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Moduli and modes in the Mikado model

Karsten Baumgarten and Brian P. Tighe

We determine how low frequency vibrational modes control the elastic shear modulus of Mikado

networks, a minimal mechanical model for semi-flexible fiber networks. From prior work it is known that

when the fiber bending modulus is sufficiently small, (i) the shear modulus of 2D Mikado networks

scales as a power law in the fiber line density, G B ra+1, and (ii) the networks also possess an anomalous

abundance of soft (low-frequency) vibrational modes with a characteristic frequency ok B rb/2. While it

has been suggested that a and b are identical, the preponderance of evidence indicates that a is larger

than theoretical predictions for b. We resolve this inconsistency by measuring the vibrational density of

states in Mikado networks for the first time. Supported by these results, we then demonstrate analytically

that a = b + 1. In so doing, we uncover new insights into the coupling between soft modes and shear,

as well as the origin of the crossover from bending- to stretching-dominated response.

Mikado networks1 are a widely studied off-lattice model for the
mechanics of semiflexible fiber networks.2–9 Two-dimensional
Mikado networks consist of slender rods with stretching
modulus m and bending modulus k, which are randomly
deposited in a box and crosslinked at each intersection point.
At a phenomenological level, the model successfully reproduces
important features of real fiber networks, including the affine
to non-affine crossover in linear response (discussed below)
and the onset of strain stiffening at a critical strain scale.10–13

The model also serves as a bridge to other soft matter systems
where floppiness and non-affinity play an important role, such
as solid foams and confluent tissues,14–16 soft sphere
packings,17–22 and random spring networks.23–28

The goal of this article is to determine how low frequency (‘‘soft’’)
vibrational modes control the shear modulus G in 2D Mikado
networks. It is natural to expect the displacements of crosslinks
during shear deformation to project strongly on soft modes, which
implies a relationship to the modulus. This relationship has the
potential to explain the strong non-affine fluctuations that are
known to emerge in fiber networks, by connecting them to the
floppy (zero frequency) vibrational modes of freely bending (k = 0)
networks, which are inherently non-affine. However, precisely how
soft modes set the modulus remains unclear, as there is an apparent
contradiction between existing results in the literature. While both
G1,3,4,7 and the typical soft mode frequency ok

5,6 display anomalous
power law scaling with the fiber line density r (defined below), the
best estimates of their respective exponents do not appear to be
compatible. In order to describe this discrepancy more precisely, we
must first summarize what is known about moduli and modes
separately.

Shear modulus. We begin with the shear modulus of
bi-periodic networks of N fibers in an area A, as depicted in
Fig. 1a. There are three independent, microscopic length scales
that characterize such a network. The first is the fiber length cf.
The second is the mean length of a fiber segment between two
crosslinkers. A Poissonian fiber deposition process results in a
mean segment length cs = p/(2r), where the fiber line density
r � Ncf/A is the total length of fiber per unit area. The third
length cb � (k/m)1/2 is mechanical; it represents the natural
length over which a free fiber bends. When mechanical proper-
ties of networks are expressed in dimensionless form, they
must be functions of two dimensionless ratios constructed
from these three length scales. We choose cb/cf and rcf.

The most relevant features of G can be illustrated by varying
the bending modulus k while holding all other model para-
meters fixed (i.e., varying cb/cf at fixed rcf), as shown using our
own data in Fig. 2a (details below). If we look first at larger
values of k, then eventually the energetic penalty for bending
will be so large that the fibers essentially do not bend.

Fig. 1 A Mikado network with rcf = 40.0.
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Numerics indicate that when deformation is stretching-
dominated, the displacements of crosslinks follow the global
deformation affinely.1,3 The shear modulus is therefore given
by its affine value G C Gaff, which can be calculated exactly4 and
scales as Gaff B mr/cf in densely crosslinked networks. If
instead we look at small k, bending eventually becomes ener-
getically favorable to stretching, the response becomes strongly
non-affine, and G becomes much smaller than Gaff. Hence the
shear modulus displays a crossover between stretching- and
bending-dominated deformation, which correlate with affine
and non-affine response, respectively. The bending-dominated
regime is of particular interest, both because affine deforma-
tion is comparatively simple to model, and because non-affinity
represents strong deviations from the mean response.

