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On the yielding of a point-defect-rich model
crystal under shear: insights from molecular
dynamics simulations

Gaurav P. Shrivastav * and Gerhard Kahl *

In real crystals and at finite temperatures point defects are inevitable. Under shear their dynamics

severely influence the mechanical properties of these crystals, giving rise to non-linear effects, such as

ductility. In an effort to elucidate the complex behavior of crystals under plastic deformation it is crucial

to explore and to understand the interplay between the timescale related to the equilibrium point-

defect diffusion and the shear-induced timescale. Based on extensive non-equilibrium molecular

dynamics simulations we present a detailed investigation on the yielding behavior of cluster crystals, an

archetypical model for a defect-rich crystal: in such a system clusters of overlapping particles occupy

the lattice sites of a regular (FCC) structure. In equilibrium particles diffuse via site-to-site hopping while

maintaining the crystalline structure intact. We investigate these cluster crystals at a fixed density and at

different temperatures where the system remains in the FCC structure: temperature allows us to vary

the diffusion timescale appropriately. We then expose the crystal to shear, thereby choosing shear

rates which cover timescales that are both higher and lower than the equilibrium diffusion timescales.

We investigate the macroscopic and microscopic response of our cluster crystal to shear and find that

the yielding scenario of such a system does not rely on the diffusion of the particles – it is rather related

to the plastic deformation of the underlying crystalline structure. The local bond order parameters and

the measurement of local angles between neighboring clusters confirm the cooperative movement of

the clusters close to the yield point. Performing complementary, related simulations for an FCC crystal

formed by harshly repulsive particles reveals similarities in the yielding behavior between both systems.

Still we find that the diffusion of particles does influence characteristic features in the cluster crystal,

such as a less prominent increase of order parameters close to the yield point. Our simulations provide for

the first time an insight into the role of the diffusion of defects in the yielding behavior of a defect-rich

crystal under shear. These observations will thus be helpful in the development of theories for the plastic

deformation of defect-rich crystals.

1 Introduction

Defects do play a crucial role in determining the mechanical
properties of crystals.1,2 At finite temperatures real crystals
contain various types of such defects, as dislocations, vacancies,
or interstitials, to name a few. In particular the impact of
dislocations (line defects) on modifying the mechanical response
of crystals has been well understood in theory and in experiment
(see, e.g., ref. 3–6): for instance, large scale molecular dynamics
(MD) simulations have established the connection between
interatomic processes and the mesoscopic behavior predicted
by dislocation-dynamics simulations.7,8 In contrast, the impact of

point defects (such as interstitials and vacancies) on the
mechanical properties of crystals is considerably less explored.
To be more specific point defects give rise to the softening
of the mechanical response by reducing the yield stress,9

and cause the boson peak anomaly at low-frequencies in
non-ideal FCC crystals, which, in turn, originate from a
local force imbalance on each atom caused by the lack of
centrosymmetry.10,11 Furthermore, point defects can facilitate
dislocation nucleation12–14 and induce creep flow in crystalline
solids at high temperatures.15,16

Continuum elasticity theory considers ‘‘ideal crystals’’ (i.e.,
without point defects) and explains the rigidity of crystals as a
result of a spontaneous breaking of the continuous translational
symmetry.17 A recently proposed microscopic theory,18 developed
within the framework of linear-response theory and based on
correlation functions, incorporates point defects and is able to
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successfully predict elastic constants, point-defect densities,
dispersion relations, etc. for non-ideal crystals.19 However, what
is urgently required is an extension of this theoretical concept
beyond this linear regime, which helps to understand phenomena
as the yielding behavior and other non-linear effects, such as the
transition from brittle to ductile mechanical response, which are
often reported in experiments.20,21

Crystalline and amorphous solids, when exposed to an
external shear deformation, display a transition to the plastic
flow.5,22,23 The location of the transition point is marked by a
maximum in the stress–strain response of the system and
the transient response of matter to deformation often shows
distinctively different features: (i) ideal crystals often respond
to shear via the formation of slip planes;7 (ii) in contrast, in
amorphous solids the solid to liquid-like transition is mediated
by the diffusion of particles.24 These systems often respond via
the formation of inhomogeneous flow patterns, also known as
shear bands.22,23,25 The formation of such band-like regions
depends on the preparation history of initial undeformed
glassy state and the deformation rate.26–28 The transient
response of crystals is initiated by dislocation defects which
form before the yield point is reached. These defects interact
with each other via long-range stress fields and move by gliding
on slip planes.2,7 The collective dynamics of dislocations
controls the plasticity of crystals.29 In amorphous solids
localized plastic events, namely shear transformations are respon-
sible for the plastic deformation.30 In contrast to dislocations
in crystals, shear transformations are the process of particle rearran-
gements occurring locally in a small volume.31 These zones are
identified in experiments and computer simulations by analyzing
the local rearrangements of particle neighborhoods.32–38

In all these two cases the yielding can be viewed as a time-
scale phenomenon, distinguished by the fact that in the former
case the viscosity diverges as the shear stress tends to zero.39,40

In contrast, in non-ideal crystals which are rich in point defects
it is expected that the diffusion of point defects should
distinctively alter the yielding behavior of the crystals, which
often results in reduction of the yield stress.9 In order to
understand the interplay of the shear induced and point-
defect diffusion timescales in defect-rich crystals under shear
it is hence indispensable to focus on this class of crystals. So
far, this problem has only been rarely explored in computer
simulations: the reasons for that might either be the low
concentration of point-defects in hard sphere crystals41 or the
long-range character of the interactions of point-defects due to
strain fields,42 which make their collective dynamics slower at
high densities. One therefore has to resort to different systems
where these restrictions do not apply.

In an effort to elucidate the role of point defects on non-
linear phenomena (such as shear) from an alternative route we
consider in this contribution cluster crystals which are an
archetypical representative of defect-rich crystals: these ordered
soft matter systems are formed by ultrasoft, purely repulsive
particles which are allowed to overlap even at vanishing
temperature, subject to a finite energy penalty. Despite their
repulsion these particles aggregate at sufficiently high densities

and/or sufficiently low temperature into clusters, which, in
turn, occupy the sites of BCC or FCC lattices.43,44 On a more
intuitive level one can understand this particular behaviour
that the clusters of these particles can be viewed as harshly
repulsive, effective particle aggregates, whose repulsion is
typically by a factor ten stronger than the one of the individual
particles. Thus – in view of the neighbouring, strongly repulsive
clusters an individual ultrasoft particles is not tempted to leave
its cluster unless it has a sufficiently high kinetic energy.
Furthermore, on a conceptual level both the mechanism why
and under which conditions these particles form – despite their
mutual repulsion – stable aggregates45,46 as well as the
complete phase diagram43,47,48 are meanwhile well understood.
These systems show crystalline phases at sufficiently low
temperatures and high densities that are characterized by
highly monodisperse clusters of particles occupying BCC or FCC
lattice sites.43,44,47–50 In contrast, the arrangement of particles
inside the clusters remains disordered. In equilibrium, particles
vibrate inside clusters and are able to hop at sufficiently high
temperatures from one cluster to a neighboring one (at which
occasion the cluster size fluctuates). The longtime dynamics of the
particles is diffusive51 and the distribution of the jump lengths is
found to be exponential at short distances. At large distances, this
distribution follows a power-law decay, i.e., a behavior reminiscent
of Lévy flights.51 Most of the investigations of cluster crystals
published so far are based on the so-called generalized
exponential model with index n (GEM-n) with n 4 2,43,44 which
allows a complete overlap of the particles with a finite energy
penalty at vanishing interparticle distance.

To round up this short overview we add that recent out-of-
equilibrium investigations have explore the steady-state
behavior of cluster crystals under shear. It is found that these
systems show shear-induced fluidization and string formation
at high shear rates.52–54 However, the yielding behavior of these
cluster crystals has not been explored, so far and is therefore
poorly understood.

