phases, and show that no special

assumptions about the rheological properties of the liquids
are needed to model the migration of a particle from one phase
to the other.

2 Physical model

Our starting point is a general expression for the total Gibbs
free energy in a system in which concentration gradients are
present:

G ¼
ð
gðrÞd3r ¼

ð
gð0ÞðcÞ þ gð1ÞðrcÞ
n o

d3r (5)

We assume that the density of Gibbs free energy is the sum of
two contributions:

g(c,rc) = g(0)(c) + g(1)(rc) (6)

where c represents the concentration field and the first term is
the Gibbs free energy density of a homogeneous liquid with
concentration c, while the second term is the contribution of
spatial gradients to the free energy density. In the presence of a
solid interface, the Gibbs free energy may be written as

Gfc;fg ¼
ð
d3r gðcÞ þ k

2
jrcj2 þ Gðc; rÞ

n o
(7)

where we have introduced a generic interaction potential
between the fluid phases in the system and the solid surface
of the particle. The properties of this interaction potential are
described in ref. 6; the quantity c in the potential G(c,r) is the
concentration in the liquid just beyond the interfacial layer.
It is imposed by the flow whereas the concentration profile
within the interfacial layer equilibrates so as to minimize the
Gibbs free energy with c as an imposed boundary condition
just beyond the interfacial layer.

In ref. 6 we apply variational principles to eqn (7) to
determine the evolution of such a three-phase system.
Based on the generic free energy functional, the relationship
between the Gibbs free energy and the chemical potential, and
the equations of hydrodynamics, we obtain coupled equations
of motion for the velocity field (a modified Stokes equation)
and the concentration field (a modified Cahn–Hilliard
equation):

�rp + r{Z[rv + (rv)T]} + mrc = 0 (8)

dc
dt
¼ �v � rcþDr2m (9)

The velocity field in the fluid is represented by v and the
concentration field by c. As is common, we also assume
incompressibility:

r�v = 0 (10)

In eqn (9), D is the diffusion coefficient and depends on
the degree of polymerisation of the polymer. In eqn (8), p is
the pressure (which enforces the incompressibility condition),
and Z is the viscosity of the fluid, while m represents
the chemical potential, defined as the functional derivative
with respect to c, of the Gibbs free energy in eqn (7). Due to
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the presence of a solid interface, this chemical potential has
two components:

m ¼ mb þ
@Gðc; rÞ
@c

(11)

where mb is the contribution to the chemical potential of the
bulk (including the interface between the two fluid phases) and
the second term is the contribution due to the interaction
of the fluid phases with the solid phase, and is non-zero only
in the vicinity of the interface. In effect, this represents the
driving force on the fluid in the vicinity of the solid interface
due to the interaction potential.6

Before describing the implementation and solution of our
physical model, we note some ways in which it might be
extended. Firstly, in many circumstances, nanoparticles are
grafted with polymer chains to control their affinity with
another polymer,33 or to prevent their aggregation due to van
der Waals forces.21 The presence of such a polymer layer, or
polymer brush may have several effects that should be taken
into account in extending our model. As discussed in ref. 6, the
hydrodynamic flow in the vicinity of the particle, in the
presence of concentration gradients, is the consequence of
localized tangential forces in the vicinity of the particle, as
shown by eqn (8). The presence of a polymer brush may modify
the spatial distribution of these forces but, if the density of the
brush is relatively low, this effect should be small. On the other
hand, the hydrodynamic flow created in the liquid by these
tangential forces should be partially screened by the brush as
discussed, for example, in the case of electro-osmosis along
grafted solid interfaces in ref. 34. Another effect in the wetting/
dewetting limit is the deformation of the soft polymer brush
due to the liquid A/liquid B surface tension. This effect induces
dissipation within the brush which may become the dominant
factor for the wetting/dewetting dynamics.35 These kinds of
effects would need to be taken into account in extending our
model to polymer grafted nano-particles.

A second possible extension of our model is to systems
containing multiple nanoparticles. This would enable us to, for
example, investigate the mechanisms responsible for the
formation of bicontinuous gels, as described in ref. 36, and
has obvious relevance to the manufacturing of composite
materials that incorporate nanoparticles. Our model may be
adapted to describe such systems by the addition of a term
representing the force field due to the particles to the Stokes
eqn (8), and the inclusion of a suitable Lennard-Jones potential
for the inter-particle interactions, as in ref. 37.

3 Implementation and solution

To implement and solve this physical model we adapt the fluid
particle dynamics approach developed by Araki and Tanaka.38

In this approach, hard particles are modelled as highly viscous
fluids (typically 50 times more viscous than the surrounding
fluid). Thus it is an example of a diffuse interface method, as
discussed in ref. 30 and 31, and avoids the difficulties with
managing the boundary conditions associated with hard

surfaces in fluid flows. The fluid particle dynamics approach
has been applied to charged colloidal suspensions,39 colloidal
aggregation in liquid crystals,40 and nanoparticles in a phase
separating binary mixture37,41 but this is the first time it has
been used to study the dynamics of wetting and dewetting
under shear, and the shear induced migration of a particle
from one fluid phase to another.