It is evident from Fig. 2a that the value (cb/cf)* where the
bending- to stretching-dominated crossover occurs depends itself
on rcf. If we assume power law scaling (cb/cf)* B (rcf)

�a/2 for some
undetermined exponent a, it is then natural to expect that the
dimensionless shear modulus G � G/Gaff can be written as a
function of the variable z = (cb/cf)

2(rcf)
a. The scaling function has

the form

GðzÞ � z z� z0
1 z� z0;

�
(1)

where z0 is a constant. The approach to G C 1 for large z ensures
that G C Gaff is recovered, while the form G B z for small z is

necessary so that G is proportional to k and independent of m in
the bending-dominated regime. The value of a has been estimated
numerically by several groups.† Wilhelm and Frey found aE 5.7.1

Head et al.3,4 estimated aE 8 for networks with rcf as large as 120
(comparable to Wilhelm and Frey), but suggested that a will
approach a value of 7 when larger values of rcf are accessed.
Shahsavari and Picu7 simulated rcf as large as 300 and found
a E 7. Head et al.4 also presented a mean field scaling argument
that predicts a = 7; however, it does not invoke modes and so does
not clarify their relationship to the modulus. As shown in Fig. 2b
and described in greater detail below, we obtain good data
collapse with our own numerical results for a E 7.2.‡

For completeness, we note that Mikado networks undergo a
rigidity percolation transition at a critical fiber line density
rc E 5.7.1,2 Like the prior studies discussed above, we estimate
a using data well above rc. G crosses over to a qualitatively
different scaling regime as r - rc from above. This regime is
not the focus of the present study.

Soft modes. Let us now turn to soft vibrational modes in
Mikado networks. If fibers are allowed to bend freely (k = 0),
then Mikado networks always possess so-called floppy
modes.2,5,8 These are non-rigid body motions that can be
performed without doing work, and therefore correspond to
vibrational modes with zero frequency. A finite bending stiff-
ness stabilizes floppy motions, lifting them to finite frequency.
As floppy motions are intrinsically non-affine, the number and
vibrational frequencies of soft modes must be fundamentally
related to non-affine fluctuations in mechanical response.

In two seminal papers, Heussinger and Frey (HF) developed
what has come to be known as floppy mode theory (FMT).5,6

The theory (i) explicitly constructs the floppy modes in freely
bending Mikado networks, and (ii) uses these modes to build a
set of trial modes, and thereby predict the characteristic soft
mode frequency ok at small but finite bending modulus using
the variational method. Each trial mode is constructed by
displacing one of the N fibers a distance dx along its axis. This
motion is opposed by the rest of the network, and therefore
carries an energetic cost W(dx) = (1/2)Kkdx2. The average effec-
tive ‘‘spring constant’’ Kk sets the characteristic frequency,
ok B Kk

1/2. By using the crosslink displacements from a floppy
mode and the known distribution of segment sizes, HF found

ok
2

o0
2
� ð‘b=‘fÞ2ðr‘fÞb; (2)

where o0 = (m/cf)
1/2. Depending on the specific approximations

that are made, FMT predicts b = 6 or b E 5.75.
Rather than directly measuring the frequency ok, HF tested

their theory indirectly by measuring the shear modulus. To
predict G, they equated the energy of the shear deformation,

Fig. 2 (a) The shear modulus G of a Mikado network plotted versus (cb/cf)
2

for varying rcf indicated in the legend (see text for definitions). The solid line
denotes the affine shear modulus for rcf = 48.9. (b) The same data as in (a),
now collapsed by plotting G/Gaff as a function of (cb/cf)

2(rcf)
a with a = 7.2. The

dashed line has a slope of 1, and the solid line denotes G = Gaff.

