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Hydrodynamics of immiscible binary fluids with
viscosity contrast: a multiparticle collision
dynamics approach

Zihan Tan, *a Vania Calandrini, b Jan K. G. Dhont, ac Gerhard Nägele ac

and Roland G. Winkler d

We present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids A and B

of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed

steady shear motion and the time-dependent shear stress functions are in excellent agreement with our

continuum hydrodynamics results for the composite fluid. The wave-vector dependent transverse

velocity auto-correlation functions (TVAF) in the bulk-fluid regions of the layers decay exponentially, and

agree with those of single-phase isotropic MPC fluids. In addition, we determine the hydrodynamic

mobilities of an embedded colloidal sphere moving steadily parallel or transverse to a fluid–fluid inter-

face, as functions of the distance from the interface. The obtained mobilities are in good agreement with

hydrodynamic force multipoles calculations, for a no-slip sphere moving under creeping flow conditions

near a clean, ideally flat interface. The proposed MPC fluid-layer model can be straightforwardly

implemented, and it is computationally very efficient. Yet, owing to the spatial discretization inherent to

the MPC method, the model can not reproduce all hydrodynamic features of an ideally flat interface

between immiscible fluids.

1 Introduction

Multi-phase fluid flows occur ubiquitously in nature and engineering
processes. Examples constitute oil–water flows, fluids with air
bubbles, emulsions, dairy products, biological fluids, processing of
paints, coating, and printing. Owing to their complexity, the
theoretical description and efficient modeling of binary fluids
pose major challenges, which stimulated a wealth of endeavors
to model binary fluids using mesoscale simulations. In the lattice-
Boltzmann method (LBM), the implementation of multi-phase
flows and phase separation encompasses several variants: the
color gradient model,1–3 the pseudo-potential model,4,5 the free-
energy functional model,6,7 and the mean-field model,8 or
combinations thereof.9 Dissipative particle dynamics (DPD)
simulations, which explicitly account for conservative pair inter-
actions between fluid particles, allow to realize multi-phase

fluids via assigning distinct interactions between the particles.10

Furthermore, the multiparticle collision dynamics (MPC) method,
a particle-based hydrodynamic simulation approach which cap-
tures hydrodynamic interactions and thermal fluctuations,11–17

has been proven valuable and efficient for mesoscale simulations,
and has been applied in a broad range of studies of biological and
active polymers,18–26 colloids,27–31 proteins,32,33 vesicles and blood
cells,34,35 microswimmers,36–46 and microfluidics.47,48 To date,
various MPC implementations of binary fluid mixtures have
been proposed, and their phase behavior has been studied.49–56

Depending on the applied interaction rule between the different
fluid components, the viscosity values of the (two) fluids are
equal or individually controlled.52,55,57,58

Most of the above mentioned simulation methods are aimed
to account for both the hydrodynamics and thermodynamics.
The large computational costs, which are often necessary to
suitably account for the thermodynamics involved in studying
phase separation of multi-phase fluids, are dispensable when
the dynamics of embedded objects such as proteins, polymers, or
living organisms are considered. In fact, a plethora of physical
phenomena related to immiscible binary fluids take place under
conditions where phase separation is absent or is of no interest,
and simulation methods accounting for the hydrodynamics
alone suffice here. The MPC approach is very well suited to
efficiently simulate hydrodynamic flow properties in the presence
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of thermal fluctuations (fluctuating hydrodynamics).14 In particular,
MPC allows to tune the viscosity of fluids through the specification
of the frequency of MPC collisions, and, hence, to control the
viscous properties of immiscible fluids.

In this work, we present a model for planar layers of two
immiscible binary fluids A and B using the MPC approach. The
fluids, separated by a flat interface, are of distinct shear
viscosity, ZA and ZB, whose values are tuned by the corres-
ponding MPC collision frequency. While omitting the thermo-
dynamic and kinetic processes of phase separation, it allows for
fluid particle exchange across the interface, associated with a
change of the local (collisional) interactions in the arriving
fluid layer. No explicit interactions between fluid particles at
the interfacial zone are required, although a more sophisticated
modeling of the interface properties is possible for future assess-
ment. Shear flow profiles and the shear stress under starting flow
conditions are calculated, and the latter is compared with a
provided analytical solution of the linearized Navier–Stokes
equation of the same composite fluid. Moreover, transverse
hydrodynamic velocity correlation functions (TVAFs) are deter-
mined for the different layers. In addition, the hydrodynamic
mobility/friction properties of a colloidal sphere inside a fluid
layer, which moves steadily parallel or perpendicular to an
interface, are calculated. The approach recovers the correct flow
profiles, fluctuating hydrodynamic properties, and thermal fluctua-
tions of the individual fluid layers. The invoked simplifications in
the present MPC treatment lead to a higher computational
efficiency compared to other mesoscale techniques and MPC
implementations considered so far,51–56 which is a significant
advantage when simulating large-scale systems.