To make progress we specify the form of each term in the
free energy functional (7):

Gfc;fg ¼
ð
d3r gðcÞ þ k

2
jrcj2 þWecjrfj2 þ zfðc� �cÞ2

n o

(12)

The first and second terms correspond with the first two terms
in eqn (5). The third term is new, and represents the free energy
density at the particle–polymer interface, replacing the term
G(c,r) in the generic free energy functional. In this term, W is
the wetting parameter, and represents the degree to which the
particle favours one phase over the other, e is the width of the
particle interface and is typically of the monomer length scale,
and f is an order parameter representing the presence of the
particle (that is, f = 1 within the boundary of the particle, and
f = 0 elsewhere, with a steep gradient at the interface). The final
term in eqn (12) represents the energy barrier at the surface of
the particle and the parameter z is tuned to limit ingress of the
polymer across the particle boundary during the simulation.

Note that f varies in value from 0 to 1, over a length scale
equal to the width of the particle interface, e. Thus, |rf| is of

order
1

e
. We assume the width of the interface to be the

monomer length scale of approximately 0.5 nm, which we
equate to 1, in the dimensionless units of the model
(see Appendix A).

The bulk free energy term is based on the Flory–Huggins
free energy density for a binary polymer mixture:42

gðcÞ
kBT

¼ c lnðcÞ þ ð1� cÞ lnð1� cÞ þ wcð1� cÞ (13)

We assume that both polymers have the same degree of
polymerization N. The Flory–Huggins interaction parameter,
w, may be considered as proportional to N. T is the temperature.

In fact, we use a modified version of the usual Flory–
Huggins expression:

gðcÞ
kBT

¼ 1þ c
2

lnð1þ cÞ

þ 1� c
2

lnð1� cÞ þ w
4
ð1þ cÞð1� cÞ � w

4

(14)

where now, c is an order parameter with values of c = �1
corresponding with the two pure phases, and the constant term
is introduced to ensure that the local maximum of free energy
density occurs at the origin. With this expression, the critical
point occurs when the Flory–Huggins parameter w = wC = 2.0,
and higher values of w signify stronger segregation between the
phases.
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The equations of motion, (8)–(10) are unchanged in form,
but now the chemical potential m is the functional derivative of
the new free energy functional, eqn (12).

To solve the equations of motion, we use an FTCS (Forward-
Time, Central-Space) finite difference scheme on a discrete
two-dimensional lattice, with periodic boundary conditions.
To avoid the numerical instability associated with logarithmic
functions, we approximate the Flory–Huggins free energy density,
eqn (14), with a 10th order polynomial in even powers of c:

g(c) = a1c
10 + a2c

8 + a3c
6 + a4c

4 + a5c
2 (15)

where the ai are parameters obtained from fitting eqn (14) to
the polynomial form of (15). Note that, as w varies, only the term
in c2 changes in the approximation of the Flory–Huggins free
energy density. Thus, changing the coefficient of the c2 term in
eqn (15) enables us to represent the variation of the Flory–
Huggins interaction parameter, w and thereby the concentrations
of the equilibrium phases, and the interfacial width (and surface
tension) between them. For reference, we note that the critical
point occurs when w = wC = 2.0 and that when w4 4.8 or wo 2.05,
we consider our numerical approximation to be unreliable. This
still leaves a wide range of w values to explore.

In outline, the numerical solution of the equations of
motion proceeds by solving the Stokes equation without the
pressure term, in order to calculate an uncorrected velocity
field. It is then possible to take the divergence of both sides of
the complete Stokes eqn (8), including the pressure term, and
to apply the incompressibility condition to calculate the
pressure field and thus the corrected velocity field. Having
calculated the velocity field, it is straightforward to solve
the modified Cahn–Hilliard eqn (9) to calculate the c field.
The interior of the particle is the region of the system where the
c field is near-zero and the f field is near unity. The motion of
the particle is tracked by integrating the velocity field within this
region and averaging over the region’s extent. The circularity of
the particle boundary is enforced after each step in the
simulation.

We choose a default lattice size of 256 � 256. The default
particle radius is 25 lattice cells (B12.5 nm) and the particle
interface width is 1.0 (B0.5 nm) throughout. The ratio of the
particle ‘‘fluid’’ viscosity to the polymer viscosity is 50 in all
simulations, and the particle interface energy barrier parameter,
z = 10.0 to limit ingress of polymer fluid into the particle’s
domain. With this value of z, the order parameter field in the
interior of the particle is typically c B 10�4.

All simulations take place in the Rouse regime, where
entanglement effects of polymer chains at the molecular scale
may be neglected. In our model and, given the chosen time
scale, this implies an effective diffusion coefficient of D = 1.0,
and a fluid viscosity of Z B 1.0. In the simulations described in
this paper, we assume strong segregation between the polymers
and set the Flory–Huggins interaction parameter, w = 4.0. For
the wetting parameter, we typically assume a high intermediate
value of W = 4.0; in other words, the particle has a marked
preference for one phase over the other.