† The scaling function (1) follows the discussion by Shahsavari and Picu.7 Other
authors rescale their data differently, but still determine exponents that can be
compared to a directly. Namely, a is equal to m � 1 from ref. 1, and 2 + 2/z from
ref. 3,4.
‡ Our simulations access a narrower range in rcf because, unlike prior work, we
determine each network’s eigenfrequencies, which is significantly more compu-
tationally expensive than calculating their shear moduli.
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GAg2, with the energy NW(dx) stored by the soft modes under
shear. However, it is not apparent what the typical axial
displacement dx should be. In order to close this gap, they
further assumed that the center of mass of each fiber displaces
affinely. We shall refer to this as the affine fiber approximation
(AFA). It implies that each fiber undergoes an axial displace-
ment dx B cfg relative to its environment. The shear modulus
is then

G

Gaff
� ok

2

o0
2
: (3)

Taken together, eqn (1)–(3) imply a = b. Based on this
relation, Heussinger and Frey concluded that the numerical
result a = 5.7 from Wilhelm and Frey1 validates their theoretical
predictions for b. However, as noted above, independent
studies3,4,7 conclude instead that a E 7. In our opinion, the
preponderance of evidence indicates that a is not equal to the
FMT prediction for b.

Hence we have a puzzle. The discrepancy between a and the
theoretically predicted value of b indicates that there is a gap in
our understanding of non-affine response in the Mikado model
– and, by extension, in fiber networks in general. Where is the
missing physics? The persistence of this gap is due, at least in
part, to the paucity of data for the vibrational density of states
(and hence ok) in Mikado networks and related models.29 Since
ok has not been measured directly, one possibility is that b is
larger than the HF theory predicts. We test this by presenting
the first direct measurement of ok in the Mikado model, as
shown in Fig. 3a (details below). We obtain the best collapse of
the data for b = 6.1, with reasonable collapse in the range
5.8 r br 6.5. This result for b is in reasonable agreement with
FMT, and also too small to account for the discrepancy between
a and b.

The second possible explanation for the discrepancy, which
we favor, is that the affine fiber approximation is incorrect, and
hence that the relation a = b is unjustified. This view is
supported by Fig. 3b, which plots the ratio (G/Gaff)/(ok

2/o0
2).

eqn (3) predicts this ratio to be independent of the fiber line
density, but instead we find a roughly linear trend. In the
following sections, we will present evidence that in fact

a = b + 1. (4)

This relation is in reasonable agreement with our numerical
results in Fig. 2 and 3. More importantly, we will derive (4) in
two different ways, neither of which invokes the AFA. This
resolves the apparent discrepancy between moduli and modes
in the Mikado model.

1 Shear response in the Mikado model

We now define the Mikado model in greater detail, and
demonstrate how to calculate the shear modulus from the
crosslink displacements in response to an imposed shear
stress.

Mikado networks consist of N filaments of equal length cf,
which are deposited randomly in a biperiodic square system of
linear size L and area A = L2. Their positions and orientations
are drawn from uniform probability distributions. If, during
the deposition process, two filaments intersect, they form a
crosslink around which the filaments can freely rotate. The
crosslinks cannot be broken. In the initial condition, i.e. after
deposition and prior to shear, the fibers are straight lines
subdivided into co-linear segments by the crosslinks. We trim
so-called ‘‘dangling ends,’’ i.e. segments at the end of a fiber
that are attached via a single crosslink, because they neither
stretch nor bend. We choose units of length and energy such
that cf = 1 and m = 1 and fix A = 9cf

2. Nevertheless, we continue
to write cf and k in scaling relations for transparency.

The energy of a network configuation is given by

E ¼ m
2

X
hiji

d‘hiji2

‘hiji
þ k

2

X
hijki

yhijki2

‘hijki
: (5)

Here hiji denotes the segment connecting crosslinks i and j,
and hijki labels two consecutive segments hiji and hjki on the
same fiber. The quantity dchiji is the change in the length of
segment hiji from its value in the initial condition. The angle
yhijki measures the deviation from co-linearity of adjacent seg-
ments hiji and hjki, and chijki is the average of chiji and chjki.

By construction, the network is initially in a stress-free state.
When subjected to a shear stress s, the box undergoes a shear
strain g and the crosslinks displace from their initial positions.

