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Interplay between hysteresis and nonlocality
during onset and arrest of flow in granular
materials†

Saviz Mowlavi and Ken Kamrin *

The jamming transition in granular materials is well-known for exhibiting hysteresis, wherein the level of

shear stress required to trigger flow is larger than that below which flow stops. Although such behavior

is typically modeled as a simple non-monotonic flow rule, the rheology of granular materials is also

nonlocal due to cooperativity at the grain scale, leading for instance to increased strengthening of the flow

threshold as system size is reduced. We investigate how these two effects – hysteresis and nonlocality –

couple with each other by incorporating non-monotonicity of the flow rule into the nonlocal granular

fluidity (NGF) model, a nonlocal constitutive model for granular flows. By artificially tuning the strength of

nonlocal diffusion, we demonstrate that both ingredients are key to explaining certain features of the

hysteretic transition between flow and arrest. Finally, we assess the ability of the NGF model to quantitatively

predict material behavior both around the transition and in the flowing regime, through stress-driven

discrete element method (DEM) simulations of flow onset and arrest in various geometries. Along the way,

we develop a new methodology to compare deterministic model predictions with the stochastic behavior

exhibited by the DEM simulations around the jamming transition.

1 Introduction

Granular materials are well-known for displaying both solid-
like and fluid-like behavior depending on their internal stress
state.1–3 Flow can be induced or arrested through external
loading variations, which has direct implications for a wide
range of catastrophic geophysical phenomena such as land-
slides, avalanches and earthquakes.4–6 The transition between
solid-like and liquid-like behavior in frictional granular media
is characterized by several unique macroscopic features,
which have been uncovered through simple experiments in
model systems.7 Fig. 1 showcases typical results from such
experiments, where flow is triggered then arrested by ramping
up and down the applied stress in (a) an annular shear cell,8 (b)
a layer of grains on an inclined plane,9 and (c) a partially-filled
rotating drum.10 The features revealed in these experiments
are universal to most geometries and can be outlined as
follows:

(F1) the level of stress required to trigger flow is larger than
that below which flow stops, leading to a hysteresis of the flow
velocity as the applied stress is ramped up and down;

(F2) the onset of flow is accompanied by a finite jump in the
velocity of the system;

(F3) the critical stresses for onset and arrest of flow depend
on the size‡ of the system, with smaller system sizes displaying
increased strengthening.

Each feature is directly relevant to geophysical events such
as landslides and avalanches, since (F1) controls the mobilized
mass that flows down, (F2) explains why they are so spontaneous
and catastrophic, and (F3) determines the circumstances under
which they might occur. The objective of the present work is to
formulate a continuum model that is able to describe quantitatively
the onset and arrest of flow in frictional granular materials
in various two-dimensional geometries, and analyze how its
constituent ingredients play a role in reproducing each of these
three features, with particular focus on geometries displaying
inhomogeneous flow fields.

It is now well accepted that dense and homogeneous flows
of grains follow the m(I) constitutive relationship, which states
that the stress ratio m and the inertial number I are related
through a one-to-one function m = mloc(I).7,11 In two dimensions,

m = t/P is the ratio of shear stress t to pressure P, and I ¼ _g
ffiffiffiffiffiffiffiffiffiffi
m=P

p
is the strain rate _g nondimensionalized with a particle-wise
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rearrangement time scale formed by the mean grain mass m and
confining pressure P. While mloc(I) has long been believed to
be a monotonic function of I, several recent experiments12–15

and simulations16,17 have revealed the existence at very low I of
a strain-rate weakening regime, wherein the stress ratio m
decreases with increasing I. One possible non-monotonic
functional form is

mlocðIÞ ¼ ms þ
m2 � ms

ðm2 � msÞ=ðbI þ wðI ; kÞÞ þ 1
; (1)

where ms, m2, and b are dimensionless rheological constants,
k = kn/P a dimensionless stiffness with kn the grain stiffness, and
w is a decreasing function of I that accounts for the strain-rate
weakening regime. The microscopic origin of the strain-rate
weakening regime has recently come under debate, with some
studies arguing that it is caused by inertia of the grains,17–19

while others observing velocity-weakening behavior in over-
damped, inertia-less particulate media.14 The present work is
not concerned with this particular issue, and we simply leave
open the possibility for the amount of strain-rate weakening
to depend on the grain stiffness through the dimensionless
parameter k entering w. In any case, the non-monotonicity of
(1) necessarily implies that features (F1) and (F2) above are
realized in homogeneous flows: the level of stress required to
trigger flow is higher than that at which flow stops, and flow
onset is characterized by a velocity jump.20,21

However, the m(I) constitutive relationship breaks down in
inhomogeneous flows, in the sense that m is no longer a one-to-
one function of I.22,23 Due to the finite size of the grains,
velocity fluctuations generated at an arbitrary location will
spread over some grain-size-dependent correlation length and
change the rheology of the neighboring material,24–27 resulting
in wider shear regions than are predicted by the m(I) rheology,
especially in the quasi-static limit.7 Such spatial cooperativity at
the scale of individual grains also explains why thinner layers
on an inclined plane start flowing at higher inclination angles
than thicker layers, despite the stress ratio m being independent

of the layer height.7 Nonlocal rheological models, which incorporate
an intrinsic length scale, have been shown to capture several of
these phenomena.28 Here, we focus on the nonlocal granular
fluidity (NGF) model,29,30 which relates the stress ratio and strain
rate through a granular fluidity field g = _g/m that is governed by a
reaction–diffusion partial differential equation (PDE). Our choice of
the NGF model stems from its ability to reproduce the system-size
dependence of the flow threshold in various geometries,31,32 which
partially explains feature (F3) above. But the current formulation of
the NGF model reduces to the monotonic form of the mloc(I)
relationship in homogeneous flow conditions, meaning that the
model does not have a built-in mechanism to account for the
remaining features (F1) and (F2).

In this paper, we modify the NGF model so that it instead
reduces to the non-monotonic form of the mloc(I) relationship,
eqn (1), in homogeneous flows. By computing time-dependent
model predictions in a stress-driven planar shear configuration
under gravity, we evaluate the specific ways in which nonlocality
and non-monotonicity contribute to each of the three features
(F1–F3) of the flow-arrest transition in inhomogeneous flows.
We show that inclusion of, and interplay between both ingredients
is necessary to reproduce all three features, in ways sometimes
surprising: the planar shear with gravity configuration displays a
finite velocity jump during onset of flow only when both non-
monotonicity and nonlocality are present. In a second part, we
assess the capability of the modified NGF model to predict
quantitatively the behavior of dense granular materials both
around the flow-arrest transition as well as in the flowing regime.
To this effect, we calibrate the model using discrete element
method (DEM) simulations in the simple shear geometry shown
in Fig. 2(a), and we compare predictions of the calibrated model
against stress-driven DEM simulations in the other geometries
displayed in Fig. 2(b) and (c), namely plane shear under gravity
and inclined plane.

These two configurations are both subject to nonlocal effects
as a result of the spatial inhomogeneity of their flow fields, but
they critically differ in an important way – in plane shear with

Fig. 1 Previous experimental investigations of the flow threshold in various geometries. (a) Annular shear cell:8 ratio of shear stress to pressure at the
inner wall, mw, versus dimensionless mean strain rate, _g

ffiffiffiffiffiffiffiffi
d=g

p
, for increasing and decreasing torque applied to the inner cylinder. (b) Inclined plane:9 angles

of inclination at flow onset and arrest, ystart and ystop, versus dimensionless layer thickness, H/d. (c) Rotating drum:10 angles of inclination at flow onset and
arrest, ystart and ystop, versus dimensionless drum width, W/d.
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gravity, flow inhomogeneity is mostly a consequence of the
spatial dependence of the stress ratio m, while it is mainly
caused by the rough base in inclined plane flow.32 We observe
that the accuracy of the NGF model depends on which of these
two mechanisms is at play, with predictions being accurate in
the case of plane shear with gravity but less so for inclined
plane, which we ultimately attribute to the role played by the
boundary conditions.

The remainder of this paper is organized as follows.
In Section 2, we present a modified NGF model that incorporates
a non-monotonic local rheology, and we evaluate the combined
effects of nonlocality and non-monotonicity on the features
of the flow-arrest transition. We then compare in Section 3
predictions from the NGF model with DEM simulation results
in stress-driven planar shear with gravity and inclined plane
configurations. We close the paper with concluding remarks in
Section 4.

2 Nonlocal granular rheology

In this section, we discuss our nonlocal continuum modelling
approach based on the nonlocal granular fluidity (NGF) model.
We begin by presenting the NGF model in its current form,
which does not capture the hysteresis of the flow-arrest
transition. We then describe the incorporation of bistable

behavior into the NGF model. Finally, we evaluate the
combined effects of bistability and nonlocality on the qualitative
behavior of the flow-arrest transition.