The present simulations constitute a first important step in
studying the dynamics, e.g., of monolayers of thermal particles
moving near a planar fluid–fluid interface, with full account of
the time-resolved (retarded) hydrodynamic interactions of
the particles with the interface and among each other. These
so-called quasi-two-dimensional systems have been intensely
studied recently, since they reveal peculiar dynamic features
such as the anomalous hydrodynamic enhancement of lateral
collective diffusion,59–62 and the influence of the interface on
the motion of nearby Brownian particle, as reflected in the
non-isotropic, hydrodynamic long-time tails of particle velocity
correlations.63,64 Interestingly enough, the motion pattern of
microswimmers is also strongly affected by their hydrodynamic
interaction with a nearby (fluid) interface.65,66

Our two-fluids MPC model is also a first step toward meso-
scopic simulations of the diffusion and phase behavior of
assemblies of interacting proteins attached to or embedded
inside a membrane. It should be recognized here that the
biophysical properties of the membrane, both in physiological
and in vitro conditions, influence the structure and function of
many membrane-associated proteins.67–73 Diffusion properties
of single membrane receptor proteins and their orientation-
dependent interaction potentials (which can be partially due
to local membrane deformations) as obtained from force-
field based molecular dynamics (MD) simulations where the
lipids and the atomistic structure of the receptor are explicitly

accounted for, can be used as input to tune mesoscopic MPC
simulations.

The present paper is organized as follows. Section 2 gives the
essentials of the single-phase MPC algorithm, outlines its extension
to immiscible multi-phase fluids, describes the coupling rules of a
colloid with the MPC fluid, and defines the simulation parameters.
The two-fluids MPC model is validated in the three subsequent
sections. In Section 3, the stationary shear profile of the planar
three-layers system and the time-dependent shear stress functions
under starting flow conditions are simulated, and compared with
our analytic continuum hydrodynamics results. In Section 4, MPC
simulated transverse velocity correlation functions (TVCFs) in the
bulk regions of the two fluids, and in a region including the
interface between them, are contrasted with predictions from the
linearized fluctuating Landau–Lifshitz Navier–Stokes equation. In
Section 5, the simulated hydrodynamic mobilities of a colloidal
sphere moving steadily inside the middle layer of a three-layers fluid
system are compared to previous numerical results based on the
Stokes equation of low-Reynolds number hydrodynamics. In
Section 6 we summarize and conclude our findings, and provide
a perspective on future work. The Appendix presents our con-
tinuum hydrodynamics results for the time-dependent velocity
profiles and for the stress functions of the composite three-
layers system under starting shear flow conditions.

2 Model
2.1 Multiparticle collision dynamics (MPC) fluid

A single-phase MPC fluid consists of N point particles each of
mass m, typically enclosed in a cubic simulation box of length L
with periodic boundary conditions. The dynamics of the fluid
particles proceeds through discrete streaming and collision
steps.11–13,74 During a streaming step, the particles move ballistically
for a time span h, referred to as collision time. Hence, the position ri

of a fluid particle i, with i A {1,. . .,N}, is updated according to

ri(t + h) = ri(t) + hvi(t), (1)

where vi is the particle velocity. In the subsequent collision
step, accounting for the interactions between fluid particles,
the MPC particles are sorted into cubic cells of size a defining the
local interaction environment (collision cells). In the stochastic
rotation dynamics (SRD) variant of MPC, MPC-SRD, the relative
particle velocities ṽi = vi � vcm, with respect to the center-of-mass
velocity vcm of a particular collision cell, are rotated around a
randomly orientated axis by a fixed angle a.12,13,75 In three dimen-
sions, the velocity of a particle i after a collision is thus given by

vi(t + h) = vcm(t) + ṽi,>(t)cos(a) (2)