When the particle starts in the non-favoured polymer, its
distance from the central interface is specified in lattice cell
units. Physically, a lattice cell has dimensions comparable with a
typical monomer length of 0.5 nm. In the dewetting simulations,
the distance of the particle from the interface is varied from
2.5 nm to 10.0 nm. Both a quiescent system and a system subject
to a shear rate of _g = 1.0 � 104 s�1 and _g = 2.0 � 104 s�1 are
simulated. The former shear rate implies 100 percent shear in
106 � Dt = 100 ms.

In Appendix A we discuss the mapping of dimensionless to
physical quantities and show that, given the above parameter
choices, a single simulation step equates to 10�10 s. When
running simulations, snapshots of the system are taken after
each 1000 simulation steps. Thus, the time resolution of the
simulations is 10�7 s. This strikes a good balance between data
storage capacity and computation time, and the ability to
observe the system at short time scales.

4 Wetting

Our focus in this paper is on spinodal dewetting, which occurs
when the film thickness is of the order of a few nanometres,
and which we therefore expect to observe in our simulations of
a particle close the interface of two liquid phases. The effect of
shear on such a system, and in particular on whether shear
promotes the migration of the particle from one liquid phase to
the other, is also of great theoretical and practical interest.
Additionally, we may also use our model to explore the
dynamics of wetting. To do this, the particle is initially located
symmetrically with respect to the polymer–polymer interface,
and its position is fixed. Of course, this is an artificial
constraint since a particle in a real system moves under
the influence of hydrodynamic forces, but it enables us to
treat the surface of the particle as analogous to the solid
substrate in the above discussion. We vary the wetting para-
meter, W, from 1.0 to 8.0, and observe the evolution of the
system in each case. The Flory–Huggins parameter, w = 4.0 in all
simulations, implying strong segregation between the two
phases (in fact ceq = �0.9562). Denoting the favoured phase
as A and the non-favoured phase as B, Young’s equation
becomes:

gSB = gSA + gAB cos ye (16)

where the subscripts refer to the particle/phase B, particle/
phase A, and the phase A/phase B interfaces respectively.
The spreading parameter, S is defined in a similar fashion:

S = gSB � (gSA + gAB) (17)

Furthermore, if we assume that the distortion of the interface
between phase A and phase B is relatively small, and that the
thickness of any film due to total wetting is also small, it
remains the case that total wetting occurs when S 4 0. In fact,
as we shall see, wetting does distort the interface when the W
parameter is high, but we can still make valid deductions,
based on our simpler approach.
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To make further progress, we recall that the wetting
parameter, W = 2(gSB � gSA), so the condition for total wetting
becomes:

W 4 2gAB (18)

It is possible to derive various approximate expressions relating
the surface tension between the phases, and the Flory–Huggins
parameter. In ref. 43 a simple argument based on the energy of
a polymer chain at the interface is used to show that:

gAB � ra
ffiffiffi
w
p

(19)

where gAB is measured in units of kT, r is the number density of
monomers, and a is the monomer length scale. In Helfand’s
model of the polymer–polymer interface44 the latter two
parameters are replaced by a pre-factor of order unity. This is
consistent with our model in which both r and a have dimen-
sionless values of order unity, and eqn (19) reduces to
gAB �

ffiffiffi
w
p

. To be specific, if w = 4.0, as it is in our simulations,
gAB B 2. Therefore, from eqn (18) and (19), we predict that total
wetting will occur when W \ 4.

We turn now to the results of our wetting simulations. Fig. 5
shows typical dynamics for the W = 4.0 case.

We also show the state of system after 1.0 � 107Dt (equivalent
to 1.0 ms), for values of W from 1.0 to 8.0 (Fig. 6).

Finally, we show the evolution of the mean free energy
density (per lattice cell) of the system as the favoured phase
wets the particle, for values of W from 1.0 to 8.0 (Fig. 7).

Note that in the early stages of the simulation (0.1–0.2 ms)
the polymer–polymer interface rapidly equilibrates, and this
effect is superimposed on the wetting dynamics. This is

unavoidable, but occurs rapidly enough not to obscure the
wetting dynamics. Thus our model is consistent with assumptions
made in our previous paper6 about the relative time scales
associated with local equilibration close to the solid surface and
with the hydrodynamic flow itself.

From these results, we note that, qualitatively, the wetting
behaviour appears physically realistic for all values of W. As W
increases, the degree of wetting by the favoured polymer is
greater, and the contact angle decreases.

Total wetting clearly occurs when W = 8.0. This seems to
correspond to a kink in the free energy density plot at t E 0.7 ms.
From a video of the early stages of wetting when W = 8.0, we
estimate that complete wetting occurs at t B 0.9 ms, supporting
this hypothesis. Although not so obvious in the snapshots of the
system’s evolution, it is possible that total wetting also occurs
when W = 4.0, as marked by a similar kink in the free energy
density plot, also at t E 0.7 ms. The occurrence of total wetting at
W = 8.0 and W = 4.0 is consistent with the condition for total
wetting: W \ 4 derived above.

The characteristic time scale for wetting is B1.0 ms for all
values of W considered. There is some evidence that higher

values of W result in faster wetting:
d�g

dt
is greater at low values of

t, for higher values of W, although this is accompanied by
greater relaxation time scales.