2.1 Nonlocal model without hysteresis

Extending earlier fluidity-based nonlocal models for concentrated
emulsions25,33,34 to granular materials, the NGF model introduces
a positive granular fluidity field g that relates the strain rate _g with
the stress ratio m through the following two constitutive equations:

_g = gm, (2a)

t0 _g ¼ A2d2r2g� ðm2 � msÞðms � mÞ
m2 � m

g� b

ffiffiffiffi
m

P

r
mg2; (2b)

where t0 is a constant timescale associated with the dynamics of
g, and the nonlocal amplitude A 4 0 is a dimensionless scalar
parameter quantifying the strength of spatial cooperativity in
the flow. As a side note, we mention that recent studies35–37

have endowed the granular fluidity field with a clear physical
meaning – g is a purely kinematic quantity related to the
velocity fluctuations dv, grain size d and solid fraction f
through g = (dv/d)F(f), where F depends solely on f.

The flow rule (2a) states that the strain rate _g is directly
proportional to the fluidity g. Therefore, there can only be flow
provided g is nonzero, and the nonlocal granular rheology is
driven by the dynamics of eqn (2b) for the fluidity. The latter

Fig. 2 Geometries considered in this study: (a) plane simple shear, (b) plane shear under gravity, and (c) inclined plane flows. Particles that are free to
flow are colored according to their relative velocity magnitude, and fixed wall particles are shown in brown.

Fig. 3 Steady-state solutions of the local limit of the NGF model for homogeneous flows, without hysteresis (thick lines) and with hysteresis (thin lines).
(a) Behavior of F(g;m,P) and Fh(g;m,P) in (4) and (9), showing the existence of zero, one or two roots for different stress ratios m. (b) Unstable (red) and stable
(green) steady-state local solutions gloc as a function of m. (c) Resultant local rheology mloc(I), with both the unstable (red) and stable (green) branches
shown. The model with hysteresis displays a strain-rate weakening regime absent in the model without hysteresis.
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takes the form of a reaction–diffusion equation, and its
behavior can be understood as follows.

In the absence of boundary effects or nonuniformities in the
stress ratio m, the g field becomes spatially uniform and (2b)
reduces to the simple dynamical system

t0 _g ¼ �ðm2 � msÞðms � mÞ
m2 � m

g� b

ffiffiffiffi
m

P

r
mg2 � Fðg; m;PÞg; (3)

where F(g;m,P) is a simple linear function of g. The steady
behavior of the system is then governed by the steady-state
solutions gloc of (3), which we illustrate by the thick lines in
Fig. 3 using arbitrary values§ for ms = 0.25, m2, b, and P. When
m r ms, the function F(g;m,P) o 0 for all g Z 0 as shown in
Fig. 3(a), hence (3) only admits the stable, arrested steady state
gloc = 0, represented by the horizontal part of the green branch
in Fig. 3(b). When m 4 ms, the linear function F(g;m,P) acquires
one positive root and F(g = 0;m,P) 4 0, which has two
consequences. First, the arrested steady state becomes
unstable, shown by the red branch in Fig. 3(b). Second, a
stable, flowing steady-state solution gloc(m) 4 0 emerges,
represented by the positive green branch in Fig. 3(b). Using
the flow rule (2a) together with the definition of the inertial
number I, the flowing and arrested stable solutions can be
inverted and expressed as

mlocðIÞ ¼ ms þ
m2 � ms

ðm2 � msÞ=bI þ 1
; (4)

for I 4 0, and mloc r ms otherwise. This relationship is pictured
in green in Fig. 3(c), together with the unstable arrested
solution above ms in red. Therefore, the NGF model reduces
to the local m(I) rheology in steady and homogeneous flows
such as plane shear without gravity.

In the presence of boundary effects or nonuniformities in
the stress ratio m, however, the diffusion term in (2b) spreads the
granular fluidity over a cooperativity length scale proportional to
the grain size d, resulting in a nonlocal flow rule (2a). Regions
where m 4 ms act as stress-driven sources of granular fluidity.
The fluidity is then diffused towards lower-stress regions or
boundaries. Such nonlocal, cooperative effects have manifold
consequences, and the NGF model explains many phenomena
evading local rheological models. For instance, the model
recovers the decaying motion of grains in regions where
mo ms

23,30,38 as well as the so-called secondary rheology, wherein
flow anywhere in a granular media removes the yield stress
elsewhere.39,40 Conversely, the model is able to explain the
strengthening of the flow threshold with decreasing system
size,31,32 which is caused by boundaries or low-stress regions
preventing flow in other regions where m 4 ms unless m is large
enough. This last property relates to feature (F3) mentioned in
the introduction. Yet, the current form of the NGF model is
unable to reproduce features (F1) and (F2) due to the mono-
tonicity of its limiting local rheology (4).

2.2 Nonlocal model with hysteresis

We now discuss the inclusion of non-monotonicity of the local
rheological response into the NGF model. Taking inspiration
from previous hysteretic nonlocal models,41,42 we add a new
term to the right-hand side of the fluidity eqn (2b) giving the
following updated set of fluidity equations:

_g = gm, (5a)

t0 _g ¼ A2d2r2g� ðm2 � msÞðms � mÞ
m2 � m

g� b

ffiffiffiffi
m

P

r
mg2

� wðg; m;PÞg;
(5b)

where the new term w(g;m,P) takes the form

wðg; m;PÞ ¼ a 1� tanh c

ffiffiffiffi
m

P

r
mgkn

� �� �
; (6)

with a, c, n constant scalar parameters, and k = kn/P the
nondimensional particle stiffness. Here, we choose to express
the new term w with a tanh function so that it vanishes for large
g, so that its influence is restricted to zones near the jamming
transition.

As before, we begin by evaluating the dynamics of the g field
for the case of homogeneous flows, in which g is spatially
uniform and (5b) reduces to the simple dynamical system

t0 _g ¼ � ðm2 � msÞðms � mÞ
m2 � m

g� b

ffiffiffiffi
m

P

r
mg2 � wðg; m;PÞg

� Fhðg; m;PÞg;
(7)

where Fh(g;m,P) is a function of g. Contrary to the previous case
without hysteresis, the presence of the w term induces a
decrease in Fh(g;m,P) when g approaches zero, as illustrated by
the thin lines in Fig. 3(a) using the same parameter values as
before and new arbitrary values for the parameters of w. As a
result, there exists a range of stress ratios m�omom�s in which
the function Fh(g;m,P) inherits a second positive root, so that (7)
admits two flowing steady-state solutions gloc(m) 4 0, one stable
and one unstable, shown by the thin lines in Fig. 3(b). These
two flowing solution branches merge at m = m*. The stable
branch reverts for m4 m�s to the same flowing solution as the
NGF model without hysteresis, while the unstable branch
merges at m ¼ m�s with the arrested steady-state solution
gloc = 0, which remains stable until m exceeds m�s . Collecting
the pieces, the steady-state solutions of (7) can be expressed in
terms of the inertial number I as

mlocðIÞ ¼ ms þ
m2 � ms

ðm2 � msÞ=ðbI þ wðI ; kÞÞ þ 1
; (8)

for I 4 0, and mloc � m�s otherwise. The function w is now
formulated in terms of I and k as

w(I;k) = a[1 � tanh(cIkn)], (9)

and the static yield stress ratio m�s is obtained as

m�s ¼ mlocðI ! 0Þ ¼ msðm2 � msÞ þ am2
m2 � ms þ a

: (10)

§ We note that the qualitative behavior of the model is independent of its specific
parameter values. The latter are therefore chosen to be reasonably close to the
calibrated values obtained later in Section 3.1, while displaying the hysteretic
behavior of the model with enough clarity in Fig. 3 and 4.
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Thus, the modified NGF model reduces to the non-monotonic
m(I) rheology (1) in steady homogeneous flows, and the corres-
ponding stable and unstable branches are displayed by the thin
green and red lines in Fig. 3(c). In the quasi-static, low-I regime,
the presence of w induces a weakening relationship between m
and I. For higher values of I, the vanishing of w leads to a strain-rate
strengthening regime in which the non-monotonic local
rheology (8) converges to its monotonic counterpart (4). The
crossover between the two regimes occurs at dmloc/dI = 0, which
corresponds to

I� ¼ 1

ckn
sech�1

ffiffiffiffiffiffiffiffiffiffi
b

ackn

r
and m� ¼ mlocðI�Þ: (11)

In agreement with force balance arguments,20 the strain-rate
weakening regime is unstable while the strain-rate strengthening
regime is stable. Since the latter exists for m above m* and the
arrested solution is stable below m�s , there exist two stable steady-
state solutions – one flowing and one arrested – in the range
m�omom�s . In the absence of flow gradients, this bistable
behavior generates hysteresis when the stress ratio m is ramped
up and down: flow is triggered at m�s but stops at a lower m*.
In addition, the onset of flow is accompanied by a finite jump in
the velocity of the system, as the inertial number jumps from the
arrested solution to the stable flowing solution. Hence features
(F1) and (F2) are accounted for, but it is unclear whether this
would hold for inhomogeneous flow, in the presence of nonlocal
diffusion imparted by boundaries or nonuniformities in the
stress ratio.