+ [ṽi,>(t) � <]sin(a) + ṽi,8(t), (3)

where < is a unit vector along the selected rotation axis, and
ṽi,> and ṽi,8(t) are the parallel and perpendicular components of
the velocity ṽi with respect to the vector <, respectively. The
orientation of < is chosen independently for each collision cell
and time step. The MPC-SRD algorithm conserves particle number,
energy, and linear momentum. However, angular momentum is

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
A

ug
us

t 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
/2

4/
20

26
 1

:5
1:

51
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sm00541c


7980 |  Soft Matter, 2021, 17, 7978–7990 This journal is © The Royal Society of Chemistry 2021

not conserved,17 an aspect irrelevant for the current study.14,76,77

The employed discretization into collision cells breaks Galilean
invariance, which is re-established by a random shift of the
collision cell lattice at every collision step.78 To maintain a
constant temperature, a (simple) cell-level scaling scheme of
the relative velocities ṽi is employed.79 Since mass, momentum
and energy are conserved locally, the correct fluctuating hydro-
dynamic equations for an isothermal compressible fluid are
obtained in the continuum limit.

The shear viscosity Z = Zk + Zc of a homogeneous MPC fluid
can approximately be calculated analytically and comprises
contributions from streaming, Zk, and collisions, Zc,76,79–82 where

Zk ¼ Nch ikBTh
2a3

5 Nch i
ð Nch i � 1Þð2� cos a� cos 2aÞ

� �
; (4)

Zc ¼ Nch im
18ah

1� cos a½ � 1� 1

Nch i

� �
: (5)

Here, hNci is the average number of MPC particles per collision
cell, T the temperature, and kB the Boltzmann constant. Note that
the kinetic contribution, Zk, is only approximately valid, because
its derivation is based on the molecular chaos assumption.79

However, for small collision time steps, Z is dominated by Zc.
The viscosity of a MPC fluid can be adjusted in several ways:

by changing the mass of a particle, the average particle density
in a collision cell, the rotation angle a, and the collision time
step h. An implementation of two fluids with different masses
has been realized.57,58 Since the particles are distinctly differ-
ent, suitable boundary conditions between the two fluids have
to be applied. Similarly challenging are simulations of coexist-
ing fluids with a MPC particle density difference. Variations of
the collision angle yield a rather limited range of viscosity
differences.83 The most suitable strategy to simulate immiscible
fluids seems to be a change of the collision time step in the
different fluid regimes. In fact, the particles themselves are
identical in the various fluids, they only experience more (or less)
frequent collisions. This drastically simplifies the numerical
implementation and enhances the performance.

2.2 Immiscible binary fluid system

The extension from a single to a layered two-fluid system of
phases A and B with distinct shear viscosities ZA and ZB, which
are separated by two flat interfaces, is rather straightforward
and illustrated in Fig. 1. As discussed above, the viscosity of a
single-phase MPC fluid is sensitive to the collision time h,12,76

and we describe the fluid layers A and B of different viscosities
by using accordingly different collision time steps hA and hB.
Without loss of generality, we take hA o hB in the following,
implying the viscosity of fluid A to be larger than that of fluid B.
Furthermore, A and B particles are assumed to be of equal mass
m, and the mean mass densities of both fluid phases are taken
to be the same. Hence, the MPC particles in the two regimes are
identical. For notational convenience, we will refer to particles
A and B and fluids A and B corresponding to MPC particles in
the two different domains.

As for a single-phase fluid, the MPC fluid particles move
ballistically, and undergo independent collisions as follows:
� Streaming: A and B fluid particles move according to

eqn (1) with collision time step hA. This ensures an identical
‘‘continuous’’ dynamics of both particle types.
� Sorting: after streaming with time hA, the particles are

sorted in (shifted) collision cells.
� Rotation: particles in the collision lattice of the A domain

undergo rotations according to eqn (3), after the time interval
hA. Particles in the collision lattice of the B domain are rotated
only after the time interval hB 4 hA, i.e., after hB/hA additional
streaming steps of time length hA.