Cluster crystals can be considered as a representative model
system for defect-rich crystals as the fluctuating number of
particles pertaining to a cluster at the lattice sites corresponds
to interstitials of the crystals. In a similar manner, particles can
hop from one cluster to the nearby cluster creating thereby a
vacancy at the parent lattice site. Of course, within a short time
this vacancy will be filled up by another particle arriving from
another, neighboring lattice site. In our previous work55 we
have demonstrated that cluster crystals exhibit an overshoot in
their stress–strain response. For a fixed temperature, the height
of this overshoot decreases with a decreasing shear rate. The
range of temperatures considered in this previous contribution
was limited to high temperatures where at equilibrium the long
time dynamics is always found to be diffusive. In contrast, in
the present contribution, we consider a considerably broader
range of temperatures and – using extensive non-equilibrium
MD simulations – study the changes in the structure and in the
dynamics of cluster crystals under shear. Our work aims to
understand the interplay of defect-diffusion and shear-induced
timescales. Hence, we shall focus on a sufficiently high
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temperature where the equilibrium mean-square displacement
(MSD) of the particles shows at long times a diffusive behavior.
The range of the considered shear rates is such that it covers a
wide range of timescales, both large and small, compared to the
equilibrium diffusion timescale. Our investigations, which are
based both on the MSD data under shear and on an analysis of
the centers of mass (COM) of clusters, reveal that in cluster
crystals, diffusion of particles is not the primary mechanism for
stress relaxation: instead it is rather the plastic deformation of
the skeleton (the underlying FCC structure), which governs the
yielding behavior. Further comparison with related investigations
on an FCC crystal formed by particles interacting via a purely
repulsive, Weeks–Chandler–Andersen (WCA) potential reveals
that defects modify the transient response of cluster crystals.
However, the overall yielding behavior remains independent of
temperature and diffusion of particles.

The rest of the paper is organized as follows: in Section 2, we
introduce the model and provide details of the simulations and
the related protocols. Results are presented and discussed in
Section 3, while the final section contains the summary of
results, concluding remarks, and an outlook to related future
investigations.

2 System and simulation methods
Simulation of the cluster crystal

In our cluster crystal system particles interact via the generalized
exponential (GEM-n) potential.43 Similar as in preceding
contributions43,51 we set n = 4, thus the interaction potential is
given by

FGEM(r) = eexp[�(r/d)4]; (1)

here r is the distance between two particles, d and e set the
length- and energy-scales of the model, respectively; in contrast
to the usual notation we use the symbol d for the range of the
interaction, since the conventional symbol s is reserved to
denote in this manuscript the stress. We truncate the potential
at a distance rc = 2.2d; FGEM(r) is then shifted to zero so that it
vanishes from rc onwards. Temperature T, density r, and time
t are measured in units of kBT/e, rd3, and t0 ¼ d

ffiffiffiffiffiffiffiffi
m=e

p
;

respectively; further, m is the mass of particles and kB is the
Boltzmann constant. In the following we set the values of e, d,
m, and kB equal to unity.

We perform non-equilibrium molecular dynamics (MD)
simulations in an NVT-ensemble where the number of particles,
N, the volume, V, and the temperature, T of the system are fixed.
All simulations are carried out using the LAMMPS package.56 In
this contribution we consider ensembles with N = 1300, 3328,
6500, 26 0624, and 52 000 particles; throughout we use a fixed
density r = 6.5 while for the temperature a set of values, namely
T = 0.4, 0.5, 0.6, and 0.7 has been considered: from literature it is
known that at this density and at these temperatures the system
assumes a stable FCC cluster phase, where each site of the FCC
lattice is occupied by a cluster of overlapping particles (see, for
instance, the phase diagram shown in ref. 43). Data available in

the literature43,44,51 provide evidence that the average number of
particles pertaining to a cluster, Nc, assumes for the considered
state points a value Nc C 13 and a lattice constant la = 2. Most of
our calculations are based on ensembles of 3328 and 26 624
particles, corresponding thus to systems with 256 and 2048
clusters, respectively.

The temperature of the system is maintained via a thermo-
stat, using dissipative particle dynamics (DPD).57 The
DPD equation-of-motions read (where the dot represents the
time-derivative of the respective quantity):

_ri ¼
pi
mi
; (2)

_pi ¼
X
jai

F ij þ FD
ij þ FR

ij

h i
; i ¼ 1; . . . ;N: (3)

ri is the position and pi is the momentum of the particle with
index i. The conservative force, Fij, acting on a pair of particles
i and j can be readily calculated from the interparticle inter-
action defined in eqn (1). The dissipative force, FD

ij , is given by

FD
ij = �zo2(rij)(r̂ij�vij)r̂ij; (4)

rij the distance vector between particles i and j, r̂ij is the unit
vector of rij, and rij the distance between the two particles;
further, vij = (vi � vj) is the relative velocity between particles i
and j, and z is the friction coefficient; the value of z is set
to unity. Furthermore, o(rij) is a distance-dependent weight
function which defines the range of interaction for the
dissipative and random forces. In order to associate the
continuous stochastic differential equation with the DPD
algorithm58 the usual choice for o(rij) is as follows:59

oðrijÞ ¼
1� rij=Rc if 0 � rij � Rc;

0 otherwise:

�
(5)

For the cutoff radius of this function, Rc, we have taken for
simplicity the same value as for rc, i.e., Rc = rc = 2.2d.

Eventually, the FR
ij represent in eqn (3) random forces,

defined as

FR
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTz

p
oðrijÞyij r̂ij : (6)

Here, the yij are uniformly-distributed random numbers
with zero mean and unit variance. For further details about
the parameters of the DPD thermostat we refer to ref. 60 and 61.

The equations-of-motion, i.e., eqn (2) and (3), are integrated
via the velocity-Verlet algorithm using an integration time step
Dt = 0.005t0.62

The initial configurations for our simulations are ideal FCC
cluster crystals where each lattice site is occupied by Nc = 13
completely overlapping particles and assuming a lattice constant
that is compatible with the chosen value of the density, i.e.
r = 6.5. Starting from this configuration, the system is equili-
brated over 106 MD steps at a temperature T = 0.8. The now
equilibrated system is further evolved over 5 � 106 MD steps
(where it has reached the diffusive regime), storing on a regular
basis configurations in intervals of 105 MD steps. These config-
urations then serve as independent initial configurations for
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subsequent simulations: from each of these state points, 50
independent simulation runs have been launched. Particle con-
figurations of the system have been stored during the run at
logarithmic time intervals; observables were then obtained by
averaging the related quantity over these runs.

We impose planar Couette flow on the bulk cluster crystal
via Lees-Edwards boundary conditions.63 The shear is applied
in the (x,z)-plane along the x-direction; thus, the z- and y-
directions are the gradient and vorticity directions, respectively,
while x is the shear-direction. In this study the range of the
shear rates, _g, extends from _g = 10�7 to _g = 10�1 (in units of t0

�1).

2.1 Simulations on the soft sphere crystal

For the case of soft spheres (SS), which also form an FCC
crystals we assumed that the particles interact via a Weeks–
Chandler–Andersen (WCA) potential, being defined as:64

FHSðrÞ ¼
4e

d

r

� �12

� d

r

� �6

þ1
4

" #
if 0 � r � rSSc ;

0 otherwise;

8>><
>>: (7)

r is the distance between two particles, d and e are again the
length- and the energy-scale of the system; they are both set to
unity. The potential is truncated and shifted to zero at
a distance rSS

c = 21/6d; thus this shifted potential vanishes from
rSS

c onwards. For the FCC crystal formed by soft spheres we
consider N = 4000 particles; for the temperature and the density
we assume the following values: T = 0.01 and r = 1.2. Starting
from an ideal FCC crystal as an initial configuration we
equilibrate the system over 107 MD steps, using again a DPD
thermostat (with the same parameters as in the cluster
crystal case). We further shear this system with a shear rate
_g = 10�6 using the same protocol as for the cluster crystals.

3 Results
3.1 The system in equilibrium

In a first step we consider the system in its equilibrium. To this
end we briefly summarize the self-assembly and the dynamics
of cluster crystals in equilibrium. Panels (a)–(d) of Fig. 1 show
simulation generated equilibrium configurations of cluster
crystals at a density r = 6.5 for two different temperatures,
namely T = 0.4 and T = 0.7. The red, semi-transparent,
overlapping spheres show the clusters, while the center of mass
(COM) of each cluster is plotted as a blue sphere. In panel (e) of
Fig. 1 we plot the pair-correlation function, g(r), of the cluster
crystal as a function of distance, r, for T = 0.4 and T = 0.7.
The g(r) are scaled by the value of the first peak, gp, in the pair
correlation function. The inset shows the unscaled g(r) of the
COM of the clusters as a function of r for the two temperatures.
Clearly, the g(r) of the COM display distinct peaks at distances
r B 1.41d and r B 2d which are the nearest- and the second-
nearest neighbor distances in an FCC crystal with a lattice
constant equal to 2d. Of course the peaks in the g(r) broaden at
high temperatures indicating the enhanced fluctuations in the
COM positions of the clusters.