2.3 Interplay between hysteresis and nonlocality

We now investigate qualitatively the combined effects of non-
monotonicity and nonlocal diffusion on the characteristics of
the flow-arrest transition in the presence of a spatially-varying
stress ratio. To do so, we calculate quasi-steady, stress-driven
predictions of the NGF model with hysteresis in the plane shear
under gravity configuration pictured in Fig. 2(b), where flow
occurs along the x-direction and gravity acts orthogonally along
the z-direction. A shear stress tw and pressure Pw are applied
at the top wall, imparting under quasi-steady conditions a
constant shear stress t(z) = tw and a nonuniform pressure
P(z) = Pw + frsGz, where rs is the grain density, f the mean
area packing fraction and G the acceleration of gravity. The
ratio of shear stress to pressure is thus given by

mðzÞ ¼ tðzÞ
PðzÞ ¼

mw
1þ z=‘

; (12)

where mw = tw/Pw is the applied stress ratio at the top wall, and
c = Pw/frsG is a loading length scale measuring the relative
importance of the pressure imparted by the top wall versus that
due to the weight of the grains. Critically, c is inversely
proportional with the degree of nonuniformity of the stress
ratio (12) and, thus, the strength of nonlocal effects in this
geometry.43 Results from previous DEM simulations32 as well
as our own (see Section 3.2) have shown that these nonlocal
effects induce the same flow-arrest transition features (F1–F3)
that are observed in other geometries.

We compute quasi-steady, time-dependent solutions of the
NGF model with hysteresis using the same arbitrary parameters
as in the previous section. Because the dynamics are uniform in
the streamwise x-direction, the fluidity eqn (5b) reduces to a
one-dimensional PDE for g(z,t), which is discretized following
the procedure presented in Appendix B. From there, the strain
rate _g(z,t) and therefore the velocity profile v(z,t) can be com-
puted using the flow rule (5a). The fluidity equation is driven by
the stress ratio (12), for which we choose an arbitrary value c =
100d small enough that the results are independent of the
height of the domain.¶ Following previous work,32 the influence
of boundaries is minimized by prescribing homogeneous
Neumann boundary condition for g at both walls. Simulations
begin in a flowing state at mw = 0.35, then mw is progressively
decreased to 0.25 before being ramped back up to 0.35 in order
to induce flow arrest and restart. We ensure that the ramp rate is
slow enough that it does not affect the results. Most importantly,
we perform these simulations for various values of the scalar
parameter A prescribing the strength of nonlocal effects, so that
we can pinpoint the specific contributions of nonlocal diffusion
and non-monotonicity of the limiting local rheology (8) to each
of the three features (F1–F3).

Fig. 4(a)–(c) display the time-dependent dimensionless
velocity at the top wall, ṽw(t), versus the applied stress ratio,
mw(t), for (a) A = 0, (b) A = 0.03, and (c) A = 0.9. Here, the

dimensionless velocity is defined as ~vwðtÞ ¼ vðz ¼ 0; tÞ=‘
ffiffiffiffiffiffiffiffiffiffiffiffi
m=Pw

p
.

The down stress ramp is shown in blue while the up stress ramp
is shown in black, as depicted by the arrows. Further, Fig. 4(d)–(f)
display the g fields corresponding to the two states indicated by
the lone circle and cross on the down and up ramps at mw = 0.33.
Correspondingly, these fields are shown with circle or cross
markers depending on the stress ramp that they belong to,
and they are superimposed to the stable (green) and unstable
(red) steady-state solutions gloc of the local fluidity eqn (7) under
the same stress ratio and pressure fields. A movie version of
Fig. 4, which follows the state of the system as the applied stress
ratio mw(t) is progressively decreased and increased, is also
included in the ESI.† We begin with the case A = 0, for which
nonlocal effects are turned off and hence the fluidity eqn (5b) is
identical with its local limit (7). As shown in Fig. 4(a), the non-
monotonicity of the limiting local rheology (8) leads to different
mw versus vw branches in Fig. 4(a) when the stress is ramped
down or up. Indeed, the bistable behavior of (7) for m�omo m�s
implies that there are two stable steady-state solutions gloc – one
flowing and one arrested – within a range of heights, as shown
by the green branches in Fig. 4(d). When the applied stress is
ramped down, the bistable region moves towards smaller
(shallower) values of z, that were previously flowing; thus, the
time-dependent solution for g will remain on the flowing branch.
Conversely, when the applied stress is ramped up, the bistable
region moves towards larger (deeper) values of z, that were
previously arrested; thus, the time-dependent solution will

¶ Previous DEM simulations32 have shown that the vertical extent of the shear
region below the top wall scales with c. For small enough c, the bottom region is
thus quasi-static, and the results are independent of domain height.
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remain on the arrested branch. This explains why the down
ramp flows at a higher wall velocity vw than the up ramp in
Fig. 4(a), which also causes flow to arrest at a lower wall stress
ratio, m*, than that at which it restarts, m�s . Further, the onset of
flow during the up ramp is characterized by a smooth increase in
the top wall velocity since the thickness of the flowing layer
beneath the top wall smoothly increases from zero (see movie).
In conclusion, the non-monotonicity of the local rheology
suffices to endow the flow-arrest transition with feature (F1),
but features (F2) and (F3) are absent – there is no finite velocity
jump at flow onset, and the starting and stopping stresses are
identical with the local rheology predictions in Fig. 3(c).

We then turn to the case A = 0.03, corresponding to a tiny
amount of nonlocal effects. Fig. 4(b) suggests that in this
situation, the main role of the nonlocal diffusion term in (5b)
is to merge the flowing section of the up stress ramp with that
of the down stress ramp, which is almost unchanged from the
case A = 0. In other words, there is only one possible flowing
solution for every value of mw, and Fig. 4(e) shows that in the
bistable range of heights, this unique solution follows the
flowing local solution gloc and not the arrested one. This is a
direct consequence of the regularizing effect of the diffusion term,
which acts to minimize discontinuities in the fluidity profile.

A crucial side effect is that a finite velocity jump emerges at
flow onset, since the entire bistable region beneath the top wall
suddenly jumps from the arrested to the flowing local solution
(see movie). The interplay between nonlocality and non-
monotonicity of the local rheology is therefore critical in achieving
feature (F2), with (F3) the only one that remains unaccounted for.

Finally, we investigate the case A = 0.9, corresponding to the
real calibrated value that we use later. Fig. 4(b) shows that
similar to the case A = 0.03, there is only one possible flowing
solution for every value of mw. However, the increased strength
of nonlocal diffusion leads to a different mw versus vw relationship
than before, with much higher wall stress ratios at flow arrest
and onset. This is caused by the diffusion term spreading fluidity
towards the mo m* region where the local solution is arrested, as
revealed in Fig. 4(f). Thus, when mw is hardly higher than the
stopping and starting stress ratios observed in the case A = 0.03,
the m o m* region acts as a fluidity sink that prevents the overall
nonlocal solution from flowing. The resulting strengthening of
the wall stress ratio at flow onset and arrest is dependent on the
degree of nonuniformity of the stress ratio (12) controlled by the
loading length scale c, and increases with decreasing c. As a
result, nonlocal diffusion induces strengthening of the threshold
for flow onset and arrest with reducing system size, which

Fig. 4 Qualitative behavior of the NGF model with hysteresis in stress-driven plane shear with gravity. (a–c) Time-dependent dimensionless velocity at
the top wall, ṽw(t), versus the applied stress ratio at the wall, mw(t). (d–f) Fluidity field g(z,t) corresponding to the state indicated in (a–c) by the lone circle
(cross) on the down (up) branch at mw = 0.33. The field belonging to the down (up) branch is shown with circle (cross) markers and is superimposed to the
stable (green) and unstable (red) steady-state solutions gloc of the local fluidity eqn (7) under the stress ratio field (12). A movie version of this figure, which
follows the state of the system as mw(t) is progressively decreased and increased, is also included in the ESI.†
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generalizes a similar conclusion from previous studies31,38 that
only looked at the stopping stress.