The subdivision of the streaming of particles B does not
affect the properties of the bulk part of fluid B, since the
particles move ballistically. However, it is important for the
particles close to the planar A–B interface, owing to the random
shift of the collision lattice normal to the interface, and since
all particles in the (shifted) lattice of the A fluid domain
undergo rotations after the time interval hA. The equivalent
streaming motion of particles in the two domains ensures an,
on average, homogeneous distribution of fluid particles across
the system, and a homogeneous density across the interface.
However, the random shift of the collision cell lattice normal to
an A–B interface broadens the interface at least by the size a of a
collision cell.

2.3 Colloid dynamics and fluid coupling

The translational and rotational motions of a neutrally buoyant
no-slip hard-sphere colloid of radius R and mass M embedded
in the MPC fluid is governed by elastic collisions with the MPC
particles, which we account for in a coarse-grained manner.17

During the streaming step, just as for the solvent particles,
a colloidal sphere moves ballistically with center-of-mass

Fig. 1 Schematics of a periodic three-layer MPC system of two immiscible
fluids A (red) and B (blue) separated by planar intefaces. MPC collisions are
performed independently in cubic collision cells, delineated by the dashed
lines, using collision times hA and hB according to the fluid type. The width,
a, of a cubic MPC cell is indicated.
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velocity Vc(t). Its center-of-mass position vector, Rc(t), changes
according to

Rc(t + h) = Rc(t) + hVc(t). (6)

MPC particles i which (virtually) penetrate the colloid are moved
backwards in time by the time interval (h � hi), where hi o h
follows from the condition |ri(t) � Rc(t) + hi(vi(t) � Vc(t))|

2 = R2.
These MPC particles collide then with a virtual colloid at the center
position Rc(t) + hiVc(t), transfer the momentum pi elastically to the
colloid, and subsequently move with new velocity vi0 ¼ viðtþ hiÞ
for the time interval (h � hi). The linear and angular velocities of
the MPC particles and of the colloid before and after collision are
related by

v
0
i ¼ viðtÞ � pi=m; (7)

Vcðtþ hÞ ¼ V cðtÞ þ
X
i¼1

pi=M; (8)

Xcðtþ hÞ ¼ XcðtÞ þ R
X
i¼1
ðni � piÞ=I : (9)

The sum extends over all fluid particles colliding with the colloid
during the time interval h. Here, Xc is the angular velocity of the
embedded colloid, ni = (ri � Rc)/|ri � Rc| is the unit vector pointing
from the colloid center to the position of fluid particle i, and I =
wMR2 with w = 2/5 is the moment of inertia of the spherical colloid.

To realize the hydrodynamic no-slip boundary conditions at
the colloid surface, we use the bounce-back rule for the MPC
fluid particles, which yields17,84–87

pi ¼ 2mred�vi;n þ 2mred
Mw

mred þMw
�vi;t; (10)

with the relative velocity, �vi, of a colliding MPC fluid particle i
with respect to the according colloid surface point given by

�vi ¼ vi � V c þ RXc � ni½ �: (11)

Here, mred = mM/(m + M) is the reduced mass, and �vi;n and �vi;t are
the normal and tangential relative velocity parts, respectively,
with respect to the colloid surface.

In the MPC collision step, phantom (p) particles are added
inside the colloid to enforce the no-slip hydrodynamic bound-
ary condition, which, in addition, act as a thermal bath.88

Theses particles are uniformly distributed inside the colloid
according to the average MPC–fluid particle density, and their
velocities relative to the colloidal translational and rotational
velocities are taken from a central Maxwellian distribution
function. This yields the updated colloid translational and
angular velocities after a collision step

V cðtþ hÞ ! Vcðtþ hÞ þ
X
i

Dppi =M; (12)

Xcðtþ hÞ ! Xcðtþ hÞ þ R
X
i

r
p
i � Rcð Þ � Dppi =I ; (13)

respectively. Here, Dpp
i denotes the change in the linear momentum

of phantom particle i at position rp
i due to SRD, and Vc(t + h) and

X(t + h) are the velocities in eqn (8) and (9), respectively.