Fig. 3 (a) The characteristic frequency ok of soft vibrational modes in a
Mikado network plotted versus (cb/cf)

2(rcf)
b with b = 6.1. See Fig. 2 for

legend. The dashed line has a slope of 1. (b) The ratio of the dimensionless
shear modulus shear modulus G/Gaff to the characteristic frequency ok is
not constant when plotted versus fiber line density, which implies a a b.
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We consider a simple shear in which the lattice vectors of the
initially square unit cell become

~Li ! ~Li þ
0 g
0 0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

F̂

~Li; (6)

where F̂ is the deformation gradient. The crosslink displace-
ments can be expressed as a sum of affine and non-affine
terms. Denoting the position of crosslink i as

-

Xi, its affine
displacement is

-

Ai = F̂Mx0058-;i. Collecting the 2N� Cartesian
components of the crosslink positions in a vector |Xi (and
similarly for other quantities), the crosslink positions after
shearing are |Xi + |Ai + |Ui, where |Ui represents the non-
affine part of the displacements. While each element of |Ui is
an independent degree of freedom, specifying the shear strain
selects the value of |Ai on each crosslink. Hence a shear
displacement of the network is described by 2N� + 1 degrees
of freedom in total.

The response to shear can be determined by expanding the
energy (5) in the components of |Ui and g. In the harmonic
approximation, the result is

Ĥ �jNi
�hNj GaffA

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ĥext

jUi
g

� �
|fflfflfflffl{zfflfflfflffl}
jU;gi

¼ j0i
sA

� �
|fflfflfflffl{zfflfflfflffl}
j0;sAi

: (7)

Here Ĥ is the ‘‘standard’’ Hessian, i.e. the 2N� � 2N� matrix of
second derivatives of the energy with respect to each Cartesian
component Un of the crosslink displacements |Ui,

Hmn ¼
@2E

@Um@Un
: (8)

Similarly, the vector |Ni is defined via

�Nm ¼
@2E

@g@Um
: (9)

It represents the force imbalance on each crosslink that results
from affinely deforming the entire system (unit cell plus cross-
links). Finally, the affine modulus is

Gaff ¼
1

A

@2E

@g2
: (10)

We refer to the entire matrix on the lefthand side of eqn (7) as
the extended Hessian Ĥext.

The shear modulus can be determined numerically by
selecting a value of the shear stress s and inverting eqn (7)
numerically to find |U,gi. The modulus can then be read off
from G = s/g. The results of this procedure, which were already
discussed in the Introduction, are plotted in Fig. 2 after aver-
aging over 100 samples per condition. To estimate the exponent
a, we introduce a trial value atrial and select the n data points
(zi,Gi) satisfying z(atrial) o 0.1. According to eqn (1), the variable
gi = Gi/zi should approach a constant value, independent of zi.
Deviations from this expectation are quantified by the cost

function EðatrialÞ ¼
Pn
i¼1
jgi � �gj=ðn�gÞ, which quantifies the rela-

tive amplitude of fluctuations about the mean %g. At atrial = 7.2,

the function obtains its minimum value Emin = 8.2 � 10�3,
meaning data collapse to within less than 1% of the average. E
remains within 50% of its minimum for 6.9 r atrial r 7.6.

2 Density of states and soft modes

To make further progress, we now follow the approach devel-
oped in ref. 20,27,30, and consider the eigenmodes of Ĥext.
These serve as a convenient eigenbasis in which to express the
quasistatic displacements of a network’s nodes. Eigenmodes of
the Hessian are also eigenmodes of the dynamical matrix for
the case where each crosslink is assigned unit mass, which
motivates our choice to describe them as (undamped) ‘‘vibra-
tional modes.’’ Nevertheless, eigenvalues of the Hessian have
units of stiffness (force/length), rather than (frequency)2. The
same Hessian can be used to model, e.g., overdamped relaxa-
tions in the presence of a solute, see ref. 20,27.

Each mode |Un,Lni satisfies the eigenvalue equation

Ĥext|Un,Lni = on
2|Un,Lni, (11)

where on is the eigenfrequency of mode n. We then express the
shear response |U,gi as a superposition of the modes,

jU; gi ¼
X2N�þ1
n¼1

cnjUn;Lni

cn ¼ hUn;LnjU;Li:

(12)

To better understand the quantity Ln, it is useful to note that
the shear strain is

g ¼ h0; 1jU; gi ¼
X2N�þ1
n¼1

cnLn: (13)

For two modes with equal coefficients c, the mode with the
larger L will contribute more strongly to the strain. As the sign
of L can fluctuate, its square can be understood as a measure of
how strongly the mode couples to shear.