To summarize, non-monotonicity and nonlocality are seen
to contribute in different ways to the features (F1–F3) of the
flow arrest transition in the case of plane shear with gravity:

(F1) hysteresis of the critical stresses for flow onset and
arrest is achieved through non-monotonicity of the local
rheology;

(F2) the finite velocity jump at flow onset requires an inter-
play between non-monotonicity and nonlocal diffusion;

(F3) increased strengthening at smaller system sizes is
caused by nonlocal diffusion.

Clearly, all three features are simultaneously achievable only
when both non-monotonicity and nonlocality are included in
the model. Even though these results have been obtained in a
plane shear under gravity configuration, they should hold in
other geometries that display a similar spatially-varying stress
ratio profile such as annular shear between concentric cylinders,
since the mechanisms at play are similar.32,43 Finally, the con-
clusions that we have reached should apply to other nonlocal
rheological models, including in particular those that treat the
inertial number I as an order parameter in place of g.42,44

3 Comparisons with DEM simulations

Now that we have established that the NGF model with hysteresis
is able to reproduce qualitatively the various features of the flow-
arrest transition, the next step is to compare quantitatively model
predictions with discrete element method (DEM) simulations in a
variety of geometries. To do so, we first calibrate the rheological
parameters of the model using DEM simulations of homo-
geneous, simple plane shear. The calibrated model is then
compared with DEM simulations in plane shear under gravity
and inclined plane geometries.

We first describe the general setup of our DEM simulations,
which we perform in the open-source software LAMMPS.45

We simulate 2D disks with mean diameter d = 0.0008 m and
aerial density rs = 1.3 kg m�2, corresponding to a characteristic
grain mass m = rspd2/4. The disk diameters are uniformly
distributed within �20% of d in order to prevent crystallisation.
Following seminal previous work,11 we use the standard spring-
dashpot model with Coulomb friction for the contact force
between overlapping particles.46 More specifically, the normal force

is given by Fn ¼ kndn þ gn _dn where dn Z 0 is the normal contact
overlap, kn the normal stiffness and gn the damping coefficient,
which can be expressed in terms of the coefficient of restitution e

for a binary collision as gn ¼ �ðmknÞ1=2ð2 ln eÞ=ð2ðp2 þ ln 2eÞÞ1=2.
The tangential force is given by Ft = ktdt where dt is the accumulated
tangential contact displacement and kt is the tangential stiffness,
and its magnitude is limited by the surface friction coefficient msurf

so that |Ft| r msurf|Fn|. Thus, the contact force model is fully
described by the parameters kn, kt, e, and msurf, to which we assign
the same values as in past studies.22,32,47 Namely, we use msurf = 0.4
and we choose kn so that k = kn/P 4 104, with P the characteristic
confining pressure, corresponding to the stiff grain limit.11,48

Further, we set kt/kn = 1/2 and e = 0.1, with both having little
influence on the phenomenology of dense flows of stiff disks.49,50

Finally, we choose a time step equal to 0.1 times the binary collision

time tc ¼ ðmðp2 þ ln 2eÞ=4knÞ1=2. At the end of each simulation,
the particle-wise quantities in each saved system snapshot are
coarse-grained into continuum fields according to the procedure
described in Appendix A. Because the geometries that we
investigate are homogeneous along the x-direction, this spatial
averaging procedure returns an instantaneous streamwise velocity
field v(z,t), as well as instantaneous stress field components sxx(z,t),
szz(z,t), and sxz(z,t).

3.1 Calibration with simple plane shear

We first simulate a simple plane shear geometry in DEM, since
the homogeneity of the flow in this configuration enables us to
calibrate the local part of the NGF model, given by the limiting
local rheology (8). The configuration is pictured in Fig. 2(a), and
consists of two parallel walls of length L = 120d aligned along
the horizontal x-direction, and separated by a distance H along
the vertical z-direction. The walls consist of glued disks, colored
in brown in Fig. 2(a), and they shear a dense collection of
enclosed disks, colored according to their relative velocity
magnitude in a particular snapshot of a flowing state. Periodic
boundary conditions are applied along the x-direction, and the
absence of gravity leads to a uniform stress ratio throughout,
which is imparted by the walls. The top wall is assigned a
horizontal velocity vw that is either directly prescribed, corres-
ponding to a velocity boundary condition, or calculated following
a control scheme that simulates an applied tangential stress tw to
the top wall through the feedback law :

vw = (tw � sxz(z = 0,t))L/Mw,
corresponding to a stress boundary condition. Here, the instanta-
neous tangential stress sxz exerted by the flowing grains is directly
evaluated at the wall, and the effective wall mass Mw acts as a
damping parameter, which we take as Mw = 2000m. Although
velocity-driven DEM simulations of plane shear flow are the
norm,7 such simulations miss important features of the flow-
arrest transition.51 To our knowledge, stress-driven plane shear
simulations have only been implemented in very few studies
either through a solid wall,52,53 which corresponds to our setup,
or through shearing of the periodic boundaries.54–57 Finally, the
pressure at the top wall is maintained close to a target value Pw

through a widely used feedback law11 according to which the
distance H between the walls evolves as

:
H = (Pw + szz(z = 0,t))L/gw,

where the instantaneous normal stress szz exerted by the flowing
grains is directly evaluated at the wall, and gw is a damping
parameter that we take as gw = 100(mkn)1/2.

We begin by performing velocity-driven DEM simulations
under various prescribed values of the top-wall velocity vw and
for two nominal system heights H = 50d and 25d. After each
simulation has reached a steady state, we save 4000 system
snapshots evenly distributed in time over a minimum additional
top-wall shear displacement of 78H. The instantaneous
continuum velocity and stress fields produced by the coarse-
graining procedure are then averaged in time. As expected from
numerous previous studies,7,11 the strain rate and the stress
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components are all approximately constant in the central part of
the sheared layer, four grain diameters away from the walls.
We therefore spatially average these quantities into the strain
rate _g = h|dv/dz|i, shear stress t = hsxzi and pressure P = h|szz|i,
from which we calculate the stress ratio m = t/P and the inertial

number I ¼ _g
ffiffiffiffiffiffiffiffiffiffi
m=P

p
. Different values of the prescribed top-wall

velocity produce different (m,I) pairs, which are displayed in
Fig. 5(a) for the two nominal system heights considered.
We also plot corresponding results from the DEM simulations
of Liu and Henann,32 obtained under identical system parameters
and for a nominal height H = 60d. The agreement between the two
sets of data validates our simulations; furthermore, the negligible
difference between the m(I) curves pertaining to different system
heights demonstrates the negligible influence of the walls.
Importantly, we observe the presence of a strain-rate weakening
regime at low enough values of I, directly corroborating previous
simulation results from DeGiuli and Wyart.17 However, a

decreasing relationship between shear stress and strain rate is
mechanically unstable and typically results in the formation of
shear bands that, in turn, render impossible the accurate
measurement of the true strain rate in the strain-rate weakening
regime.58 Furthermore, past theoretical studies59,60 suggest that in
this regime, systems with a nonlocal flow rule select a specific
stress state independent of the nominal strain rate imparted by
the walls. The NGF model, therefore, cannot be simply calibrated
on velocity-driven DEM data if it is to accurately predict onset and
arrest of flow under variations of the applied stress.

In order to extract the true critical stresses delineating the
transition between static and flowing regimes, we run stress-
driven DEM simulations of flow onset and arrest under slowly
decreasing and increasing ramps of the top-wall stress ratio mw,
for a nominal system height H = 50d. Specifically, we assign a
time-dependent top-wall shear stress tw(t) = mw(t)Pw according
to the control procedure described above, where mw(t) is the