5 Dewetting without shear

To observe the qualitative dynamics of dewetting at a higher
spatial resolution, we choose a system size of 1024 � 1024 cells,

Fig. 5 Stages of wetting, with wetting parameter W = 4.0. The particle is initially located symmetrically at the interface and immobilised, allowing the
preferred phase to wet its surface.

Fig. 6 Long term wetting behaviour for W = 1.0 to W = 8.0. We show the state of the system after 1.0 ms; further relaxation of the interface is very slow,
and beyond the reach of our simulation time scales.
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and a particle of radius 100 lattice cells (B50 nm). In this
simulation, the particle is initially positioned at d = 4.0 nm
from the central interface. Fig. 8 shows the state of the system
in the early stages of its evolution, up to t = 80.0 ms.

As expected, we observe the formation of a fluid rim,
characteristic of dewetting at around t = 20.0 ms. At later times,
the rim continues to grow and moves outwards towards the
edge of the system, at constant speed. At longer time scales
(not shown), the curvature of the interface becomes more
uniform, and the interface is expected to flatten over time
scales that are computationally inaccessible.

We also show the magnitude of the velocity field, at various
times close to the dewetting point, in Fig. 9. The maximum
speed of fluid flow is observed close to the surface of the
particle, just after dewetting occurs, and is of order 1.0 ms�1.

To study the quantitative dynamics of dewetting, we vary the
initial distance of the particle from the central interface and
observe the time to the onset of dewetting. In the strong
segregation regime (W = 4.0), all stages of dewetting occur in
rapid succession: the time between the first sign of the
interface distorting, and first contact of the favoured phase

with the particle service is typically t1.0 ms. Thus, we take
the dewetting point to be when the favoured phase first makes
contact with the particle surface. This is quite straightforward to
assess by inspection of snapshots of the system close to the
dewetting point.

With these parameters, we observe (Table 1 and Fig. 12) that
dewetting occurs in less than 1.0 ms when the particle starts at
d = 2.5 nm from the central interface, and the dewetting time
increases to B60 ms when d = 4.5 nm. At d = 5.0 nm dewetting is
not observed, indicating a critical film thickness, dc B 5 nm,
given our assumptions about the strength and range of the
intermolecular forces involved.

We end this section with a note about the dynamics of the
polymer–polymer interface long after dewetting has occurred.
To observe the behaviour of the interface over longer time
scales, we used a smaller particle, of radius r = 5.0 nm, to
reduce the computational load. In this simulation, the interface
continues to flatten, carrying the particle with it, even after
B2.2 ms, indicating that the system has not reached equilibrium.
The final equilibrium state of the system, in which the interface is
flat and meets the surface of the particle at the true contact angle

Fig. 7 Evolution of free energy with time during wetting, for W = 1.0 to W = 8.0. In each case, the particle is positioned symmetrically, with respect to the
interface, where it is pinned, allowing its preferred phase in the system to wet its surface.

Fig. 8 Qualitative dewetting dynamics in a larger system of 1024 � 1024 cells. The particle starts at d = 4.0 nm from the central interface, and has radius
r = 50 nm, and the wetting parameter is W = 4.0.
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implied by the a wetting parameter of W = 4.0, is inaccessible in
the time scales of our simulations.

6 Dewetting with shear

The study of dewetting behaviour under shear has practical
relevance to the manufacture of composite materials, where
nanoparticles are often added to polymer blends to enhance the
mechanical properties of the end product. During the manu-
facturing process, particles can migrate to the phase boundaries,
where they can retard, or even halt, further phase separation, or
remain embedded in one phase or the other. The final distribution
of particles in the composite material contributes to its mechanical
properties (toughness and elasticity, for example). Since the
dispersion of nanoparticles within a blend is commonly
achieved by shearing the mixture, there are potential practical
benefits to understanding this process in a model system.

The ability to model the behaviour of a particle near an
interface under shear is an important first step in understanding
the behaviour of such systems, and how to achieve the desired
distribution of particles in the final product. In ref. 32 the
behaviour of a single particle close to an interface under shear
is studied, building on previous work on the dynamics of a
particle near the interface between two fluids in ref. 31 and 45
The shear stress is applied parallel to the interface, which
separates a viscoelastic fluid (where the particle starts), and a
Newtonian fluid. Shearing the system induces a gradient in the

normal stress close to the interface, and also creates a Laplace
pressure as the interface is subtly distorted by the effect of
shearing. The motion of the particle is determined by the
balance of these forces which, in turn depend on dimensionless
parameters in the model – chiefly the Weissenberg number, Wi
(shear rate times relaxation time), and the Capillary number, Ca
(the ratio of viscous stress and capillary stress). The simulations
delineate four possible outcomes: migration of the particle away
from the interface; movement towards the interface (which
eventually stalls); adhesion to the interface; and migration across
the interface into the Newtonian fluid. By varying Wi and Ca, the
authors are able to produce morphology plots, showing
the dependence of the final state of the particle on the
dimensionless parameters. They also vary other parameters in
the model – for example, the equilibrium contact angle
(determined by W in our model) and the mobility of the particle
(determined by D in our model) – and show how these changes
modify the morphology plots.