The z-component of the mean-square displacement (MSD)
of the individual particles, h(Drz)

2i, is shown for the equilibrium
states at temperatures T = 0.4, 0.6, and 0.7 in panel (f) of Fig. 1.
We only display the z-component of the MSD since in our
subsequent shear simulations the z-axis denotes the gradient
direction; thus, h(Drz)

2i quantifies the non-affine displacement
of the particles under shear. Similar to a previous study,51 we
observe that the MSDs display for all temperatures investigated
a short-time, ballistic regime which at later times levels off to a
plateau region. At the lower temperature, i.e., at T = 0.4, this
plateau persists over the entire simulation time window. In
contrast, at the higher temperature investigated, i.e., at T = 0.7,
the MSD shows at larger times a cross-over to a now diffusive
regime: this feature originates from hopping processes of
individual particles, migrating from one cluster to a neighboring
one. In this context it should be emphasized that – despite these
hopping events – the underlying FCC structure of the clusters
remains intact.51 The timescale of these hopping processes, th,
can be estimated by identifying the time where h(Drz)

2i attains a
value of d2/2, corresponding to a distance of half of the nearest
neighbor distance in an FCC lattice – note that the nearest

neighbor distance in our case is
ffiffiffi
2
p

d; this value of the MSD is
highlighted in panel (f) of Fig. 1 by a horizontal, blue-dashed line.
Intersecting this line with the MSD-curve leads – by projection
onto the time-axis – to th = th(T); for the temperature T = 0.7, th is

Fig. 1 Panels (a) and (c): cluster crystal configurations at equilibrium at
temperatures T = 0.4 and T = 0.7, respectively. Panels (b) and (d): front
view of the snapshots shown in panels (a) and (c). Blue spheres represent
the centers of mass of clusters. Panel (e): pair correlation function, g(r), of
the clusters as a function of distance, r, at temperatures T = 0.4 and T = 0.7
(as labeled in the inset). The g(r) are scaled for different temperatures by
the value of the first peak, gp, in the pair correlation functions. The inset
shows g(r) of the centers of mass of the clusters; these positions are
highlighted in panels (b) and (d) as blue spheres. Panel (f): z-component of
the mean-square displacement (MSD) of ultrasoft particles, calculated at
different temperatures (as labeled). The horizontal, blue-dashed line
indicates where the MSD assumes a value of d2/2; from the intersection
point of this line with the MSD-curve for T = 0.7 a vertical, dashed-blue
line projects down to the related hopping timescale, th(T = 0.7) (see text):
th(T = 0.7) = 5349.44 is marked by blue cross on the time axis. The black
dashed line represents a line with slope 1, indicating a diffusive behavior.
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highlighted in panel (f) of Fig. 1 by a blue cross. In the following
we use the value of th to classify high and low shear rates in our
simulations: introducing the shear-induced timescale, ts(=1/_g) we
consider shear rates with ts o th as high, while shear rates with
ts 4 th are considered as low.

In the subsequent shear simulations on cluster crystals we
focus on two temperatures: (i) T = 0.7 for which th attains a
value that is smaller than the total simulation time; therefore
we can access for this temperature both the high and the low
shear rate windows; (ii) at T = 0.4 the value of th is considerably
larger than the accessible total simulation time; hence, at this
temperature all shear rates are considered as high.

3.2 The system under shear

3.2.1 Stress vs. strain response. We start our investigations
of the non-equilibrium properties by measuring the stress of
the system, sxz(t), as a function of strain, _gt, for various shear
rates, _g, and at different temperatures. We calculate sxz via the
Irving-Kirkwood expression:65

hsxzðtÞi ¼
1

V

X
i

mvi;xðtÞvi;zðtÞ þ
X
i4 j

rij;xðtÞFij;zðtÞ
" #* +

: (8)

Here, m is the mass of the particles, vi,x(t) and vi,z(t)
represent the x- and z-components of the velocity of particle i;
further, rij,x(t) is the x-component of the displacement vector
between particles i and j, Fij,z(t) denotes the z-component of the
force between particles i and j, and V represents the total
volume of the system. The angular brackets in eqn (8) stand
for an averaging procedure, that is carried out over 50
independent runs (see above). We note that the kinetic terms
in eqn (8), i.e. the one proportional to mvi,xvi,z, turn out to be
very small; therefore we have neglected them for the calculation
of the shear stress.

Panels (a) and (b) in Fig. 2 display the response of the stress
on the strain for cluster crystals, calculated at two different
temperatures, namely T = 0.4 and 0.7; in these calculations
ensembles of 26 624 particles were considered. The stress first
increases, reaches a maximum and then drops suddenly; this
feature corresponds to the yielding of the cluster. We observe
that the drop in the stress becomes sharper and that the height

of the stress maximum, sp, decreases as we decrease the
shear rate; these features are observed for all shear rates and
temperatures considered. The data shown in panels (a) and (b)
of Fig. 2 also provide evidence that for a given shear rate the
peak of the stress–strain curve is more pronounced at low
temperatures.

This feature is further analysed via the data shown in panel (a)
of Fig. 3 where the maximum of the stress–strain curve is
plotted as a function of shear rate for different temperatures
on a much finer _g-grid. We note in passing that these results are
now – as a tribute to the high computational costs – based on
simulations of ensembles of N = 3328 particles; a brief analysis
of the data in terms of system size will be given below. High
values of sp, observed in particular at low temperatures indicate
the increased hardness of the cluster crystal; in contrast, at high
temperatures the higher diffusivity of particles destabilizes this
rigidity, leading to lower values of sp. We also note that sp

curves, calculated for different values of _g (as displayed in
panel (a) of Fig. 3) can be mapped via a power-law function onto
a single master curve; this function is given by23,66

sp(T, _g) = sp
0(T) + A(T) _ga (9)

with adjustable parameters sp
0, A, and a. In our considerations

the power-law functional form, defined in eqn (9) is similar to
the Herschel-Bulkley model used to describe the behavior of the
steady-state stress as a function of shear rate.23

Fitting the simulation data to the above function leads to the
temperature-dependent values of sp

0, A, and a, which are
collected in Table 1. These data are mainly based on investigations
of ensembles of N = 3328 particles; for two temperatures (i.e.,
for T = 0.4 and T = 0.7) we have performed complementary
investigations for ensembles of N = 26 624 particles, albeit on a
sparser _g-grid. As expected, the values of the fitting parameters,
sp

0 and A, do show a size dependence, which turns out to be

Fig. 2 Panels (a) and (b): time evolution of the stress, hsxzi, for the cluster
crystal as a function of strain, _gt, for different shear rates (as labeled), for the
temperatures T = 0.4 (a) and T = 0.7 (b). Results are based on ensembles of
N = 26 624 particles.

Fig. 3 Panel (a): variation of the maximum of the stress–strain curves, sp,
as a function of the shear rate, _g, for different temperatures (as labeled).
In this panel, the solid lines represent the power-law behavior defined in
eqn (9), using suitably fitted parameters sp

0, A, and a. Panel (b): scaled
curves sp vs. shear rate (shown in panel (a), using eqn (11)); all data collapse
on a master curve. The black dashed line represents the scaling function
given in eqn (11). Results are based on ensembles of N = 3328 particles.
The inset in panel (b) shows the variation of sp

0 as function of the
system size, considering ensembles of N = 1300, 3328, 6500, 26 624
and 52 000 particles at T = 0.7. The black solid line represent the
logarithmic fit given in eqn (10) (see text).
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logarithmic in nature. With these parameters at hand we can
draw in panel (a) of Fig. 3 the solid lines, using the same color
code as the one used for the symbols, representing the simulation
data for different temperatures. Our data provide evidence that
sp

0 and A decrease with increasing temperature, while the
exponent a (=0.43) remains temperature independent. It seems
that the system attains an apparent yield stress, sp

0, i.e., the value
of sp at infinitesimally small shear rates. Recent experimental and
theoretical studies have revealed that the yield stress decreases
with the increase in the system size.39,40,67,68 In an effort to analyse
our results also in this direction we explore the dependence of sp

0

on the system size. We report that our finite-size analysis of sp
0

provides as a suitable fit a function that decays logarithmically
with increasing system size but do not assign too much physical
significance to this analysis. The inset in panel (b) of Fig. 3 shows
the variation of sp

0 as a function of the inverse of the ensemble
size for five different values of N, namely N = 1300, 3328, 6500,
26 624, and 52 000 at T = 0.7. The solid back line represents in this
panel a fit of these data with the functional form

sp
0 = 17.9227 + 0.5931 ln(1/N). (10)

Our data provide at first sight evidence that the yielding
(marked by the maximum in the stress–strain response)
depends both on the shear rate and temperature. However
(and as we will show in the following), the effect of temperature
can be scaled out: we learn from panel (a) of Fig. 3 that the
sp( _g)– _g curves obtained for different temperatures show a
power-law behavior at large shear rates and saturate to a finite
value at low shear rates. Now the fact that the exponent of this
power-law at large shear rates remains the same for all
temperatures (see above) allows the mapping of these curves
onto a single master curve by scaling the shear rate by a
temperature-dependent timescale, tc(T), the latter one being
defined as tc = (A/sp

0)1/a; the values of this timescale are listed
for different temperatures in Table 1. Starting our reasoning
from eqn (9) this master curve has thus the form:55,69

spð _gÞ
s0p
¼ 1þ tc _gð Þa: (11)

In panel (b) of Fig. 3 we show this master curve onto which
the different sp( _g)-curves can be mapped. This obvious scaling

behavior provides evidence that in the cluster crystal yielding
represents a universal scenario which remains the same for
all temperatures; thus yielding is essentially independent of
temperature and does not rely on the diffusion of particles.