To further speed up the simulations, we use a common value
hi = h/2 for all MPC particles rather than considering the
individual elastic collision events at the exact times t + hi of
each fluid particle-colloid collision. This simplifying step was
shown to be as accurate as when the exact his are used,
especially for small collision time steps.84,86,89

2.4 Simulation parameters

In what follows, lengths are measured in units of a, mass in
units of m, and energy in units of the thermal energy kBT. We
use therefore the units

t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=ðkBTÞ

q
; v0 ¼ vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
; Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=a2

(14)

for time, t0, velocity, v0, and viscosity, Z0, respectively. Note that
t0 is equal to the ratio of cell size a and thermal velocity

vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
. In these units, the sound velocity in both fluids

is equal to one. The average number of particles per collision
cell is selected as hNci = 10, implying equal mean number and
mass densities of the A and B fluids, and the rotation angle is
set to a = 1301. The collision time steps are taken as hA = hB/5 =
0.02 � t0. With the mass density r = hNcim/a3, the corres-
ponding kinematic viscosities are nA/n0 = 4.12 and nB/n0 = 0.87,
where n0 = Z0a3/m. This yields the kinematic viscosity ratio
m2 = nA/nB = 4.74. The related dimensionless Schmidt numbers
are ScA = nA/DA = 400 and ScB = nB/DB = 17, expressing that the
viscous diffusion of (transversal) momentum in the fluid is
distinctly faster than diffusive mass transport, with the latter
characterized by the mass diffusion coefficients DA = (hA/hB)DB of
fluid A and B particles, respectively. Simulations are performed
using periodic boundary conditions, applied in Sections 3 and
4 to a cubic simulation box of length L/a = 39 and 80,
respectively, and in Section 5 to a rectangular box of lengths
2Lx/a = 2Ly/a = Lz/a = 80. The latter embeds a colloidal sphere of
radius R = 2.5a.

3 Shear simulations

As a first example used for scrutinizing the hydrodynamic behavior
of our two-fluids MPC approach, we consider a standard stationary
shear flow setup as sketched in Fig. 2. The three planar layers of
two immiscible fluids A and B are sheared by two walls oriented
parallel to the xy-plane, which move oppositely along the x-
direction with constant velocities �u = 0.0975vth. The lower wall
is located at z = 0, and the upper one at z = Lz = L = 39a. No-slip
boundary conditions (BCs) at the walls are implemented using the
bounce-back rule and phantom particles inside the walls.76 The
three B–A–B fluid layers are separated by planar fluid interfaces
located at z = Lz/4 and 3Lz/4, respectively.

The stationary shear velocity vst(z) = vst
x (z)ex, obtained from

the stationary Navier–Stokes equation,90 is piecewise linear and
unidirectional along the x-direction. The flow is uniquely
determined by the wall-fluid stick boundary conditions, and
the continuity of flow velocity and shear stress across the two
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clean planar interfaces whose thickness is assumed to be zero.
Explicitly,

vB,st
x (Lz) = �vB,st

x (0) = u, (15)

vA,st
x (Lz/4) = vB,st

x (Lz/4) = u�s , (16)

vA,st
x (3Lz/4) = vB,st

x (3Lz/4) = u+
s, (17)

where u+
s and u�s = �u+

s (by symmetry) are the fluid velocities at
the upper and lower fluid interfaces, respectively. The inter-
facial velocities are obtained using the continuity of shear
stress across the planar clean interfaces (no Marangoni stress
and Laplace pressure), ZA _gA = ZB _gB, at z = Lz/4 and 3Lz/4,
respectively, which yields

u�s ¼ �
ZB

ZB þ ZA
u: (18)

Here, _gA = duA,st
x (z)/dz and _gB = duB,st

x (z)/dz are the constant shear
rates in the mid-layer of fluid A and in the two layers of fluid B,
respectively. The (dynamic) pressure for the unidirectional
shear flow is constant throughout the system including the
interfaces. The Appendix presents our analytical continuum
hydrodynamic result for the transient starting flow vx(z,t) of
the B–A–B system which converges to vst

x (z) in the course of time
(cf. Fig. 6).

The MPC simulation results for vst
x (z) displayed in Fig. 3(a)

reflect the hydrodynamically expected behavior of three linear
stationary shear flow regions. Even more, the simulation results
agree quantitatively with the hydrodynamic flow profile
described in eqn (17), (18), and in eqn (36) of the Appendix.
In spite of the non-zero thickness of the interface in the MPC
simulations of the order of the collision cell size a, caused by
discretization in terms of collision cells and random shift of the
collision cell lattice, the MPC results suggest that the interface
width is of minor relevance for fluid properties on lengths

scales significantly larger than a. The inset of Fig. 3(a) magnifies
the stationary velocity profile in the A–B interfacial region. It
suggests a continuous change both of vst

x (z) and its slope across
the interface. This indicates also a continuous change of the local
viscosity in the interfacial region caused by the discretization.