In a similar vein37,41 considers the movement of multiple
particles, under hydrodynamic forces caused by phase separation
in a quenched homogeneous blend, and show how the resultant
morphology of the system varies as the particle concentration and
mobility is varied. In these simulations, there is no eternal shear
on the system.

In contrast, the approach taken in this paper is to apply
shear perpendicular to the interface between the two liquid
phases, and to observe the behaviour of the particle at different
shear rates: in particular, can the particle be induced to migrate
to its preferred phase, or does it adhere to the interface and
remain stuck? We begin by studying simple dewetting of a thin
film of the preferred phase at the surface of the particle, before
considering later stages of the expulsion process.

As before, we use a wetting parameter of W = 4.0 in all
simulations. The particle is initially in the non-favoured phase,
4.5 nm, just less than the critical film thickness, from the
interface between the liquid phases. We vary this distance up to
10 nm, and observe the dynamics of dewetting.

Initially, we consider the effect of two different shear rates
on the dewetting behaviour of the system: _g = 1.0 � 104 s�1 and
_g = 2.0 � 104 s�1. The former shear rate corresponds to a strain
of 100% at 106 � Dt = 100 ms. In all cases, the dewetting time is
estimated from snapshots of the system.

Fig. 9 Heat map of the magnitude of the fluid velocity field in a quiescent system at the onset of dewetting, and shortly afterwards, when the energy associated
with rapid flow begins to dissipate. We focus on a region close to the surface of the particle (visible as a curved dark region on the right of each snapshot), which
begins 9.0 lattice cells (B4.5 nm) from the interface. Dark blue shading indicates a quiescent region of the system, while red indicates the highest flow speeds.

Table 1 Dewetting time in a quiescent system and under a constant shear
rate of _g = 1.0 � 104 s�1 and _g = 2.0 � 104 s�1 as the distance of the particle
from the interface varies from d = 2.5 nm to d = 10.0 nm

Distance [nm]

Dewetting time [ms]

_g = 0 [�104 s�1] _g = 1.0 [�104 s�1] _g = 2.0 [�104 s�1]

2.5 1.2 1.2 1.2
4.0 10.4 10.6 10.8
4.5 57.4 49.7 46.8
5.0 — 64.2 54.5
6.0 — 76.5 61.1
7.0 — 86.4 65.9
8.0 — 96.2 70.5
9.0 — 107.0 74.9
10.0 — 118.4 79.0
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First, we illustrate the qualitative dynamics of dewetting at
the chosen shear rates, compared with the dynamics of the
quiescent system. Fig. 10 shows snapshots of the system near
the point of dewetting, after dewetting, and at a later stage, for
the two shear rates considered, and at zero shear.

We also show the magnitude of the fluid velocity field, close
to the surface of the particle, at the dewetting point, and shortly
afterwards (Fig. 11). As in the quiescent system, the maximum
speed of fluid flow is observed close to the surface of the
particle, just after dewetting occurs, and is of order 1.0 ms�1.

To quantify these observations, we plot the dewetting time,
against the initial distance of the particle from the interface,

which ranges from d = 2.5 nm to d = 10.0 nm, for the quiescent
system and for the two shear rates used. Table 1 summarises
the results, which are plotted in Fig. 12.

We note again a critical film thickness dc B 5 nm. When
d \ dc, dewetting only occurs under shear, as the externally
imposed flow translates the interface between the liquid phases
closer to the particle surface. This is consistent with the assumed
range of the intermolecular forces in our model, and with the
range of values for the critical film thickness seen in the
literature.2 The dewetting time ranges from B1 ms to B100 ms.
Again, this is consistent with our assumptions about the range
of intermolecular forces, and the characteristic time scale chosen.

Fig. 10 Stages of dewetting in a quiescent system, and at two different shear rates. In each case, the particle begins 9.0 lattice cells (B4.5 nm) from the
interface, and we show the system at or near the dewetting point, after dewetting, and at a later stage, as shearing continues.

Fig. 11 Heat map of the magnitude of the fluid velocity field in a sheared system ( _g = 2.0 � 104 s�1) at the onset of dewetting, and shortly afterwards.
We focus on a region close to the surface of the particle (visible as a circular region at the top-right of each snapshot), which begins 9.0 lattice cells
(B4.5 nm) from the interface. Dark blue shading indicates a quiescent region of the system, while red indicates the highest flow speeds.
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It can be shown that the observed dewetting times are consistent
with a simple model, in which the interface between the two
liquid phases shears linearly with time and dewetting occurs
almost instantaneously when the distance between the particle
and the interface is small (less than B2.5 nm, say).

7 Expulsion under shear

Under shear, it is possible that the particle will be fully expelled
from its non-preferred phase, after dewetting has occurred.

In this section, we consider the status of the particle, beyond
the dewetting point, at a range of constant shear rates. We take
an initial state in which the particle begins d = 4.5 nm
(i.e. just below the critical film thickness) from the central
interface as our base case, and vary the shear rate from _g = 1.0�
104 s�1 to _g = 2.4 � 104 s�1 in steps of D _g = 0.2 � 104 s�1. In each
case, the simulation runs long enough to observe the complete
expulsion of the particle from its non-preferred phase or, if
expulsion does not occur, any alternative steady state that
may arise.