3.2.2 Dynamics under shear. We further analyze the
dynamics of point defects under shear for cluster crystals by
focusing on the MSD of our particles. As mentioned in Section 3.1,
we consider in the following two different temperatures, i.e.,
T = 0.4 and T = 0.7. To obtain information on the non-affine
displacement of particles under shear we investigate henceforward
in the following the z-component of the MSD, h(Drz)

2i, since the
z-axis represents the direction of the shear gradient in our setup.

Panel (a) of Fig. 4 shows h(Drz)
2i of the particles at T = 0.4,

considering different values of the shear rates. In the absence
of shear (i.e., for _g = 0) we observe two distinctively different
types of behavior of h(Drz)

2i as a function of time t: first, the
expected ballistic regime at short times, which then levels off

Table 1 Parameters sp
0 = sp

0(T) and A = A(T) as obtained by fitting the
simulation data for sp – see panels (a) and (b) of Fig. 3 – via the power-law
expression, given in eqn (9); data are listed for the five different temperatures
investigated in this contribution. Results are based on investigations with
ensemble sizes as indicated (N is the number of particles). The temperature-
dependent timescale tc is calculated from A and sp via tc = (A/sp

0)1/a

T N sp
0 A tc

0.4 3328 16.9348 28.467 3.3463
0.4 26624 16.8865 24.2684 2.3242
0.5 3328 15.9376 25.4977 2.9827
0.6 3328 14.4088 24.7787 3.5283
0.7 3328 12.9406 24.4795 4.4039
0.7 26624 11.8012 27.967 7.4377

Fig. 4 Panels (a) and (b): z-component of the MSD, h(Drz)
2i, of a cluster

crystal formed by ultrasoft particles in equilibrium and under shear as a
function of time t at T = 0.4 (a) and T = 0.7 (b), respectively. The results are
shown for six different shear rates, _g = 10�2, 10�3, 10�4, 10�5 and 10�6

(as labeled in panel (b)) and for the equilibrium state (i.e., for _g = 0). Results
are based on ensembles of N = 26 624 particles except for the MSD of the
equilibrium state and for an additional shear rate _g = 10�7 (for T = 0.7, in
panels (b) and (d)), which are computed from a smaller system with N =
3328. These curves are shown by dashed lines in the respective panels. The
quantity D2 and the horizontal dashed line are discussed in the text. The
green dashed lines represent the values of Rg

2 in both the panels. Panels
(c) and (d): z-component of the MSD, h(Drz)

2i, of a cluster crystal formed by
ultrasoft particles in equilibrium and under shear as functions of the strain,
_gt, at T = 0.4 (c) and T = 0.7 (d), respectively. The results are shown for six
different shear rates, _g = 10�2, 10�3, 10�4, 10�5 and 10�6 (as labeled in
panel (c)) and for the equilibrium state (i.e., for _g = 0). Results are based on
ensembles of N = 26 624 particles. The vertical lines correspond to the
maxima in the stress vs. strain curves shown in Fig. 2, i.e., they mark the
yield strain for the respective shear rate; note that these lines are drawn in
the same colours as the respective MSD curves.
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into a plateau (where the MSD attains a value of C10�2). Since
this plateau persists for _g = 0 over the entire duration of the
simulation (see the black dashed line in this panel) we
conclude that at equilibrium essentially no particle hopping
occurs. However, as soon as shear sets in we observe four
different regimes in the h(Drz)

2i-curves: beyond the ballistic
regime (which coincides throughout with the results obtained
for the equilibrium case) a plateau occurs where, again, h(Drz)

2i
assumes a value of C10�2. Now this plateau is of finite length
in time t and its extent decreases with increasing shear rate _g.
This region is then followed by a pronounced superdiffusive
regime, where h(Drz)

2i changes in an essentially discontinuous
manner by nearly one order of magnitude: this feature is – as
detailed below – a consequence of the sudden escape of
particles from the clusters. The abrupt change in h(Drz)

2i –
delimited in panel (a) of Fig. 4 by the aforementioned plateau
and the dashed horizontal line – is denoted by D2 (see below).
At this point it must be mentioned that the onset of the
superdiffusive behavior coincides with the yielding point of
the stress vs. strain curves (see discussion below). In passing we
note that such a particular superdiffusive behavior has also
been observed in glasses and supercooled liquids under shear,
corresponding there to the breaking of neighboring cages of
particles.26,70 In our system this superdiffusive regime is
followed by a smooth increase of the MSD with time; due to
the high numerical costs of the simulations we were not able to
collect data of sufficient statistical quality in this time window
which would allow us to extract the effective exponent of the
MSD and to make thereby more detailed conclusions on the
nature of this type of particle transport. Returning to
the superdiffusive regime, a more quantitative analysis reveals

that D ¼ ðla=
ffiffiffi
2
p
� 2RgÞ=2 ’ 0:58: in view of the fact that the

nearest neighbor distance between two clusters amounts to

la=
ffiffiffi
2
p
’ 1:41 and estimating the spatial extent of a cluster via

its radius of gyration, Rg C 0.12 (its value is denoted by green
dashed line in panel (a) of Fig. 4), we conclude that the abrupt
change in the MSD must be related to the hopping of the
particles from one cluster to a neighboring one. This inter-
pretation is also supported by two additional facts: (i) the actual
value of D is found to be independent of the shear rate; thus we
conclude that up to the yielding point particles are either
located in clusters or hop from one cluster to another one;
(ii) at this low temperature the hopping timescale, th({ts)
assumes an essentially infinite value (see panel (f) of Fig. 1).

The situation is distinctively different at the higher temperature
(T = 0.7) and possibly more intriguing; the related data are shown
in panel (b) of Fig. 4. Again, the MSD shows in the equilibrium state
the trivial ballistic behavior at short times, followed by a plateau
type region which extends over approximately two orders of
magnitude in time; eventually a diffusive process sets in and the
MSD grows again with time. Similar as in the low temperature case,
the MSD follows under shear initially the related curve of the
equilibrium state. Then – depending on the shear rate – the curves
of the MSD separate from the equilibrium data via a superdiffusive
behavior: the higher the shear rate, the earlier the onset of this
regime and the more pronounced the superdiffusivity (both in its

onset and extent); using the quantity D introduced above, we
observe that D decreases as the shear rate is lowered. However
for low shear rates (i.e., where ts c th) D is barely noticeable and
the transition between the different diffusive regimes becomes
rather smooth. Eventually, for _g = 10�7 the MSD curves for the
sheared and for the equilibrium state are hardly discernible. This
indicates that – although the hopping of particles (or, equivalently
the dynamics of the point defects) facilitates stress relaxation – the
yielding phenomenon is not entirely associated to the diffusion of
the particles.

At this point it should be recalled that cluster crystals are
intermediate between liquid-like and crystalline systems: on
one side they share features of periodicity of crystals, on the
other side they are characterized by liquid-like diffusion of
particles and a disordered intra-cluster disordered structure.
Therefore, we expect that the yielding of cluster crystals
should be based both on the diffusion of particles and on the
deformation of the underlying crystalline skeleton. Another
evidence for this hypothesis is provided by the fact that the
maximum in the stress vs. strain curves does not disappear at
low shear rates where ts c th.