Fig. 5 Calibration of the local part of the NGF model using simulations of plane shear without gravity. (a) Local m(I) rheology obtained from velocity-
driven DEM simulations for two system sizes, compared with data from Liu and Henann.32 (b) Applied stress ratio at the top wall, mw, versus wall-based
inertial number, Iw, obtained from stress-driven DEM simulations for H = 50d, in which the stress ratio applied to the upper wall is first slowly ramped
down (black lines), then ramped back up (red lines). Different lines correspond to different initial conditions, realized by letting the system flow at m = 0.4
for varying amounts of time. (c) Determination of the local yield stress ratio m�s from the stochastic mstart values pertaining to the different realizations.
(d) The limiting non-monotonic local rheology (8) is fit in two steps. First, the parameters shared with the monotonic form (4) are calibrated using the
velocity-driven DEM data for I Z 10�2 (filled circles), producing the monotonic mloc(I) fit. Then, the parameters of the strain-rate weakening term w(I;k) are
chosen so that m�s is equal to the value extracted from the stress-driven DEM data (filled square) and the minimum of m occurs for 10�3 o I* o 10�2, finally

producing the non-monotonic mloc(I) fit.
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target stress ratio applied to the top wall and Pw is the constant
target pressure. We run 20 different simulations by letting the
system flow at mw = 0.4 for a varying amount of time after it has
reached steady state, effectively imparting a different initial
microstructure to each simulation. The applied stress ratio mw

is then linearly decreased from 0.4 to 0.25 over a time duration
of 6.5 � 107tc C 113 s, inducing jamming of the grains.
We then let the contact forces relax by decreasing mw from
0.25 to 0 over a time duration of 2 � 107tc C 35 s and keeping
mw at 0 for 1 � 107tc C 17 s. Finally, mw is linearly ramped back
up, first from 0 to 0.25 over a time duration of 2 � 107tc C 35 s,
then from 0.25 to 0.4 over 6.5 � 107tc C 113 s, triggering onset of
flow. The ramp rate is slow enough that the system can be assumed
to undergo quasi-steady motion. We save 4000 system snapshots
evenly distributed in time, from start to end of the stress ramp.
At the end of each simulation, we calculate an instantaneous

wall-based inertial number IwðtÞ ¼ vwðtÞ=Hw

ffiffiffiffiffiffiffiffiffiffiffiffi
m=Pw

p
, where vw(t)

is a moving time window average over 50 snapshots of the
instantaneous wall velocity to smooth out small fluctuations, and
Hw is the average true vertical distance between both walls. Thanks
to the little amount of observed wall slip8 and the quasi-steady
conditions, we may consider both mw and Iw as smooth
approximations of the highly-fluctuating instantaneous values
of m and I in the bulk. The resulting mw versus Iw curves are
shown in Fig. 5(b) in black and red for the decreasing and
increasing stress ramps, respectively, with different curves
corresponding to different simulations. Observe the similarity
between these curves and the ones shown in Fig. 2(a), with
hysteresis (feature F1) and a velocity jump at flow onset
(feature F2) clearly visible in both geometries. Besides, our
simulations reveal that the critical stress ratio at flow onset is
stochastic and noticeably higher than the threshold obtained
from velocity-driven simulations in Fig. 5(a) as I vanishes. Such
variability in the transition between arrested and flowing states
has been observed previously,61 and may be explained by the
role played by the specific structure of the particle contact
network.3,62,63 On the other hand, the critical stress ratio at flow
arrest is much more narrowly distributed and similar to the
velocity-driven flow threshold.

Thus, the NGF model needs to be calibrated using data from
both velocity-driven and stress-driven DEM simulations, so as
to correctly predict the characteristics of both the flowing
regime and the transition between arrested and flowing states.
However, the critical stress ratio for flow onset observed in the
stress-driven simulations is highly stochastic, while the limiting
local rheology (8) of the model predicts a deterministic value m�s .
To reconcile this apparent contradiction, we note that because
continuum models in general aim to reproduce the ensemble-
average behavior of the discrete system across all possible
realizations, we expect our NGF model to predict onset of flow
so long as any measurable region of the space of ensembles
initiates flow. With this in mind, we therefore reduce the

stochastic critical stress from DEM to a unique deterministic
value that represents the lowest achievable starting stress of the
system as follows. For each realization, we first define mstart as
the observed mw when Iw last exceeds 10�3 during stress increase.
We then assume that the ensemble of stochastic mstart values
follows a uniform probability distribution over a finite range
(bounded from below by the lowest achievable starting stress),
which allows us to fit a linear function to their cumulative
distribution (CDF), shown in Fig. 5(c). An estimate for the lowest
achievable mstart is given by the x-intercept of the fitted CDF,
which we thus assign to m�s ¼ 0:2724. Finally, we show in
Appendix C that the distribution of stochastic mstart values barely
changes for smaller nominal heights H = 25d and 10d, which
supports our methodology of calculating the local yield stress
ratio m�s predicted by the model using stress-driven simulations
at H = 50d.

The parameters of the limiting local rheology (8) can now be
calibrated following a two-step approach pictured in Fig. 5(d).
First, the parameters shared with the monotonic form (5) are
calibrated using the velocity-driven DEM data corresponding to
H = 50d and I Z 10�2 (filled circles), producing the monotonic
mloc(I) fit. The velocity-driven DEM data for I o 10�2 (open
circles) is also shown for reference, but is not used in the
calibration. Second, the parameters of the strain-rate weakening
term w(I;k) are chosen so that m�s is equal to the value extracted
from the stress-driven DEM data (filled square) and the minimum
of m occurs for 10�3 o I* o 10�2, finally producing the non-
monotonic mloc(I) fit. The resulting parameter values are ms =
0.2610, m2 = 0.9784, b = 1.6406, a = 0.0116, c = 50, and n = 1/4.
We note that once ms and m2 are known from the first step, a is
obtained in the second step from m�s by inverting (10). In the
second step, we have selected the value 1/4 from DeGiuli and
Wyart17 for the parameter n that controls the grain stiffness-
dependence of the hysteresis amplitude. We have nonetheless
verified that choosing instead n = 0, which removes the stiffness
dependence, and recalibrating c accordingly produces negligible
changes in our results to follow. Finally, we adopt the value A = 0.9
from Liu and Henann32 for the nonlocal amplitude, which they
calibrated on DEM data obtained with the same particle and
contact force law properties.

3.2 Plane shear under gravity

We now compare the predictions of the calibrated NGF model
with stress-driven DEM simulations of plane shear under gravity
shown in Fig. 2(b). We have already investigated in Section 2.3 the
qualitative behavior of the model in this geometry, in which the
gravity field imparts a nonuniform distribution of stress ratio m(z)
characterized by a loading length scale c; see eqn (12). Besides the
presence of gravity, the DEM setup of the system is identical to
that of the previous section, except for the nominal distance H =
60d between the walls. The shear stress and pressure at the top
wall are controlled according to the feedback schemes described
in the previous section, and the bottom wall is fixed.

Similar to the case of simple plane shear, we perform DEM
simulations of arrest and onset of flow under decreasing then

8 In our DEM simulations, the relative difference between the upper wall velocity
and the coarse-grained streamwise velocity of the grains near the upper wall never
exceeds 3%.
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increasing ramps of applied stress. Specifically, a time-varying
top-wall stress ratio mw(t) is prescribed through a time-
dependent target shear stress tw(t) = mw(t)Pw and constant target
pressure Pw. The applied stress ratio mw(t) follows the same
protocol as in Section 3.1, with the only difference being that we
start from, and end at, a top value of mw = 0.45 instead of mw = 0.4.
Correspondingly, the duration of the decreasing and increasing
sections of the stress ramp between 0.45 and 0.25 is lengthened
to 9 � 107tc C 157 s so that the rate of change of mw(t) is
unaffected. As before, for each length scale c we run 20 different
simulations corresponding to different initial microstructures,
by letting the system spend a varying amount of time in the
initial shearing period at mw = 0.45. During that period, gravity is
first turned off to ensure homogeneous mixing and shearing of
the grains, before being turned back on. We save 4000 system
snapshots for each simulation, from which we calculate vw(t),
a moving time window average over 50 snapshots of the instan-
taneous wall velocity. We then calculate the nondimensional

wall velocity as ~vwðtÞ ¼ vwðtÞ=‘
ffiffiffiffiffiffiffiffiffiffiffiffi
m=Pw

p
. In order to compare

deterministic predictions from the NGF model with the DEM
results corresponding to all N = 20 different runs, we transform
the discrete values ṽ(i)

w (t) for i = 1,. . .,N at each time step into a
continuous probability density function (PDF) as follows:

f ð~vwÞ ¼
ð1
�1

wðv� ~vwÞ
1

N

XN
i¼1

dðv� ~vðiÞw Þ
" #

dv; (13)

where d is the Dirac delta function, and w is the Gaussian kernel

wðvÞ ¼ 1ffiffiffiffiffiffi
2p
p

L
e�x

2=2L2

; (14)

with L the kernel size, which we choose equal to 0.01 times
the maximum observed value of ṽ(i)

w (t) across all runs and times.
The PDF (13) can be conveniently expressed as

f ð~vwÞ ¼
1

N

XN
i¼1

wð~vw � ~vðiÞw Þ; (15)

and it integrates to one, as it should. Further, we also need to
reduce the stochastic transition stresses between flowing and
arrested states into a unique deterministic value, which we
define in a similar way to Section 3.1 as the lowest achievable
value to be consistent with the methodology followed in calibrating
the local yield stress ratio m�s of the model. For each realization, we
first calculate mw,start as the observed mw when ṽw last exceeds the
threshold value 10�3 during stress increase, and mw,stop as the
observed mw when ṽw last falls below the same threshold during
stress decrease. The deterministic starting and stopping critical
stress ratios are then defined as the x-intercept of a fitted linear
CDF to the stochastic mw,start and mw,stop values, similar to Fig. 5(c).
In the following, we will refer to these deterministic thresholds as
mw,start and mw,stop.