Fig. 12 Dependence of dewetting time on the initial distance of the particle from the interface, with and without shear. The uncertainty is B�0.5 ms so
error bars are not shown.

Fig. 13 Generic stages of the expulsion process, from initial dewetting, via interface breaking, to the point of expulsion, and the steady state at long time
scales. In this simulation, the particle starts B4.5 nm from the interface, and the shear rate is _g = 2.0 � 104 s�1. Interface breaking occurs at B200.0 ms,
and the steady state shown is after B1.0 ms.
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When complete expulsion occurs, it is preceded by initial
dewetting, breaking of the central interface under shear-
induced stress, a second dewetting, and wetting of the particle
by its preferred phase. Expulsion occurs when the last part of
the non-preferred phase detaches completely from the surface
of the particle. Some time after the particle is expelled, the
system reaches its steady state. Fig. 13 illustrates the generic
stages in the expulsion process.

However, in some cases, after the interface between the two
liquids phases breaks, the second dewetting fails to occur
because the moving region of the preferred phase does not
make contact with the particle’s surface. In this scenario, which

occurs at lowest and highest shear rates in our simulations, an
alternative steady state is reached in which the particle adheres
to the surface of a droplet of the preferred phase, embedded in
the non-preferred phase (Fig. 14).

Although the free energy changes associated with the later
stages of expulsion are hard to discern, due to the much greater
free energy changes associated with the breaking of the
polymer–polymer interface, it is instructive to consider the
evolution of the mean free energy density at various shear rates
up to a point just after dewetting first occurs (Fig. 15).

Fig. 15 shows a period of very early, rapid equilibration at
the interface (B1.0 ms), during which the mean free energy
density decreases slightly. This is followed by a steady increase
in the mean free energy density due to the increased strain at
the interface as the system is sheared at a constant rate. At all
shear rates, dewetting occurs between 40 ms and 50 ms, and is
accompanied by a temporary decrease in the mean free energy

Fig. 14 Alternative steady state, observed at the low shear rates used in
our simulations. In this case, _g = 1.2 � 104 s�1 and the initial particle starts
B4.5 nm from the interface. The image shows the state of the system after
600 ms.

Fig. 15 Evolution of free energy under shear up to, and just after, the first dewetting point for _g = 1.0 � 104 s�1 to _g = 2.0 � 104 s�1.

Table 2 Stages of the expulsion process at constant shear rates from _g =
1.0 � 104 s�1 to _g = 2.0 � 104 s�1. In all simulations, the particle starts
4.5 nm from the central interface. A letter ‘A’ indicates that the alternative
steady state in which the particle adheres to a droplet of its preferred
phase is reached (i.e. after the initial dewetting, no further stages of the
expulsion process are observed)

Shear rate
[�104 s�1]

Dewetting 1
[ms]

Dewetting 2
[ms]

Wetting
[ms]

Expulsion
[ms]

No shear 57.4 — — —
1.0 49.7 A A A
1.2 48.9 A A A
1.4 48.2 225.6 245.8 310.8
1.6 47.7 201.0 220.8 295.4
1.8 47.2 175.9 194.3 270.3
1.9 47.0 159.7 176.7 251.3
2.0 46.8 144.6 159.6 160.3
2.2 46.4 A A A
2.4 46.0 A A A
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density, before it resumes its steady increase due to shear-
induced strain at the interface between the two liquid phases.

Finally, we turn to the time scales over which the various
stages of expulsion occur. Table 2 summarises the results
of simulations in the Rouse regime at shear rates between _g =
1.0 � 104 s�1 and _g = 2.4 � 104 s�1. For completeness, we also
show the dewetting time in the quiescent system, where the
other stages of expulsion do not occur (instead, the particle
adheres to the slowly flattening interface).

The expulsion data summarised in Table 2 is plotted in
Fig. 16.

In these simulations, complete expulsion occurs at shear
rates of 1.4 � 104 s�1 r _gr 2.0 � 104 s�1. Outside of this range
of shear rates, the system reaches an alternative steady state in
which the particle adheres to a droplet of its preferred phase.

The second dewetting time decreases (approximately) linearly
as the shear rate increases. Similarly, the wetting time decreases
(approximately) linearly as the shear rate increases, and the time

between second dewetting and wetting is roughly constant
(B20 ms) at all the shear rates at which complete expulsion occurs.

The relationship between expulsion time and shear rate is
more complex. Between _g = 1.4 � 104 s�1 and _g = 1.9 � 104 s�1

the expulsion time decreases as the shear rate increases, but
the relationship is notably less linear than that between the
times of the earlier stages of expulsion, and the shear rate. At
_g r 2.0 � 104 s�1, there is a sudden decrease in the expulsion
time, and the particle is expelled from its non-preferred phase
very soon after wetting occurs, In fact, these two events are
almost simultaneous.