Eventually we note that the above mentioned features are in
striking contrast to non-Newtonian fluids (such as supercooled
liquids,60,61,71 ferrofluids,72 polymers,73 mixtures of ferrofluids
and liquid crystals,74 to name a few) where only diffusion of
the particles is responsible for the stress relaxation, and the
maximum in the stress vs. strain response disappears at low
shear rates, i.e. where ts is comparable to structural relaxation
times. Also, at these (low) shear rates, the MSD of the particles
under shear coincides with the equilibrium MSD.60,61 In
contrast, in our cluster crystals, the MSD of particles under
shear deviates from the equilibrium MSD at the yielding point
even for the lowest shear rate. This suggests that shear induces
a deformation of the underlying FCC skeleton, a feature that we
shall investigate in more detail in the following sections.

To round up the discussion we now take an alternative view
on the data and discuss the MSDs as functions of the strain, _gt.
As mentioned already briefly above, our data show that the onset
of the superdiffusive regime coincides at both temperatures
considered with the onset of the yield strain (i.e., with the
maxima in the stress vs. strain curves). Panel (c) of Fig. 4 shows
the z-component of the MSD as a function of strain for T = 0.4
and for the shear rates considered in panel (a) of Fig. 4. The
dashed vertical lines mark the yield strains for this temperature,
as extracted from the stress vs. strain curves (see panel (a) of
Fig. 2). We observe that the yield strain weakly depends on the
shear rate and that the onset of the superdiffusive regime in the
MSD occurs essentially when the cluster crystal yields to
the stress. The situations is notably different for the higher
temperature, with the related data shown in panel (d) of Fig. 4:
again the values of the strain where yielding sets in are
weakly dependent on the shear rate. However, we observe two
distinctively different scenarios for high (i.e., _g C 10�2 to 10�3)
and low shear rates: in the former case, the superdiffusive
behavior indicates that yielding occurs – similar as for the low
temperature – via hopping processes from one cluster to the other;
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in the latter case the smooth variation of the MSDs as functions of
strain provide evidence that at lower shear rates yielding is mostly
supported by particle diffusion.

In view of the fact that the MSD is a microscopic quantity
while the stress–strain response is a macroscopic feature, the
above observations suggest that the signatures of yielding at the
microscopic scale can be characterized by the displacement of
particles from a reference configuration. Such an approach is,
for instance, used to identify dynamical heterogeneities at the
local scale in glassy systems under shear.28,70

Therefore, to characterize the yielding events at the micro-
scopic level we investigate in the following the structural evolution
of the cluster crystals under shear using displacements of
particles.

3.2.3 Microstructure under shear. We start our analysis at
the microscopic level and investigate the displacement field of
particles at the two selected temperatures (i.e., T = 0.7 and
T = 0.4) and different values for the shear rate. In the following
Figures the non-affine contribution to the displacement field
is color coded in two different manners: (i) by the absolute
value of its z-component (i.e., |Drz| – see the color code at
the right hand sides of the panels) and (ii) by the direction
of the displacement field in the (z,x)-plane, indicated via a
green arrow.

In panels (a) to (c) of Fig. 5 the non-affine displacement of
the particles at temperature T = 0.7 and for a (relatively high)
shear rate of _g = 10�3 is shown. Strain values of _gt = 0.1, 0.16,
and 0.2 have been considered; the corresponding states are
located along the strain vs. stress curve in the linear regime,
near, and beyond the yielding point, respectively (cf. Fig. 2).
We observe that for the former two cases all the particles have
a displacement field that is comparable in size; hence the
clusters show a similar extent of displacement. However, beyond
the yielding the data of |Drz| provide evidence for the formation
of slip-lines and that the clusters located along these lines
contain particles with high activity. In an effort to elucidate this
phenomenon in more detail, we have defined (here and for the
following) a threshold value for the non-affine displacement
|Drz|, namely |Drz| = 0.5 before yielding and |Drz| = 0.7 beyond
yielding in an effort to identify those particles that have
propagated over a distance that is equivalent to the nearest
neighbor cluster distance. In panels (d) to (f) of Fig. 5 only those
highly mobile particles are shown (via the above mentioned
color code) for the corresponding three strain values – see panels
(a) to (c). Our observations can be summarized as follows:
(i) with increasing strain the number of mobile particles
increases in all clusters, indicating a homogeneous deformation
of the cluster crystals up to the yielding point; (ii) at the single

Fig. 5 Front view of snapshots of a cluster crystal at strain values _gt = 0.1 (panel (a)), _gt = 0.16 (panel (b)), and _gt = 0.2 (panel (c)) for a temperature T = 0.7
and sheared with the rate _g = 10�3. The color axis in all the panels quantifies the non-affine displacement of the particles in the z-direction, i.e., |Drz|.
Panels (d)–(f): highly mobile particles tracked by defining a threshold value on the non-affine displacement, see text. The green arrows indicate the
direction of the displacement of highly the mobile particles.
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cluster level, the mobility of the particles increases in a spatially
heterogeneous manner; and (iii) localization of highly mobile
particles in the slip-bands occurs.

We now proceed to a lower shear rate, namely _g = 10�6, but
keep the temperature at T = 0.7. Here the situation is more
intriguing. The related data for the non-affine part of the
displacement field of the particles are shown in Fig. 6 where
we only display data for the highly active particles (as specified
above); panels (a) to (c) show results obtained for states with
strain values _gt = 0.1, 0.147, and 0.156, respectively. Similar as
in the case of the high shear rate (see Fig. 5), these state points
are chosen in the linear, near, and beyond yielding regime of
the stress vs. strain curve, see Fig. 2. Note that the values of
|Drz| now extend over the interval [0, 5] (see color code of Fig. 6).
Similar as in the preceding case we observe a homogeneous
deformation (below yielding) and the formation of slip-bands
(beyond yielding). However, and in contrast to the case of
the high shear rate the displacement vectors of the particles
(shown in panels (d) to (f) as a green vector) provide evidence of
an isotropic movement of the particles at strain values near
yielding; this phenomenon is due to the fact that for the low
shear rate the timescale of the hopping events of the particles is

shorter than the shear-induced timescale. Therefore, particles
hop before they feel the force due to the external deformation.
Eventually after yielding, the displacement of the particles is
again oriented along the shear direction.

Finally we proceed to the low temperature case (i.e., T = 0.4)
where the shear-induced effects are more prominent, while the
thermally induced disorder is not very pronounced. Fig. 7
shows the non-affine displacement of the particles at T = 0.4
and _g = 10�3. The snapshots shown in panels (a) to (c) have been
taken from state points with strain values _gt = 0.1, 0.17, and 0.21,
respectively; the state points are again located in the stress vs.
strain curve before (first two cases) and beyond (latter case)
yielding. Note that |Drz| now extends from 0 to 1.5. Again and
similar to the high temperature case, a homogeneous deforma-
tion is observed prior to the yielding and a strongly pronounced
post-yielding slip-band formation occurs. The displacement
vectors of the highly mobile particles (as defined above), shown
in the panels (d)–(f) provide the following evidence: (i) for state
points before yielding the orientations of the particles point
predominantly along the shear direction; (ii) in striking contrast
we observe that beyond yielding the displacement vectors point
along the direction of the slip-bands.

Fig. 6 Front view of snapshots of a cluster crystal at strain values _gt = 0.1 (panel (a)), _gt = 0.147 (panel (b)), and _gt = 0.156 (panel (c)) for a temperature
T = 0.7 and sheared with the rate _g = 10�6. Only the highly mobile particles are shown (see text). The color axis in all the panels quantifies the non-affine
displacement of the particles in the z-direction, i.e., |Drz|. Panels (d)–(f): highly mobile particles tracked by defining a threshold value on the non-affine
displacement, see text. The green arrows indicate the direction of the displacement of highly the mobile particles.
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The analysis of particle displacements under shear together
with MSDs suggest that yielding of cluster crystals involves
deformation of the underlying crystalline structure. As already
shown by Coslovich et al.51 particles hop under equilibrium
conditions in cluster crystals from one cluster to a neighboring
one, while preserving the FCC ordering of the skeleton.
Therefore, in an effort to understand the impact of shear on
this type of particle transport, we start by identifying the
skeleton of the cluster crystal by tracing the centers of mass
of the clusters and their time evolution under shear. For this
purpose, we focus in the following on the higher temperature
(i.e., T = 0.7): choosing in the following _g = 10�3 and _g = 10�6 we
obtain insight both to the high and the low shear rate regimes
(see Section 3.1). We first consider the shear rate _g = 10�3 which
represents in our nomenclature the high shear rate regime. We
choose one sample of our system and investigate systematically
the evolution of the original FCC skeleton as we steadily
increase the shear. We note that in cluster crystals it is
challenging to assign a unique label to the center of mass of
the clusters as clusters keep rearranging with increasing strain.
Therefore, tracking the time evolution of the centers of mass
or calculating two-time quantities (such as displacement of
particles from a reference time) is particularly challenging.