We also compute NGF model predictions in the same
geometry, using the calibrated parameter values from Section 3.1.
As described in Section 2.3, the fluidity eqn (5b) reduces to a one-
dimensional PDE for g(z,t) that requires the stress ratio profile
m(z,t) as input. Thanks to the homogeneous and quasi-steady

conditions, the latter is given through (12) and set by the top-wall
stress ratio mw(t), to which we assign the exact same temporal
protocol as in the DEM simulations. Since the NGF model is not
expected to be valid in the vicinity of the walls, we end the
corresponding simulation domain at a distance dw = 2d away
from the real walls. Furthermore, we follow previous work32 in
using homogeneous Neumann (qg/qz = 0) boundary conditions
on g at the walls in order to minimize their influence. The details
of the discretization method for the ODE governing g(z,t) are
presented in Appendix B. Once g(z,t) is known, the strain rate
_g(z,t) can be calculated using the flow rule (5a) and integrated
into the velocity profile v(z,t), taking into account a slip length
equal to dw for the velocity at the bottom wall. Finally, the top-
wall velocity is extrapolated as vw(t) = v(z = �dw,t) + dw_g(z = �dw,t)
and is nondimensionalized into ṽw(t).

Fig. 6(a), (b), (d) and (e) display the relationship between mw

and ṽw obtained from both DEM simulations and NGF model
predictions for two different loading length scales of (a and d)
c = 100d and (b and e) c = 25d. The increasing stress ramp is
shown in (a and b) while the decreasing stress ramp is shown in
(d and e). The DEM results are displayed as contours of f (ṽw)
corresponding to each value of mw, in such a way that the plots
can be read as the probability of occurrence of individual
realizations, with yellow color indicating high probability and
blue color indicating low probability. The deterministic mw,start

and mw,stop values from DEM are also displayed as filled circles,
and the NGF model prediction is shown as the red line.
An excellent agreement between NGF and DEM is observed in
the flowing regime.** Similarly, the transition between arrested
and flowing states occurs at similar stress levels in both cases,
and displays all three features (F1–F3) identified in the
introduction: hysteresis between onset and arrest, velocity
jump at onset, and strengthening with smaller c/d. The amount
of velocity jump at flow onset exhibited by the NGF solution
appears smaller than that observed in the DEM simulations;
this is a consequence of the NGF model being calibrated so as
to start flowing at the lowest possible critical stress based on
the DEM simulations.

Finally, Fig. 6(c) and (f) display the critical stresses mw,start

and mw,stop versus the dimensionless loading length scale c/d.
Shown are the individual transition stresses from all 20 DEM
runs (crosses), the deterministic values extracted from the
linear fit of the CDF (filled circles), and the corresponding
NGF predictions (continuous line). The NGF predictions of the
critical stresses are obtained using the methodology described
in Appendix D, which circumvents the need to run time-
dependent simulations for every value of c/d. Overall, the
NGF model predicts a similar amount of strengthening as
apparent in the DEM simulations. The slightly higher critical
stresses exhibited in DEM for large loading length scales is
caused by an observed change in the slope of the g field at the
boundary as the pressure applied by the top wall increases.

** The small discrepancy observed in the case c/d = 25 is probably attributable to
the choice of boundary conditions for g. An extensive discussion on the role of the
latter is presented in Section 3.3.
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Accordingly, implementing a homogeneous Robin boundary
condition for g with a finite associated length scale would lead
the NGF model to predict higher values for the transition
stresses, closing the gap with the DEM data. Lastly, Appendix E
shows that the hysteresis amplitude mw,start� mw,stop is only weakly
dependent on the dimensionless loading length scale c/d.

3.3 Inclined plane

As a last example, we evaluate predictions from the calibrated
NGF model against DEM simulations in the inclined plane
configuration shown in Fig. 2(c). A fixed basal wall of length L =
120d and consisting of glued disks is inclined at an angle y with
respect to the horizontal, and is covered by a dense collection of
freely moving disks forming a layer of height H. The x- and
z-directions are parallel and orthogonal to the base wall,
respectively, and periodic boundary conditions are applied
along the x-direction. The gravity field imparts a uniform ratio
of shear stress to pressure throughout the layer at steady state
equal to m = tan y, making this configuration inherently stress-
driven. Even though m is uniform, nonlocal effects still arise
from the presence of the rough base, which acts as a sink for
velocity fluctuations within the moving grains. The transition

between onset and arrest of flow on an inclined plane exhibits
all three features mentioned in the introduction, as documented
in many past experimental and computational studies.4,9,15,49,64–66

Following the previous cases, we run DEM simulations of
flow arrest and onset by slowly decreasing then increasing the
inclination angle. Specifically, we prescribe a temporal profile
for y(t) such that the stress ratio m(t) = tan y(t) follows the same
protocol as in Section 3.1, with an initial flowing period at m =
0.4 followed by a continuous decrease to m = 0 and a continuous
increase back to m = 0.4. As before, we execute 20 runs for each
layer height H, each with a different time duration spent in the
initial flowing regime at m = 0.4, giving a unique microstructure
to every simulation before the start of the stress ramp. We save
4000 system snapshots in each simulation, from which we
compute the instantaneous continuum velocity field v(z,t).
Anticipating that the NGF model will be run over a truncated
domain ending at a distance dw = 2d away from the bottom wall
and ds = 3d away from the layer’s free surface, we then calculate
a depth-averaged instantaneous velocity %v(t) over the corres-
ponding truncated domain, which we smooth out using a
moving time window average over 50 snapshots. We then
express %v(t) in terms of a dimensionless Froude number

Fig. 6 Comparison between NGF model predictions and DEM simulations for plane shear under gravity. (a, b, d and e) Relationship between stress ratio
mw and dimensionless velocity ṽw at top wall from DEM (contour of probability values extracted from 20 different runs) and NGF (red lines) for two
different loading length scales of (a and d) c = 100d and (b and e) c = 25d, with the (a and b) increasing and (d and e) decreasing stress ramps shown
separately. The filled circles display the deterministic mw,start and mw,stop critical stress ratios obtained from all DEM runs. (c and f) Critical stress ratios mw,start

and mw,stop versus dimensionless loading length scale c/d from DEM (filled circles) and NGF (continuous line). The crosses show the individual transition
stresses pertaining to each of the 20 different runs, while the filled circles represent the deterministic value extracted from the linear fit of the CDF.
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defined as FrðtÞ ¼ �vðtÞ=
ffiffiffiffiffiffiffiffi
GH
p

. As was done in the previous
section, the discrete values Fr(i)(t) at each time step, for i =
1,. . .,N corresponding to all N = 20 different runs, are trans-
formed into a continuous PDF f (Fr) through the convolution (13).
Finally, the stochastic transition stresses between flowing and
arrested states are reduced into deterministic numbers mstart and
mstop according to the procedure detailed in Sections 3.1 and 3.2.
For each realization, we first calculate mstart as the observed m when
Fr last exceeds the threshold value 10�2 during stress increase, and
mstop as the observed m when Fr last falls below the same threshold
during stress decrease. The deterministic starting and stopping
critical stress ratios are then defined as the x-intercept of a fitted
linear CDF to the stochastic mstart and mstop values, similar to
Fig. 5(c). In the following, we will refer to these deterministic
thresholds as mstart and mstop.