Finally, although it is not obvious in Fig. 16, the initial
dewetting time decreases as the shear rate increases. To high-
light this point, we present the identical plot when the initial
distance of the particle from the interface is d = 2 � dc = 9.0 nm
(Table 3 and Fig. 17).

As expected, the decrease in the initial dewetting time as the
shear rate increases is now observable, although the relationship
is still quite weak due to the overall short time scales involved. In
fact, by assuming that dewetting occurs almost instantaneously
when the interface is less than a distance d B 2.5 nm, and that
the interface deforms linearly at a constant shear rate, it is
possible to predict the initial dewetting time observed in all of
our simulations quite accurately.

In contrast with simulations where the particle starts d =
4.5 nm from the interface, the particle is always expelled from
its non-preferred phase. This indicates that the final state of the
particle is determined by both the initial geometry of the
system, and the applied shear rate.

For shear rates between _g = 1.0 � 104 s�1 and _g = 1.4 �
104 s�1, Fig. 17 resembles the higher shear rate region of
Fig. 16. That is, we observe a somewhat linear relationship

Fig. 16 Stages of the expulsion process at constant shear rates from _g = 1.0 � 104 s�1 to _g = 2.4 � 104 s�1. In all simulations, the particle starts 4.5 nm
from the central interface. At shear rates of _gr 1.2� 104 s�1 and _gZ 2.2� 104 s�1 the alternative steady state, in which the particle adheres to a droplet of
its preferred phase, is reached. The uncertainty is B�0.5 ms so error bars are not shown.

Table 3 Stages of the expulsion process at constant shear rates from _g =
1.0 � 104 s�1 to _g = 2.0 � 104 s�1. In all simulations, the particle starts
9.0 nm from the central interface

Shear rate
[�104 s�1]

Dewetting 1
[ms] Dewetting 2 [ms] Wetting [ms] Expulsion [ms]

No shear — — — —
1.0 106.9 291.4 315.6 381.0
1.2 92.5 243.9 267.8 329.6
1.4 85.1 214.1 235.0 300.7
1.6 80.5 159.8 189.7 190.7
1.8 77.2 158.5 178.4 180.4
2.0 74.7 162.7 206.0 217.2
2.2 73.0 192.1 267.4 300.2
2.4 71.9 A A A
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between the time of the various stages of the expulsion process
and shear rate. Again, the time between second dewetting and
wetting is roughly constant at B20 ms in this range of
shear rates.

At _g = 1.6 � 104 s�1, there is a sudden decrease in the
expulsion time, and the particle is expelled from its non-
preferred phase very soon after wetting occurs (the two events
are virtually simultaneous). This is similar to what we observe

in the previous simulation with d = 4.5 nm at a shear rate of _g =
2.0 � 104 s�1.

At shear rates of _g Z 1.6 � 104 s�1, times of the later stages
of expulsion (second dewetting, wetting, and expulsion) remain
relatively constant as the shear rate increases, before beginning
to increase when the shear rate is _g B 2.0 � 104 s�1. This rising
trend in the times to second dewetting, wetting and expulsion
continues up to a shear rate of _g B 2.4 � 104 s�1 when the

Fig. 17 Stages of the expulsion process at constant shear rates from _g = 1.0 � 104 s�1 to _g = 2.0 � 104 s�1. In all simulations, the particle starts 9.0 nm
from the central interface. The uncertainty is B�0.5 ms so error bars are not shown.

Fig. 18 Stages of the expulsion process at _g = 1.8 � 104 s�1 when the particle starts 9.0 nm from the central interface. Image (a) shows the initial
expulsion of the particle at t = 180.4 ms. The system then alternates between states similar to those shown in images (b) and (c), although (d) is also
observed at t E 450 ms. Eventually, the state shown in image (e) is reached, and the particle is finally expelled from it’s non-preferred phase at t E 550 ms;
image (f) shows the system shortly afterwards, as it evolves towards its steady state.
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system abruptly reverts to the alternative steady state illustrated
in Fig. 14.

The behaviour with a shear rate of _g = 1.8 � 104 s�1 is
unusual. Although the particle is initially expelled from the
non-preferred phase at t = 180.4 ms (as plotted in Fig. 17), it then
repeatedly adheres to, and detaches from, the interface
between the liquid phases, before finally reaching the steady
state observed in all other simulations (Fig. 18). The final
expulsion of the particle from the non-preferred phase occurs
at t B 550 ms, much later than the initial expulsion time plotted
in Fig. 17.

Regardless of the starting position of the particle, two steady
states are observed: complete expulsion from the non-preferred
phase; and adhesion to the interface of a droplet of the
preferred phase, in a matrix of the non-preferred phase. Both
of these regimes are seen in ref. 37, where the migration of
multiple particles is promoted by hydrodynamic currents in a
phase-separating blend. In contrast to ref. 32, we do not observe
steady states in which the particle remains in the non-preferred
phase. This is to be expected, since the effect of shear in our
simulations is to move the interface between the two liquid
phases closer to the surface of the particle, until the non-
localised forces in the vicinity of the particle surface become
sufficient to initiate dewetting.