In this work, we do not attempt to calculate such quantities
for the centers of mass of clusters. Instead, we compare our
results at two or more strain points without matching the labels
of the center of mass of the clusters.

To this end we have marked along the stress vs. strain curve
(shown in panel (a) of Fig. 8) five values for the strain, each of
them being marked by a coloured circle and a numeric label:
the first one (coloured in grey) corresponds to the equilibrium
case, while the strain values marked in blue and green (the
latter one with label (i)) are located in the linear response
regime; the fourth value of strain (coloured in red and labeled
(ii)) is located at the maximum of the stress vs. strain curve,
while value (iii) (and colored in purple) has been chosen in the
transient regime beyond this maximum. Simulation snapshots
corresponding to states (i) to (iii) are shown in panels (b) to (d)
of Fig. 8; there the centers of mass of the clusters are coloured
according to their immediate vicinity: centers of mass with
twelve neighbors are shown in blue, while all other points of the
skeleton are colored in red. The respective radial distribution
functions are shown in the bottom row of this figure, using the
labeling and coloring introduced above. The snapshots and the
results for the radial distribution functions suggest that in
the linear regime of the stress vs. strain curve the FCC structure

Fig. 7 Front view of snapshots of a cluster crystal at strain values _gt = 0.1 (panel (a)), _gt = 0.17 (panel (b)), and _gt = 0.21 (panel (c)) for a temperature T = 0.4
and sheared with the rate _g = 10�3. The color axis in all the panels quantifies the non-affine displacement of the particles in the z-direction, i.e., |Drz|.
Panels (d)–(f): highly mobile particles tracked by defining a threshold value on the non-affine displacement, see text. The green arrows indicate the
direction of the displacement of highly the mobile particles.
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of the skeleton is marginally affected by the strain (case (i)): only
for a few centers of mass the ideal surrounding of twelve
neighbors is disturbed while the peaks in the g(r) are located
at the expected positions. However, close to the maximum in the
stress vs. strain curve (i.e., case (ii)) the peaks of g(r) broaden and the
characteristic pattern of the peak positions is lost; concomitantly
a significant fraction of centers of mass has lost its ideal FCC
surrounding. Eventually, in the transient regime (case (iii)) the
FCC order of the skeleton is almost completely destroyed: the
radial distribution function shows a liquid like behavior while a
few centers of mass have still preserved their ideal number of
twelve nearest neighbors. For the low shear rate, _g = 10�6, we
end up with essentially the same conclusions as for the high
shear rate case. Related results are now summarized in the
panels of Fig. 9: panel (a) shows the stress vs. strain curve
(defining the five selected values of strain), panels (b) to (d)
show the centers of mass of the clusters of a selected simulation
snapshot, while panels (e) to (g) show the corresponding radial
distribution functions g(r).

3.2.4 Characterizing the structure at the local scale under
shear. Local crystalline order can be conveniently analysed via
the Steinhardt order parameters or local bond order
parameters.75–78 In the following we use these parameters to
probe the evolution of the local structure of the skeleton of the
cluster crystal under shear.

To be more specific we calculate bond order parameters %q6

and %q4 which are defined as:76

�qlðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

2l þ 1

Xl
m¼�l

j�qlmðiÞj2

vuut ; (12)

with

�qlmðiÞ ¼
1

NnðiÞ þ 1

XNnðiÞ

k¼0
qlmðkÞ (13)

and

qlmðiÞ ¼
1

NnðiÞ
XNnðiÞ

j¼1
Ylmðr̂ijÞ: (14)

In relation (13) the sum includes all Nn(i) neighboring
clusters of cluster i and – via the (k = 0)-term – the cluster i
itself. Further, the Ylm(r̂ij) are the spherical harmonics with r̂ij

being the normalized displacement vector from the center-of-
mass of cluster i to the one of cluster j. Note that the above
definition of local bond order parameters involves an
additional averaging over the centers-of-mass of the clusters
in the surrounding second shell of cluster i. At a given strain,
we use the distance of the first minimum in the pair correlation

Fig. 8 Investigating the skeleton of a cluster crystal under shear – the high shear rate regime (i.e., _g = 10�3). Panel (a): stress vs. strain curve for a cluster
crystal at T = 0.7, exposed to a shear rate of _g = 10�3. Colored circles along this curve indicate selected values of shear (see text); their numbering refers to
the labels of the other panels. Panels (b)–(d): snapshot of the skeleton (in terms of the centers of mass of the clusters), shown for three different values of
strain ((i) – _gt = 0.1, (ii) – _gt = 0.166, and (iii) – _gt = 0.2): in these snapshots the centers of mass with twelve neighbors are shown in blue, while all other
centers of mass are shown in red. Panels (e) – (g): radial distribution functions, g(r), as functions of the distance, r, shown for the very same values of strain
as the corresponding snapshots of the skeletons in the panels above. The actual values of strain are shown in the upper right corner of the respective g(r)
panels. Results are based on ensembles of 26 624 particles.
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function to determine the neighbors of a center of mass of a
cluster.

Panels (a) and (b) of Fig. 10 show scatter plots – %q6 vs. %q4 – for
a cluster crystal at T = 0.7 which is exposed to shear with shear
rates _g = 10�3 and _g = 10�6, respectively. Data are plotted for the
equilibrium state (_gt = 0) and for four additional values of strain
(as labeled in the panels); the corresponding states are marked
in the stress vs. strain curves shown for the two shear rates in
panels (a) of Fig. 8 and 9, respectively, using the same
colour code.

Starting from the equilibrium state (where we observe an
essentially ideal FCC order) we find that both %q6 and %q4

decrease with the increasing strain, indicating a steady
decrease in the FCC order. However, in the state close to the
yield strain (represented by the red symbols) %q4 increases
substantially; note that the growth in %q4 is more pronounced
for the lower shear rate. Beyond the yield strain, both bond
order parameters assume – independent of the shear rate –
rather small values (purple symbols), providing evidence that
the system is now in a disordered state; this disorder seems to
be more pronounced for the higher shear rate.

The increase of %q4 near the yield point indicates the structural
changes that the cluster crystal undergoes at the local level. This
feature should also be reflected in the coordination number of
the clusters consistent with cubic or square in-planar ordering:
the pie plots shown in panels (c) and (d) of Fig. 10 provide
estimates for the fraction of cluster centers of mass
with different coordination numbers. The arrows in these plots
indicate the direction of increasing strain and the color map

shows the number of neighbors of a given center of mass. Thus,
the inner circle shows the coordination number at _gt = 0, and the
outer shell represents the relative values of the coordination
numbers for _gt = 0.1, i.e., close to the yield point of the respective
shear rates. From these data we conclude that – irrespective of
the shear rate – close to 93% of the cluster centers of mass have
twelve neighbors, indicating that – although the FCC ordering of
these centers decreases with increasing strain – a large fraction
of the centers maintains even close to the yield point the FCC
structure. We also learn that the cubic ordering (which should be
characterized by eight neighbors around a center of mass) does
not occur. Therefore, we conclude that the above mentioned
increase in %q4 must be connected to an increase in the in-plane
square ordering of the centers of mass.

To investigate this issue further we select among the clusters
those which have a %q4-value higher than a threshold value
(which we specify below) and calculate the average angle that
the center of mass of this cluster encloses with its neighbors.
These averages are defined as

hyðiÞi ¼
XNn

j¼1
yij ; and hfðiÞi ¼

XNn

j¼1
fij ; (15)

where, yij and fij are, respectively, the polar and azimuthal
angles (with respect to the coordinate system inherent to the
simulation cell) between the center of mass of a tagged cluster i
and one of its neighbors, carrying the index j. The angular
brackets denote an average over all the Nn neighboring clusters.
It should be noted that in an FCC ordering a cluster has four

Fig. 9 Investigating the skeleton of a cluster crystal under shear – the low shear rate regime. Investigations have been carried out at T = 0.7 and at a
shear rate _g = 10�6. Same as Fig. 8.
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in-plane neighbors and eight out-of-plane neighbors (i.e., both
four in the upper and the lower planes). In the ideal case the
values for the in-plane angles are f = 451 and y = 901, while for
the out-of-plane case the values of the four angles are given by
f1 = 901, y1 = 451, f2 = 01, and y2 = 451. These values lead to the
related average angles hfi = 451 and hyi = 601 for an ideal FCC
structure. We note that the angles are restricted throughout to
the first quadrant.