We compute predictions of the NGF model in the same
geometry, using the calibrated parameter values from Section 3.1
and the same temporal protocol for y(t) as in the DEM
simulations. The fluidity eqn (5b) reduces to a one-dimensional
PDE for g(z,t) that takes as input the stress ratio profile, which
is still related to the inclination angle as m(t) = tan y(t) thanks
to the quasi-steady conditions. The uniformity of the stress

ratio implies that nonlocal effects are mostly imparted by
boundaries, making the choice of boundary conditions critical.
Similarly to our approach in Section 3.2, the domain for the
NGF solution is defined to start at a distance dw = 2d away from
the bottom wall due to the lack of validity of the NGF model
near the boundary. At that location, the DEM data suggests a
Robin-type homogeneous boundary condition for g, with an
associated length scale d that may be sensitive to various
factors. We choose to sidestep the exact modeling of the
boundary condition by considering the two edge cases of d = 0
and d = N, corresponding to homogeneous Dirichlet (g = 0) and
Neumann (qg/qz = 0) boundary conditions, respectively. Regarding
the top boundary, the DEM data shows that the strain rate
vanishes about 3 grain diameters below the surface, corroborating
previous studies.49,66 We thus end the NGF simulation domain at a
distance ds = 3d away from the layer’s free surface, and we
prescribe a homogeneous Neumann (qg/qz = 0) boundary condi-
tion for g there, following Kamrin and Henann.31 We also assign
a finite pressure to the top boundary equal to the weight of
the neglected layer of thickness ds, which is approximately equal
to P(z = �ds) = 0.8rsG(2d)cosy(t) due to the drop in packing
fraction near the layer’s surface. The details of the discretization

Fig. 7 Comparison between NGF model predictions and DEM simulations for inclined plane. (a, b, d and e) Relationship between stress ratio m = tan y
and Froude number Fr from DEM (contour of probability values extracted from 20 different runs) and NGF (red lines) for two different layer heights of
(a and d) H = 45.5d and (b and e) H = 9d, with the (a and b) increasing and (d and e) decreasing stress ramps shown separately. The filled circles display the
deterministic mstart and mstop critical stress ratios obtained from all DEM runs. (c and f) Critical stress ratios mstart and mstop versus dimensionless layer height
H/d from DEM (filled circles) and NGF (blue lines). The crosses show the individual transition stresses pertaining to each of the 20 different runs, while the
filled circles represent the deterministic value extracted from the linear fit of the CDF.
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method for the ODE governing g(z,t) are presented in Appendix B.
Once g(z,t) is known, the strain rate _g(z,t) can be computed through
the flow rule (5a). Finally, the velocity can be integrated from _g(z,t),
taking into account a velocity slip length equal to dw at the bottom
boundary of the NGF domain, and depth-averaged to produce %v(t)
and hence Fr(t).

Fig. 7(a), (b), (d) and (e) display the relationship between m
and Fr obtained from both DEM simulations and NGF model
predictions for two different layer heights at rest of (a and d)
H = 45.5d and (b and e) H = 9d. The increasing stress ramp is
shown in (a and b) while the decreasing stress ramp is shown in
(d and e). The DEM results are displayed as contours of f (Fr)
corresponding to each value of m, in such a way that the plots
can be read as the probability of occurrence of individual
realizations, with yellow color indicating high probability and
blue color indicating low probability. The deterministic mstart

and mstop values from DEM are also displayed as filled circles,
and the NGF model predictions pertaining to the two
basal boundary conditions for g are shown as the continuous
(homogeneous Neumann) and dash-dotted (homogeneous
Dirichlet) red lines. The Neumann boundary condition in the
NGF model leads to an excellent agreement with DEM in the
flowing regime. However, it does not predict any strengthening
of the critical transition stresses mstart and mstop for smaller layer
height H. The Dirichlet boundary condition, on the other hand,
reproduces the strengthening of the transition stresses but fails
to match the DEM results in the flowing regime.

The critical stresses mstart and mstop are depicted in greater
detail in Fig. 7(c) and (f) versus the dimensionless layer height
H/d. Shown are the individual transition stresses from all
20 DEM runs (crosses), the deterministic values extracted from
the linear fit of the CDF (filled circles), and the corresponding
NGF predictions using homogeneous Neumann (continuous
line) or homogeneous Dirichlet (dash-dotted line) boundary
conditions. As we did for planar shear with gravity, the NGF
predictions of the critical stresses are obtained using the metho-
dology described in Appendix D, which bypasses the need to run
time-dependent simulations for every value of H/d. The Neumann
boundary condition does not produce any strengthening of the
critical stresses, since it kills the principal cause of flow inhomo-
geneity in this geometry.†† On the other hand, the Dirichlet
boundary condition generates a level of strengthening roughly
comparable with the DEM data. As was the case for plane shear
under gravity, Appendix E shows that the hysteresis amplitude
mw,start � mw,stop is only weakly dependent on the dimensionless
layer height H/d.

In summary, it appears that the critical stresses are best
predicted by the NGF model endowed with a homogeneous
Dirichlet boundary condition for g, while the flowing regime is
most accurate when a homogeneous Neumann boundary
condition is used. This dichotomy could stem either from
missing ingredients in the NGF model itself or from an

inaccurate description of the boundary condition. Regarding
the former, a known shortcoming of the current formulation of
the model is that it does not produce the widely documented
collapse of the Froude number for all layer heights and
angles.64,66,67 We have thus modified the fluidity eqn (5b)
following the procedure given in Kamrin and Henann31 so that
the model collapses the Froude number far away from flow
threshold, in the limit w - 0. We also tried another version of
that procedure replacing the quadratic term with a cubic one as
in the model of Lee and Yang.42 Yet neither of these modified
models performed substantially better, with the no-slip
solution still flowing significantly slower than the DEM data.
This points to the boundary condition being the main culprit –
incidentally, the true length scale d at the bottom boundary is
observed to increase with flow rate in the DEM data. With a
velocity-dependent d that jumps from near zero in the arrested
state to a large value in the flowing state, the NGF model could
potentially produce correct predictions of both the transition
stresses and the flowing regime. A boundary condition of this
type could be formulated as a dynamical system governing the
evolution of d in response to relevant driving quantities. As we
note in the conclusion, however, formulating accurate and
physically-justified fluidity boundary conditions remains a
key open issue within NGF modeling, and such an endeavor
is relegated to future work.

4 Conclusions

In this paper, we have studied the combined role of strain-rate
weakening behavior and nonlocal effects in explaining key
features of the hysteretic transition between solid-like and
liquid-like behavior in dense granular materials as the applied
stress is ramped up and down. These features include the
hysteresis of the critical stresses at flow onset and arrest, the
finite jump in velocity during flow onset, and the strengthening
of the critical stresses with reducing system size. In a first part,
we modified the nonlocal granular fluidity (NGF) model so that
it reduces to a non-monotonic local rheology in homogeneous
flows. Through numerical simulations of flow onset and arrest
in planar shear with gravity using the modified NGF model, we
demonstrated qualitatively that the inclusion of both nonlocal
effects and non-monotonicity of the local rheology is essential
to account for all three features mentioned above.

In a second part, we compared quantitatively predictions of
the modified NGF model with DEM simulations of flow onset and
arrest in various geometries. First, we calibrated the local para-
meters of the model using DEM simulations of homogeneous plane
shear flow. In so doing, we highlighted the importance of calibrat-
ing the local critical stress for flow onset using stress-driven
simulations, since measurements based on velocity-driven simula-
tions are unreliable in the strain-rate weakening regime. The stress-
driven simulations, however, exhibited large variability in the
transition stresses between arrested and flowing regimes. Thus,
we developed a criterion to extract a unique deterministic value,
corresponding to the lowest observable critical stress, from a large

†† In the presence of the Neumann boundary condition, a small amount of flow
inhomogeneity is still incurred by the pressure-dependent quadratic term in the
fluidity eqn (5b), which explains the slight dependence of mstop on H/d in Fig. 7(f).
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number of repeated runs. We then compared predictions of the
calibrated NGF model with stress-driven DEM simulations in planar
shear with gravity and inclined plane configurations. In the former
case, the model gave accurate predictions of both the transition
between flowing and arrested states as well as the characteristics
in the flowing regime. In the latter case, the accuracy of the model
predictions was strongly affected by the choice of boundary
conditions, with no single choice able to reproduce both the transi-
tion stresses as well as the average velocity in the flowing regime.