Nevertheless, it is not necessarily the case that the particle
cannot remain in the non-preferred phase, when the system is
sheared. Plots of the particle position against time show that
the particle initially moves away from the interface, under the
influence of shear-induced flow. It is also possible that different
parameter choices might lead to a wider variety of steady states,
like those observed in ref. 32. In particular, we hypothesise that
the strength of the particle’s relative preference between the
two phases, as represented by the W parameter, will determine
the final steady state of the system under shear.

8 Conclusion

We have solved a physical model for the Stokes equations of a
non-homogenous liquid in the presence of solid interfaces.
This model has been introduced in ref. 6 and is consistent
with the contact value theorem regarding thermodynamical
equilibrium of liquids in contact with solid interfaces20–23

and with the general formalism of Onsager regarding the linear
response theory of out-of-equilibrium systems.27–29 It allows us
to describe how non-homogeneous liquids relax towards equi-
librium by diffusion and convection. A key feature of our model
is that the interfacial forces on solid interfaces are not located
on the interface itself but are distributed in their vicinity and
appear as body forces in the Stokes equations. To solve the
physical model, we used a numerical approach introduced by
Araki and Tanaka where the particle is described as a highly
viscous liquid; this allows us to solve the Stokes equations in the
whole system without managing complex boundary conditions.
The model enabled us to describe wetting and dewetting of
particles at or in the vicinity of liquid interfaces, at rest or in the

presence of an imposed shear. It also enabled us to realistically
model the migration of a particle from one liquid phase to
another, via a process of first dewetting, second dewetting,
wetting by the preferred phase, and expulsion, when shear is
applied to the system, while enabling us to explore the factors
which determine whether expulsion eventually occurs.
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Appendix: dimensionless quantities

We wish to make certain parameters in our simulations
dimensionless, by choosing a suitable time scale, t, length
scale, a (which we take to be the monomer length scale
(B0.5 nm)) and energy scale, T (which we take to be the
thermal energy at room temperature, 0.025 eV E 4 � 1021 J).
For the diffusion coefficient and viscosity, we then have:

~D ¼ Dt
a2

(20)

~Z ¼ Za3

Tt
(21)

Here, and throughout the Appendix, Ã signifies a dimension-
less quantity corresponding with the physical quantity A. For
notational convenience, this convention is dropped in the main
part of the paper.

Our aim is to determine the value of these quantities in the
Rouse and the entangled regimes, along with the physical
values of other important dimensionless quantities in our
model (specifically, time and shear rate).

In the Rouse regime, which is the focus of the current paper,
we have:42

D ¼ Na2

trouse
(22)

Z ¼ T

Na3
trouse (23)

where N is the degree of polymerisation, and trouse is the Rouse
time scale, which is related to the monomer time scale t0

according to: trouse = t0N2. We note that t0 B 10�9 s and that,
in the Rouse regime, N t Ne E 100, with Ne being the
entanglement limit.

Then, choosing t ¼ trouse
N

ensures that D̃ = 1 and ~Z = 1 also.
We also have:

t ¼ trouse
N
¼ t0N2

N
¼ t0N (24)

Thus, physically, t = 10�9 s � 100 = 10�7 s, where we have taken
N = Ne = 100 for the sake of being specific. This sets an upper
limit on the time scale characteristic of the Rouse regime.

In our computational model, this implies that a dimension-
less time of t̃ = 1 corresponds to a physical time of t = 10�7 s.
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Since our Rouse regime simulations use a dimensionless time
step of Dt̃ = 0.001. This implies that each step equates to Dt =
10�10 s in physical time.

We will also be interested in the shear rate. Our model
computes the displacement due to shear as follows:

Dg ¼ n� L� ~_g� D~t (25)

where n is the number of simulation steps, L = 256 is the size of

the system, in lattice cell units, and ~_g is the dimensionless
shear rate which, in our simulations, ranges from B0.001 to

B0.002. Since Dt̃ = 0.001 and taking, for example, ~_g ¼ 0:001,
we have:

Dg = n � L � 10�6 (26)

100% shear (g = 1) occurs when Dg = L which, based on the
above, is the case after n = 106 simulation steps. Thus we may
calculate the physical shear rate that corresponds with our
dimensionless shear rate of 0.001:

_g ¼ g
t
¼ 1

106 � 10�10 s
¼ 104 s�1 (27)

Other shear rates used in our simulations scale proportionately
so, for example, a shear rate of ~_g ¼ 0:002 corresponds with a
physical shear rate of _g = 2 � 104 s�1.

Finally, we return to eqn (21) to calculate an order of
magnitude estimate of the viscosity of our fluid in the Rouse
regime. Rearranging, we obtain:

Z ¼ ~ZTt
a3

(28)

Substituting the relevant orders of magnitude:

Z � 100 � 10�21 J� 10�7 s

10�9 mð Þ3
¼ 0:1 Pa s (29)

This is equivalent to 100 centipoise, which is typical of a light
engine oil.

Acknowledgements

NC and NG thank Solvay and the EPSRC (grant number ST/
N504282/1) for financial support.

References

1 P. G. de Gennes, Rev. Mod. Phys., 1985, 57, 827–863.
2 P. G. de Gennes, F. Brochard-Wyart and D. Quéré, Capillar-
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