We now solve for G = s/g by inserting eqn (12) in (7) and
exploiting the orthonormality of modes to find

1

G
¼ A

X
on 4 0

Ln
2

on
2
: (14)

The restriction to positive frequencies excludes trivial rigid
body modes. We will evaluate (14) for G in Section 4. But first,
we focus on the statistics of modes.

It is useful to rewrite eqn (14) in the continuum limit. To do
this we assume that Ln

2N2 is independent of N (which will be
justified below) and define L(o)/N2 to be the average of Ln

2 in
the interval [o,o + do]). Similarly, we introduce the density of
states D(o), which is the probability density of o in the same
interval. We then have

1

G
¼ A

N

ð1
0

DL2

o2
do: (15)

The Mikado density of states D(o) is plotted in Fig. 4 for one
value of r and varying k. It features two distinct bands. The lower
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band shifts with varying k, while the upper band remains
unchanged. We conclude that the lower band contains bending-
dominated modes, and the upper band contains stretching-
dominated modes.

The bending-dominated band is characterized by its peak
frequency ok, which we identify with the frequency scale studied
by HF. We have estimated ok by fitting log D to a parabola in logo
in the vicinity of the peak. These data are plotted in Fig. 3a. As
noted in the Introduction, we find that ok

2 scales with
(cbcf)

2(rcf)
b. Estimating b in the same way as a above, we find

the best collapse for btrial = 6.1, with Emin = 0.01. The cost function
remains within 50% of its minimum for 5.8 r btrial r 6.5.

The stretching-dominated band is characterized by a low
frequency shoulder at a frequency om. While om is independent
of k, it shifts to lower frequencies when the fiber line density is
increased, as shown in Fig. 5a. We discuss om further in the
following section. The large-o tail of the stretching-dominated
band is due to longitudinal vibrations o8 B (m/c)1/2 of indivi-
dual fiber segments with length c. These frequencies are spread
out by the distribution of segment lengths P(c), which is
exponential due to the Poissonian deposition process. The tail
is then D B P[c(o8)]|dc/do8| B o�3 (Fig. 4, dashed line).

3 Two types of soft modes

We will demonstrate that a = b + 1 in two separate ways, neither
of which invoke the AFA. In the following section, we will
directly calculate G in terms of the peak frequency ok in the
bending-dominated regime. But first, we present a scaling
analysis of the characteristic frequencies in the density of
states. The main question will be determining when the bend-
ing- and stretching-dominated bands merge, i.e. when ok

becomes comparable to om. Therefore we must first determine
how om scales with fiber line density.

The stretching-dominated band is independent of the bending
modulus k, and therefore persists in freely-bending networks with
k = 0. The vibrational modes of central force networks have been
studied extensively,23–25,27,28,31–33 and we will now adapt these
results to Mikado networks to determine the scaling of om.

The mean coordination Z of a Mikado network obeys an
upper bound Z r Zc = 4, where Zc is known as the central
force isostatic point.§ It represents the lowest coordination
where there are enough springs to constrain all possible non-
rigid body motions of the network. It is straightforward to
show that DZ � Zc � Z B 1/(rcf) in Mikado networks.
Therefore densely crosslinked, freely bending Mikado net-
works are central force networks close to, but below, their
rigidity transition.2,8,29

Central force networks on either side of Zc display an abun-
dance of soft modes whose spatial character strongly resembles
floppy motions,24,33 i.e. the relative motion of each pair of nodes i
and j connected by a spring is predominantly transverse to the
unit vector n̂ij pointing from i to j. We shall refer to these as
stretching-dominated soft modes, to distinguish them from the
soft modes of FMT. The softest stretching-dominated soft modes
have frequency om. When Z o Zc, the density of states below om is
gapped, i.e. there are no modes between om and the floppy modes
at o = 0.24 The dependence of om on DZ can be calculated with
variational arguments reminiscent of FMT,33 or with effective
medium theory.24 The result is

om B keff
1/2|DZ|, (16)

where keff is an effective spring constant

keff ¼
@2E

@d‘hiji2

� �
� mr: (17)

Fig. 4 The Mikado density of states for rcf = 20.0 and k = 10�14. . .10�8 in
decade steps. The frequencies ok and om are indicated with arrows for the
lowest value of k. The dashed line has slope � 3.