These results suggest that the NGF model generally leads to
more accurate predictions when nonlocal effects are mostly
generated by the spatial dependence of the m field, as is the case
for planar shear with gravity, rather than by boundaries in the
absence of a spatially-dependent m field, as is the case for
inclined plane flow. A possible explanation stems from Liu and
Henann’s32 observation that an inhomogeneous m field leads to
much stronger size-dependent strengthening than boundary
effects, making the accuracy of model predictions less reliant
on the particular choice of fluidity boundary conditions when
both mechanisms are present. Conversely, model predictions
are much more sensitive to the specific type of boundary
conditions when the latter are the principal source of nonlocal
effects, which calls for better understanding of the interaction
between flowing particles and the boundary. In fact, numerous
experimental and computational studies have also underscored
the sensitivity on wall roughness of transition stresses and
velocity profiles in inclined plane flow,65,68–70 plane shear flow
without gravity,71 as well as annular shear flow.72 Although
progress has been made for flat frictional walls,73,74 the correct
modeling of boundary conditions in the general case, as a
function of wall properties, is still an open question whose
resolution would benefit all nonlocal rheological models.32,41,75
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A Coarse-graining methodology

In this appendix, we describe our coarse-graining procedure for
extracting continuum velocity and stress fields from the particle-
wise DEM data. The approach we follow was introduced in
Zhang and Kamrin,35 building upon earlier work.2,22,70 Since the
geometries that we consider are homogeneous along the x-direction,
the spatial averaging generates fields defined at discrete
heights zk, spaced 0.5d apart. For a given position zk, we define
the instantaneous velocity and stress fields as

vðzk; tÞ ¼
XM

m¼�M
wm�vðzm; tÞ; (16)

sðzk; tÞ ¼
XM

m¼�M
wm�sðzm; tÞ; (17)

where %v and �s are sublayer-wise velocity and stress averages at
the heights zm = zk + (W/2)(m/M), each weighted by the

coefficient wm = cos((p/2)(m/n)). Following Zhang and
Kamrin,35 we choose W = 2d and M = 5. We now let Lim denote
the cross-sectional length between particle i and the horizontal
line at height zm. The sublayer-wise instantaneous velocity is
given by

�vðzm; tÞ ¼

P
i

LimviðtÞP
i

Lim
; (18)

where vi is the velocity of grain i. Then, the sublayer-wise
instantaneous stress field is defined by

�sðzm; tÞ ¼

P
i

LimsiðtÞ

L
; (19)

where L is the domain length along the x-direction, and si is the
stress tensor associated with grain i. The latter consists of
contact and kinetic contributions, and is given by

siðtÞ ¼
1

Ai

X
iaj

f ijðtÞ � rijðtÞ þ
mi

Ai
dviðtÞ � dviðtÞ; (20)

where Ai = pdi
2/4 and mi = rsAi are respectively the area and

mass of grain i, fij is the contact force exerted on grain i by grain
j, and rij is the vector pointing from the center of grain i to that
of grain j. In the kinetic contribution, the velocity fluctuations
are calculated as dvi(t) = vi(t) � v(zi,t), where v(zi,t) is the coarse-
grained instantaneous velocity (16) interpolated to the vertical
position zi of grain i.

B Numerical discretization

Here, we present our numerical discretization method for
solving the fluidity eqn (5b) under a time-dependent applied
stress. In the problems that we consider, the equation reduces to
a one-dimensional PDE for g(z,t) that is driven by a prescribed
stress ratio function m(z,t). The physics governing the time scale
t0 that appears in the fluidity equation are still unknown, and we
simply assign a sufficiently small value t0 = 10�4 s that it does not
affect the dynamics of the solution. The spatial domain is
discretized into N = 100 nodes, and the diffusion term is
evaluated using second-order finite differences. The fluidity
equation is then integrated in time using an implicit Euler
scheme with a time step Dt = 5 � 10�4 s, which we implement
in MATLAB. Further, we artificially limit g(z,t) to a minimum
value of 10�2 s�1 in order to avoid g(z,t) reaching infinitesimally
small values during the arrested portion of the stress ramp.
Indeed, this would prevent g(z,t) from growing sufficiently
fast when flow onset should occur, as the applied stress is
subsequently increased. We have verified that the floor value
for g(z,t) is small enough that it does not alter the observed
transition stresses.

C Size effects in simple plane shear

We report in Fig. 8 additional DEM results on the system-size
dependence of the critical transition stresses mstart and mstop in
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plane shear without gravity. Mirroring our definition of mstart in
Section 3.1, mstop is defined as the observed mw when Iw last falls
below 10�3 during stress decrease. Shown are the individual
transition stresses from 20 DEM runs (crosses) and the corres-
ponding deterministic values (filled circles) extracted from the
linear fit of the CDF according to the procedure outlined
in Fig. 5(c). We observe that the critical stresses are almost
independent of system size, corroborating results from a
previous DEM study.75

D Critical stresses from NGF

In this appendix, we explain how to obtain the critical starting
and stopping stresses predicted by the NGF model without
computing time-dependent solutions to a slowly varying
applied stress, which are computationally intensive due to the
required low rate of change of the applied stress to ensure
quasi-steady conditions. Let the scalar �m denote the amplitude
of the applied stress ratio m(z) throughout the domain – for
instance, �m is mw in the case of plane shear with gravity, or tan y
in inclined plane. For a given geometry, implying a certain
distribution of the stress ratio m(z), we then rewrite the fluidity
eqn (5b) as

t0ġ = F(g;�m), (21)

where the dependence on the magnitude of m(z) has been
explicitly denoted through �m. In the following, we will call g0

any steady-state solution of (21).
At low �m, the arrested state g0 = 0 is the only stable solution.

Gradually increasing �m, flow onset occurs the moment the g0 = 0
solution becomes unstable to small perturbations g0,
which defines the critical starting stress �mstart.

41 These small
perturbations are governed by the linear equation

t0 _g0 ¼Lðg0; �mÞg0; (22)

where L(g0;�m) – the linearization (also called Fréchet derivative)
of L(g;�m) around g0 – acts on the perturbation g0 as

Lðg0; �mÞg0 ¼ A2d2r2g0 � ðm2 � msÞðms � mÞ
m2 � m

g0 � 2b

ffiffiffiffi
m

P

r
mg0g0

� wðg0; m;PÞg0 �
@w
@g
ðg0; m;PÞg0g0:

(23)

To evaluate whether perturbations grow or decay, we substitute

g0 ¼ ~g0ðzÞelt into (22), which leads to the eigenvalue problem

t0l~g0ðzÞ ¼Lðg0; �mÞ~g0ðzÞ; (24)

for the growth rate l. This eigenvalue problem can be solved
numerically by discretizing L(g0;�m) using a finite difference
approximation, giving a spectrum of eigenvalues with the one
having the largest real part, lm, dictating the overall rate of
growth or decay of the perturbation. Setting g0 = 0, one can
perform repeatedly this calculation for increasing values of �m
until Re{lm} becomes positive, at which point the arrested
solution loses stability and �m = �mstart.

Gradually decreasing �m from a value above �mstart, flow arrest
occurs the moment (21) ceases to admit a nonzero steady-state
solution g0, which defines the critical stopping stress �mstop.
To check whether that is true at a given value of �m, it suffices to
perform Newton–Raphson iterations to find g0. Starting from
an initial guess g0, the algorithm performs at each step n the
update gn+1 = gn + oDn, where 0 o o o 1 is a relaxation
parameter and the step direction Dn is given through the
linear system

L(gn;�m)Dn = �F(gn;�m). (25)

We stop the iterations when the norm of F(gn;�m) falls under a
specified threshold, indicating that gn has converged to a
steady-state solution g0 of (21). Thus, our strategy to find �mstop

goes as follows. We start with a value of �m above �mstart, for which
we are guaranteed a nonzero g0 solution. We compute the latter
by letting g reach steady-state in the time-dependent solver.
Then, we repeatedly compute g0 for incrementally decreasing
values of �m through Newton–Raphson iterations, using at each
step level of �m the converged solution g0 from the previous
step as an initial guess. At some point the Newton–Raphson
iterations will suddenly converge to the arrested g0 = 0 solution,
indicating that �m has reached �mstop.

Both the eigenvalue problem (24) and linear system (25) are
implemented in MATLAB borrowing the same grid and dis-
cretized differential operators used in the time-dependent
solver. In the Newton–Raphson iterations, we use o = 0.5 to
balance stability and speed of convergence. Previous
studies31,32 have shown that for some geometries and boundary
conditions, there exist analytical or semi-analytical solutions
for the growth rate l and thus the threshold mstart. However,
such solutions are much harder to obtain for mstop, despite
partial progress in that direction on a I-gradient model applied
to the inclined plane scenario.42 Therefore, we limit ourselves
in this paper to the numerical methodology that we have

Fig. 8 Critical stresses mstart and mstop in simple plane shear versus true
system height H/d, obtained from 20 different DEM runs. The crosses
show the individual transition stresses pertaining to every run, while the
filled circles represent the deterministic value extracted from the linear fit
of the CDF.
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outlined above, noting that it is computationally very efficient –
the starting and stopping curves in Fig. 6 and 7 were calculated
in a few minutes on a laptop.

E Hysteresis size dependence

Here, we investigate the system-size dependence of the hysteresis
amplitude, measured by the difference of the starting and
stopping critical stress ratios, based on the DEM simulations
and NGF model predictions reported in Fig. 6 and 7 in Sections 3.2
and 3.3. Fig. 9 displays mstart � mstop as a function of the
dimensionless loading length scale c/d for plane shear with
gravity data, and as a function of the dimensionless layer height
H/d for inclined plane data. The DEM and NGF data are within a
comparable range and suggest a weak effect of system size on the
hysteresis amplitude.
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