For the state where the strain is close to the yield point we
choose for the above threshold value %q4 4 0.2; this choice is
motivated by the fact that in equilibrium (where the FCC order
is represented in the most ideal manner), %q4 reaches values up
to %q4 B 0.2 (see panels (a) and (b) in Fig. 10). We note that we
have chosen for the equilibrium state clusters with %q4 4 0.12 as
this value is closer to the lower bound of the scatter plot %q4 vs.
%q6 of the equilibrium state; however, this choice has no specific
relevance for the following discussion. Panels (a) and (b) of
Fig. 11 show the related scatter plots hyi vs. hfi in equilibrium
( _gt = 0) and close to the yield point ( _gt = 0.1) for shear rates
_g = 10�3 and 10�6, respectively; in addition, the centers-of-mass
of these data clouds are highlighted. From the data compiled in
Fig. 11 we can make the following conclusions: while we obtain
for the equilibrium state the expected values, i.e., hfi = 451 and
hyi = 601, the value for hfi slightly decreases by B31 close to the
yield point (irrespective of the shear rate); in contrast,
the average polar angle, hyi, remains essentially unaffected by
the shear. These findings are a clear indication of a planar shift
of clusters along the x-direction.

To better understand this issue we choose one cluster with
large %q4-value and analyze the arrangement of its neighboring
clusters. Panels (a) and (b) of Fig. 12 show the positions of
neighboring clusters around a tagged cluster equilibrium and
for a cluster (with %q4 = 0.2234) at _gt = 0.147 (obtained for a shear
rate _g = 10�6), respectively. In both cases, the central cluster is
shown in red while its neighboring clusters are coloured in
green and blue: the three neighbors located on the foreground
(x,z)-plane are highlighted in green. In the equilibrium state,
the green-coloured clusters are arranged at the edges of an
equilateral triangle; at the yield point, however, one can notice
a substantial shift of the positions of the green clusters along
the positive x-direction: this is visualized in panel (b) of Fig. 12,
where the dashed triangle connects the positions of the cluster
in equilibrium. This finding suggests that a shift of the clusters
takes place in the (x,z)-plane along the x-direction. Experiments

Fig. 10 Panel (a): scatter plot of the bond order parameters %q6 and %q4,
defined in eqn (12) for strain values _gt = 0, 0.05, 0.1, 0.166 and 0.2. The shear
rate is fixed to _g = 10�3, further T = 0.7. Panel (b): scatter plot of the bond
order parameters %q6 and %q4, defined in eqn (12) for strain values _gt = 0, 0.05,
0.1, 0.147 and 0.156. The shear rate is fixed to _g = 10�6, further T = 0.7.
Panels (c) and (d): nested pie plots showing the fraction of centers of mass
of clusters with different numbers of neighbors for shear rates _g = 10�3

(panel (c)) and _g = 10�6 (panel (d)). The direction of the arrow points in both
panels in the direction of increasing strain. The color code indicates the
number of neighbors. Results are based on ensembles of 26 624 particles.

Fig. 11 Scatter plots of the average polar hyi and the average azimuthal
hfi angles in a cluster crystal: black symbols – equilibrium state, green
symbols – obtained for a strain of _gt = 0.1; results are based on ensembles
of N = 26 624 particles for different values of the strain (as labeled). Results
are shown for shear rates _g = 10�3 (panel (a)) and _g = 10�6 (panel (b)),
respectively. The blue and red circles represent in both the panels
the center-of-mass of the black and the green data clouds, respectively.
The dashed lines mark the position of the red and the blue symbols in the
coordinate system.

Fig. 12 Panel (a): immediate neighborhood of a tagged cluster (red) in the
equilibrium state at T = 0.7. neighboring clusters are shown in blue and
green: the three neighbors located in the forefront (x,z)-plane are marked
in green and are connected by solid black lines. Panel (b): immediate
neighborhood of a tagged cluster (red) with %q4 = 0.2234, as obtained
under shear at a strain _gt = 0.147 (the shear rate is _g = 10�6). The color
coding of the spheres is same as the one in panel (a). The solid black lines
connect the green spheres while the dashed black lines represent the
related configuration of green spheres in the equilibrium state.
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and computer simulations on soft colloidal crystals in two
dimensions reveal that stress relaxation involves a highly
cooperative movement of particles in the system,79 meaning
that – while the positions of the particles remain fixed within a
plane – the entire planes are shifted. Therefore we also expect a
cooperative motion of clusters in the (x,z)-plane along the shear
direction. In an effort to further analyse such a cooperative
movement of the clusters, we select at a given value of the strain
an (x,z)-planes and tag one cluster: we then calculate the angles
enclosed by the bonds of this cluster with its neighbors which
are located in the layer above the tagged cluster.

Under shear different (x,y)-planes are shifted in a cooperative
manner along the x-direction; consequently an (x,z)-plane corre-
sponds to a vertical cross-section of all these moving (x,y)-layers
for a given y. Two such representative (x,z)-planes, selected at
some y-position, are shown in panels (a) and (c) of Fig. 13 for the
two considered shear rates. The angles fL and fR formed by
the bonds of the tagged cluster with its nearest neighbors in the
layer above are highlighted in panel (a) of Fig. 13. Now we
calculate these angle for all clusters and plot the data in a scatter
plot, displayed in panels (b) and (d) of Fig. 13 for shear rates,
_g = 10�3 and 10�6, respectively; the vertical and horizontal lines
indicate (along with the red and blue circles) the ‘‘centers-of-
mass’’ of these data clouds. Clearly, in the equilibrium state,

both the angles attain values close to 451. However, near the yield
point, i.e., at _gt = 0.1, fR decreases by B31 while fL increases by
the same amount, indicating the cooperative planar movement
of the clusters in different layers along the x-direction.

3.2.5 Comparison with the soft sphere FCC crystal under
shear. The FCC structure of cluster crystals at high density is
the consequence of the fact that the densely packed clusters
formed by the ultrasoft particles can essentially be considered
as soft spheres. To round up our considerations we repeat the
preceding analysis and apply it to a system of soft spheres, with
interactions specified in eqn (7) in Subsection 2.1. The ensemble
consists of N = 4000 particles; we consider a temperature of
T = 0.01 and a density r = 1.2. For these parameters the systems
forms in equilibrium an FCC crystal. Due to the finite temperature
the crystal contains defects, whose concentration can be consid-
ered to be small: previous work by Bennett and Alder80 and by
Pronk and Frenkel41 provide an estimate of the point defect
concentration in a hard sphere FCC crystal, which is of the order
of 10�8. Even though our system is – due to the 1/r12-decay of the
repulsion – softer than pure hard spheres, we do not expect in our
system a considerably higher defect concentration than the value
given above. In addition, the low temperature ensures that in
equilibrium the defect concentration in the HS systems remains
negligible as compared to the cluster crystals.

We now shear this system with the shear rate _g = 10�6,
applying the same shearing protocol as for the cluster crystals.
The stress vs. strain response of the soft sphere system,
together with the related data of the cluster crystals are
compared in panel (a) of Fig. 14: in an effort to superpose
these curves we have scaled the stress by its value at the peak
and the strain by the yield strain value. For strain values up to
the yielding point one can observe a similar response of the two
systems.

Further, the local bond order parameters, %q6 and %q4, shown
in panel (b) of Fig. 14 as a scatter plot display a trend similar to
the one observed in cluster crystals (cf. panels (a) and (b) in
Fig. 10). The only remarkable difference is related to the fact
that at _gt = 0.1 (i.e., close to the stress maximum) %q4 attains
values that are considerably higher than in cluster crystals.
As expected, this feature is related to the cooperative planar
movement of particles which can be traced via the planer
angles fL and fR, defined above for the cluster crystal.
Panel (c) of Fig. 14 shows a scatter plot of the angles fL

and fR, both in equilibrium and as well as under shear
with _gt = 0.1 (i.e., close to the yield point). Again, in equilibrium
both angles are distributed around 451 (again, the center of
the data cloud is highlighted by a blue circle). However, close to
the yield point, at _gt = 0.1, fL increases by B31 and fR

decreases by the same amount, an observation which is
consistent with our findings for the cluster crystal (cf.
panels (b) and (d) of Fig. 13). Due to the fact that in a crystal
formed by soft spheres each lattice position is occupied by one
single particle, while in a cluster crystal these positions are
occupied by a cluster of ultrasoft particles which oscillate
around these positions, the data clouds are more compact in
the this case.