Fig. 5 (a) Density of states for k = 10�14 and varying fiber line density. (b)
The same data, now with o rescaled by the prediction of eqn (18) for om.

§ The value Zc = 4 is the prediction of a mean field counting argument due to
Maxwell. While not all random networks obey mean field counting, Mikado
networks do.
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Here we have used the fact that the mean segment length scales
as 1/r. The typical stretching-dominated soft mode is therefore

om

o0
� 1

ðr‘fÞ1=2
: (18)

This prediction is verified in Fig. 5b, where the low frequency
shoulder in the density of states is collapsed for varying rcf by
rescaling the frequency o with the prediction of eqn (18).

Having determined the scaling of om, we can now motivate
the crossover between bending- and stretching-dominated
shear response. We expect network response to project strongly
on the softest modes. Therefore the response to shear will be
dominated by fiber bending when the density of states has a
well-defined bending-dominated band. This condition is satis-
fied so long as ok { om. The crossover from bending- to
stretching-dominated response will occur when ok and om

become comparable,

ok
2

om
2
� ð‘b=‘fÞ2ðr‘fÞbþ1 ¼ const: (19)

This defines the bending-to-stretching crossover in terms of the
exponent b. In the Introduction, we showed that the crossover
occurs when (cb/cf)

2(rcf)
a = z0. As these two conditions must be

equivalent, we conclude that a = b + 1. This is our first main
result.

4 Directly relating the shear modulus
to soft modes

We now derive the relation a = b + 1 by a different but
compatible route. Namely, we calculate G in the bending-
dominated regime directly from the sum rule (14).

We begin by rewriting the sum rule as a bound on G, by
restricting the sum to the O(N) soft modes,

G4 A
X

soft modes

Ln
2

on
2

 !�1
: (20)

We expect G to follow this bound closely, because the soft
modes are the lowest non-trivial eigenfrequencies. Assuming
each soft mode has the same frequency ok

2 with a corres-
ponding coupling strength Lk

2 gives

G � ok
2

NALk
2
: (21)

In order to evaluate G, we must determine Lk
2. Acting on

eqn (11) from the left with h0,1|, solving for Ln
2, and taking the

thermodynamic limit gives

Ln
2 ¼ hNjUni

GaffA

� �2

: (22)

Assuming that correlations between the force imbalances |Ni
and the displacements |Uni of a soft mode are negligible, the

squared inner product is

hXjUni2 �
XN�
i¼1
j~Xij2j~Un;ij2: (23)

The modes are normalized, so their mean squared displace-
ment |

-

Un,i|2 is O(1/N�).¶
The quantity j~Xij2 requires closer consideration. Recall that

|Ni represents the force imbalance on each crosslink after an
affine deformation of the network.8 Affine displacements do
not bend fibers, so the forces they generate are only due to
stretching. Let us consider a single fiber. Affine shear changes
the length ca of each segment by an amount dchiji = A(y)gca,
where A(y) is a prefactor that depends only on the orientation of
the fiber and is therefore the same for all segments on the same
fiber. The force in segment a is fhiji = mdchiji/chiji = mA(y)g. Note
that the force is independent of the segment length chiji. As a
result, affine shear induces an identical force in each segment
of a fiber. The segments are co-linear prior to shearing, and
therefore the net force on a crosslink vanishes unless the
crosslink is at one of the two ends of a fiber (or is attached to
a dangling end, if they have not been trimmed). In other words,

j~Xij2 is zero on interior crosslinks and O(m2) on terminal cross-
links. As there are O(N) terminal crosslinks, rather than O(N�),
the sum in eqn (23) can be rewritten

hNjUni2 �
m2N
N�

: (24)

Replacing the subscript n in eqn (22) with k to indicate a typical
soft mode, we find

Lk
2 � 1

NN�
� 1

r‘fN2
: (25)

The fact that Lk
2 scales inversely with N2 guarantees that the

shear modulus is intensive. Crucially, the coupling strength
also depends on rcf. Inserting (25) in (21), we find

G

Gaff
� r‘f

ok
2

o0
2
; (26)

from which it follows that a = b + 1. This is our second main
result.