In order to confirm the hydrodynamically expected relations
between stress, shear rate, and viscosity in the MPC simula-
tions of the immiscible fluid, we determine the instantaneous
internal (superscript i), si

xz, and external (superscript e), se
xz,

shear stresses. The latter is the stress (modulus) exerted by the
fluid particles on the walls, while the former one is the volume

Fig. 2 Schematics of a layered B–A–B fluid system steadily sheared by
two parallel no-slip walls moving in opposite direction with velocities �u =
(�u,0,0). A piece-wise linear stationary velocity profile is obtained from
hydrodynamics under laminar flow conditions.

Fig. 3 (a) Stationary shear velocity profile, vst
x (z), of a B–A–B fluid layer

system, obtained from MPC simulations (open circles) and analytically
from continuum hydrodynamics (solid line) according to eqn (17), (18) and
(36) in the Appendix. The magnitude of the wall velocity is |u| = 0.0975vth.
Inset: Magnification of vst

x (z) in the A–B interfacial region (blue rectangle).
(b) Moving time average of the external shear stress, hse

xzit, at the upper
and lower wall, and of the internal shear stress, hsi

xzit, in units of
thermal stress s0 = kBT/a3 = 13sst

xz. Open symbols are MPC data, and solid
lines our continuum hydrodynamics predictions (cf. Appendix). Inset:
Continuum hydrodynamics results for the instantaneous (solid lines) and
moving time average (eqn (22)) (dashed lines) external (red) and internal
(green) stresses se,i

xz(t) and hse,i
xzit, respectively, as functions of t (as in the

main plot).
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averaged stress. Explicitly, the stresses at a given time instant
are computed as76

sexz ¼
L

2VhB

XN
i¼1

Dpuix �
XN
i¼1

Dplix

 !

þ L

2VhB

X
i2bc

Dpuix �
X
i2bc

Dplix

 !
;

(19)

sixz ¼ �
1

V

XN
i¼1

mv̂ixv̂iz þ
2u

VhB

XN
i¼1

mv̂izDti

� 1

VhAðBÞ

XN
i¼1

Dpixriz þ
L

2VhB

X
i2bc

Dpuix �
X
i2bc

Dplix

 !
;

(20)

where the sums extend over all N fluid particles inside the
simulation box, and riz is the position of the MPC particle i
along the z-axis. Here, the change in the momentum, Dpi(t), of a
particle i in a collision step is given by

Dpi(t) = m(vi(t) � v̂i(t)), (21)

where v̂i is the particle velocity after streaming and before
collision. The superscripts u and l indicate that the considered
quantity is calculated at the upper and lower wall, respectively.
Note that eqn (19) and (20) account also for momentum
exchange due to collisions with phantom particles located
inside wall boundary cells (bc). The negative sign in front of
the transversal momentum exchange Dpl

ix accounts for the
negative velocity, �u, of the lower wall. In eqn (20), the second
term on the right-hand side accounts for the momentum
change of B particles ‘‘reflected’’ (bounce-back) at a wall in
the streaming step, and Dti is the time during which particle i
streams in the fluid before colliding with a wall.76 The internal
stress calculation invokes the momentum exchange of fluid A
and B particles, described by the third term on the rhs of
eqn (20). Here, time averaging is performed separately for each
fluid phase, owing to the different collision times hA and hB.

In the simulations, ‘‘macroscopic’’ stress tensors are calculated
via averaging over various realizations (ensemble average) as well
as averaging over time. For the latter, we determine the moving
time averages

hsi;exzit ¼
1

t

ðt
0

dt 0si;exzðt 0Þ; (22)

of external and internal stresses, which yield the stationary state
value, sst

xz, in the limit t - N. As a particular case, we analyze the
starting flow situation, where at time t = 0, the two confining walls
suddenly start to move oppositely with constant velocities �uex,
respectively. Fluid and walls are at rest for t o 0.