Fig. 13 Panel (a): centers of mass of the clusters in the (x,z)-plane in the
equilibrium state (black circles) and at strain _gt = 0.1 (green circles) for a
shear rate _g = 10�3. The solid black lines enclose the planar angels fL and
fR. Panel (b): scatter plot of the planar angles fL and fR for a shear rate
_g = 10�3 at values of the strain of _gt = 0 and 0.1 (as labeled). Panel (c): center
of mass of the clusters in the (x,z)-plane in the equilibrium state (black circles)
and at strain _gt = 0.1 (green circles) for a shear rate _g = 10�6. Panel (d): scatter
plot of the planar angles fL and fR for shear rate _g = 10�6 at values of strain
_gt = 0 and 0.1 (as labeled). In panels (b) and (d) the blue and red circles
represent the centres of mass of the data clouds for values of strain _gt = 0 and
0.1, respectively. The blue and red dashed lines mark the angles fL and fR of
the centers of mass of the respective data clouds.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
A

ug
us

t 2
02

1.
 D

ow
nl

oa
de

d 
on

 8
/1

/2
02

5 
4:

51
:0

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sm00662b


8550 |  Soft Matter, 2021, 17, 8536–8552 This journal is © The Royal Society of Chemistry 2021

Summarizing we find that the yielding behavior of the
cluster crystals is very similar to the one of FCC crystals, except
that (i) the increase in the %q4 and (ii) changes in the planar
angles are under shear less pronounced; this might be the
consequence of diffusing point defects, indicating that the
diffusion of particles (or equivalently, of point defects) should
have a strong impact on the transient behavior of the cluster
crystals and facilitating there by a shear-induced flow in these
systems.

4 Summary and outlook

In this contribution we have investigated the yielding of an
archetypical model of a defect-rich crystal, a so-called cluster
crystal; in such a system the particles interact via an ultrasoft
(i.e., bounded and repulsive) potential and form stable clusters
of overlapping particles which populate the lattice sites of an
FCC crystal. With the particles incessantly moving from one
cluster to a neighboring one such a cluster crystal represents a
fascinating system: particles keep diffusing, while the FCC
ordering of the system is still maintained. In this sense such
crystals can be considered with respect to their vacancy
population ‘‘intermediate between’’ a hard sphere crystal (with
extremely few defects) and an amorphous solid.

Our results are based on computer simulations with fairly
large ensembles (involving up to 52 000 particles) under NVT
conditions and using a DPD thermostat. Based on existing
results, temperature and density have been chosen such
that each cluster contains on the average 13 particles. Planar
Couette shear is imposed along the x-direction on the system
via Lees-Edwards boundary conditions. Shear rates _g (measured
in internal time units) range from _g = 10�7 to 10�1. Two
different values for the temperature have been considered:
(i) a rather low one where particles remain essentially localized

in their cluster: here the characteristic hopping (or diffusion)
time th, is considerably larger than the accessible simulation
time; (ii) a high value where particles are allowed to diffuse:
now th is comparable to the total simulation time and we can
access both high (i.e., 1/ _g o th) and low (i.e., 1/ _g 4 th) shear
rate regimes. The main focus of the work is to understand the
role of the diffusion timescale of particles on the yielding
behavior of the system under shear.

Irrespective of the temperature we find that throughout the
stress–strain curves have a very similar shape. The values of
yield stress (i.e., the maximum in these stress–strain curves)
obtained for different temperatures and shear rates can be
mapped as functions of _g with remarkable accuracy onto a
single master curve for which we have assumed a power-law
function with a temperature independent exponent. This result
confirms that the macroscopic yielding behavior of cluster
crystals remains independent of temperature. At the micro-
scopic level we have systematically investigated the mean
square displacement: at low temperatures the cluster crystal
reacts on shear via a superdiffusive behavior of the particles,
which essentially jump at a shear-independent value of strain
from one cluster to a neighboring one. At the higher tempera-
ture this feature occurs only at rather large shear rates, while at
lower shear rates the transition between the ballistic and the
diffusive regime is rather smooth. We note that the thereby
the diffusion is enhanced, even though the shear-induced
timescales are much larger than the equilibrium diffusion
timescales. The analysis of the non-affine displacement of
particles (in combination with the data of the MSD presented
in Fig. 4) indicates that the yielding of cluster crystals is not
entirely related to the simple diffusion of particles; it rather
involves the deformation of the underlying crystalline structure,
which can be characterized by centers of mass of the clusters.
Identifying and tracing the centers of mass of the clusters we
demonstrate (on the basis of bond order parameters %q4 and %q6)

Fig. 14 Panel (a): scaled stress, sxz/sp, as a function of scaled strain, _gt/gp, where gp is the strain where the respective system yields at the shear rate _g.
Data are shown for a soft sphere FCC crystal (label SS-FCC) and for cluster crystals (label CC) at T = 0.4 and 0.7. All systems have been exposed to shear
with a shear rate _g = 10�6. Colored circles mark states along the stress–strain curve that are discussed in the text and the other panels. Panel (b): scatter
plot of the averaged local bond order parameters, %q6 and %q4 for the FCC system formed by soft spheres, for a shear rate _g = 10�6 at values of strain _gt = 0,
0.05, 0.1, 0.13, 0.152 (as labeled). Panel (c): scatter plot of the planar angles, fL and fR, for the FCC system formed by soft spheres for a shear rate _g = 10�6

at values of strains, _gt = 0 and _gt = 0.1 (as labeled). The blue and red circles in panel (c) represent the centre of mass of the data clouds for values of strain
_gt = 0 and 0.1, respectively. The blue and red dashed lines mark the angles fL and fR of the centers of mass of the respective data clouds.
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that the deformation of cluster crystals under shear induces the
yielding of the underlying FCC structure. Plastic deformation of
the crystal results in the modification of the internal character-
istic length scale. From a closer analysis of these quantities
along the strain–stress curve we conclude that the reaction of
the cluster crystal on shear is related to a cooperative move-
ment of clusters in different layers along the shear direction.
This behavior is reminiscent of FCC crystals formed by particles
with strongly repulsive interactions: to confirm this conjecture
on a quantitative level we have performed complementary
investigations on an FCC crystal where particles interact via
the (repulsive) Weeks-Chandler-Andersen potential and observe
similar findings. We conclude that the clusters of a cluster
crystal can essentially be viewed as ‘‘effective’’, soft and repul-
sive spheres.

With all this in mind our MD simulations reveal that the
yielding of cluster crystals depends on the deformation of the
underlying FCC structure, while the diffusion of individual
particles essentially does not affect the yielding scenario.
Further we can conclude that the yielding scenario in cluster
crystals is similar to the one of a soft-sphere FCC crystal, which
primarily involves the deformation of the underlying crystalline
structure.

We expect that the main results of our contribution – i.e.,
that the diffusion of particles is not the primary mechanism of
stress relaxation in cluster crystals, but rather the deformation
of the underlying FCC structure which is responsible for the
stress relaxation – will remain valid for defect-rich crystals.
This finding would then induce that topological defects
(such as dislocations) do play an essential role in the yielding
of such crystals. Therefore, it will be interesting to compare our
results with the predictions of the recently proposed micro-
scopic theory for the deformation of defect-free crystals as a
diffusion of point defects does not alter the yielding scenario of
soft crystals.40,81 Furthermore, this indicates the necessity
of identifying elementary plastic events at the microscopic
level, which further involves the characterization of particle
rearrangements. In cluster crystals, such a characterization of
defects includes identifying: (i) the shear transformation zones
in the clusters, which contain disordered arrangement of
particles and (ii) dislocation defects in the underlying crystal-
line structure of the COMs of clusters.

We note that the component of the MSD of particles
in the gradient direction which quantifies the non-affine
displacement of particles provides the information about
particle displacements and indicates that the yielding event
is associated with the hopping of particles. Our results
demonstrate that the diffusion of point-defects strongly
affects the yield stress and the transient behavior of
crystals under shear. However, the characterization of
dislocation defects in the underline crystal structure and
local rearrangement of particles inside a cluster is urgently
required. Such studies are often performed using quasistatic
shear protocol under athermal conditions in order to avoid
thermal disorder; this will be the topic of subsequent
investigations.
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