¶ Normalization guarantees |U
-

n,i|2 B O(1/N�), provided the mode is extended.
As the floppy modes in freely bending Mikado networks are localized (motion is
restricted to a central fiber and the secondary fibers with which it is crosslinked),
one might worry that the soft modes are localized, as well. However, this is not the
case. When the bending modulus is small but finite, the secondary fibers trigger
motion in ternary fibers, and so forth. HF demonstrated that the axial displace-
ments of the non-central fibers are of the same order of magnitude as the central
fiber.
8 It may seem odd that the force imbalance due to an affine shear plays a role in
determining G in the bending regime, where deformations are strongly non-
affine. This can be understood by thinking of shear as a two-step process. In the
first step, the system is deformed affinely, which, due to disorder, generates force
imbalances on nodes. In the second step, the nodes displace non-affinely to
relieve these force imbalances.
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5 Discussion

We have demonstrated how soft modes determine the shear
modulus of densely crosslinked Mikado networks in the
bending-dominated regime. In so doing, we have resolved an
apparent discrepancy in the literature between the predictions
of floppy mode theory and independent measurements of the
shear modulus. We find no reason to question the predictions
of FMT regarding the scaling of the characteristic frequency ok

in eqn (2). However, eqn (3) and the prediction that a = b, are
not correct. As these relationships rely on the affine fiber
approximation, the natural conclusion is that the AFA does
not hold. Our results imply that the typical fiber displacement
during shear is dx B (rcf)

(a�b)/2cfg = (rcf)
1/2cfg, which is much

larger than the value cfg predicted by the AFA. We have been
unable to find an intuitive explanation for this scaling relation.

It is natural to ask why the early work of Wilhelm and Frey
yielded an estimate a E 5.7 that is significantly smaller than
subsequent estimates. In our opinion, this is because
they fitted data for r 4 15 to the form G/Gaff B Dra, where
Dr = r � rc (recall rc E 5.7). While the difference between
using r and Dr in the scaling relation becomes negligible
sufficiently far above the percolation threshold, fitting to a
power law in Dr gives systematically lower estimates of a. We
have shown that FMT predicts that G scales as a power of r in
the bending-dominated regime.

Our work has generated two additional insights into Mikado
network mechanics. First, bending-dominated response corre-
lates with the existence of a well-separated band of bending-
dominated soft modes. We have shown that Mikado networks
also possess stretching-dominated soft modes. The bending-
dominated regime ends, and the gap between bending- and
stretching-dominated modes closes, when the characteristic
frequency of stretching-dominated soft modes, om, becomes
comparable to the bending-dominated soft mode frequency ok.
The frequency om is set by the network’s proximity to the
central-force isostatic state. Our results therefore indicate that
the isostatic point plays a governing role in the bending- to
stretching-dominated crossover in 2D Mikado networks. This is
distinct from fiber networks in 3D, which can undergo a similar
crossover while remaining well below the central force isostatic
point.34

A second insight is that bending-dominated soft modes
couple to shear in a non-trivial way. This coupling is encoded
in the system-size dependence of Lk

2. Simple dimensional
analysis reveals that Lk

2 must be inversely proportional to the
square of an extensive quantity. We have shown that this
squared extensive quantity is an admixture of the number of
fibers and the number of crosslinks, Lk

2 B 1/(NN�). This is a
consequence of the co-linearity of crosslinks along a fiber. This
prediction is corroborated by numerical studies in which the
crosslink positions in the initial condition are gradually per-
turbed, which qualitatively changes the scaling of G with fiber
line density.6

Our results suggest several directions for future work. In
addition to elastic moduli, the density of states can be used to

calculate linear response properties such as the storage and
loss moduli,20 sound transmission,35 and thermal expansion
coefficients.26 It can also predict the onset of nonlinear proper-
ties such as strain stiffening and shocks.27,36,37 Finally, a
detailed understanding of structure–property relationships
can facilitate the design of network architectures with tunable
properties, such as moduli and failure onset.13,38–42
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