MPC results for the moving time average external and
internal shear stresses are presented in Fig. 3(b), as function
of the elapsed time t after the two walls started to move. The
MPC results for the modulus of the external stress, hse

xzit, at the
upper and lower wall are equal within the accuracy of the
simulations. The external stress decays monotonically towards

the plateau value sst
xz = 0.077s0 where the steady-state regime is

reached, characterized by the fully developed, piece-wise linear
shear profile in Fig. 3(a) and an uniform shear stress. Its decay
reflects the diffusive broadening of the region of changing fluid
velocity near the walls with increasing time, as depicted in
Fig. 6 of the Appendix. The moving time averaged internal
stress increases instead from its minimal value at t = 0, where
the bulk fluid is still at rest, towards its steady-state value sst

xz.
The characteristic transition time for the external shear stress
relaxation (and internal stress buildup) towards the uniform
steady-state value is estimated as tv = (Lz/4)2(1/nA + 1/nB) E
140 � t0, which is the viscous diffusion time across half of the
simulation box, Lz/2. The MPC moving time averaged external
and internal stresses in the sheared B–A–B system are in
excellent agreement with the corresponding hydrodynamic
stresses (solid curves), the latter obtained from the according
analytic expressions presented in the Appendix.

From the limiting steady-state stress value and the steady-
state flow profile, the viscosity values ZA/Z0 = 42.9 and ZB/Z0 =
9.1 are deduced, which agree within less than 5% with the
viscosity values obtained from analytical theory for respective
one-component MPC fluids (cf. Section 2.4). The shear viscosities
of the binary fluid model can be easily controlled by a single
parameter, namely the collision time step h, but there is a
continuous viscosity crossover along the MPC interface of thick-
ness comparable to the collision cell. In general, the continuum
hydrodynamic behavior is accurately recovered by the MPC
simulations for lengths larger than about 2a.14

The inset in Fig. 3(b) depicts our continuum mechanics
results, summarized in the Appendix, for the instantaneous
external and internal shear stresses se,i

xz (t) in comparison with
the according moving time averages hse,i

xzit. By their definitions,
the moving stress averages approach the common steady-state
value more slowly than the stresses themselves. As shown in the

Appendix, se
xz(t) and hse

xzit exhibit the time-dependence 1=
ffiffi
t
p

near t = 0. In contrast, the internal stress and its time averaged
counterpart are finite and minimal at t = 0, with the common
value 0.60sst

xz according to eqn (43).

4 Hydrodynamic correlations:
transverse velocity auto-correlation
function

Additional insight into the time-resolved hydrodynamic behavior
of the MPC fluid is gained by analyzing the transverse velocity
auto-correlation function (TVCF)14 in the various layers. For a
stationary and isotropic Newtonian fluid in a volume V with
periodic boundary conditions, the linearized Landau–Lifshitz
Navier–Stokes equations yields the single-exponentially decaying
TVCF in Fourier space14

uT ðk; tÞT � uT ð�k; 0Þ
� �

¼ 2kBT

rV
e�nk

2t: (23)

Here, uT(k,t) is the Fourier-transformed velocity part perpendi-
cular to the wave vector k,14,82 i.e., uT�k = 0. The brackets denote
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an equilibrium ensemble average, with the fluid system at rest on
hydrodynamic time and length scales. The factor 2 on the rhs
accounts for the two independent transversal modes. Owing to
isotropy, the TVCF depends only on the modulus k = |k| of the
wave vector. Simulation results for the TVCF of a single-phase
MPC fluid are in excellent agreement with the above hydro-
dynamic prediction.14,82,91

To explore thermally induced transverse velocity correlations
in our three-layer model of fluids A and B, we perform simula-
tions for a cubic simulation box of size L = 80a, with periodic
boundary conditions in all three Cartesian coordinate directions.
The higher-viscosity layer A of width L/2 is symmetrically sand-
wiched between two fluid–B layers, as illustrated in Fig. 2, but
now for a system without shear. The period boundary condition
along the z-axis implies an alternating pattern of horizontal A and
B layers of equal thickness L/2.

We determine the TVCFs of the pure A and B fluids in the
three-layer model by considering No MPC particles inside an
observation cuboid of z-thickness Lo = L/4 = 20a and volume
Vo = L � L � Lo, symmetrically located inside the A-fluid and
B-fluid layers, respectively. To explore additionally the influ-
ence of the fluid interface, the TVCF for another observation
cuboid with smaller vertical width Lo = 10a is determined, with
the cuboid symmetrically enclosing the A–B interface. The
Fourier transform, u(k,t), of the fluid velocity fluctuations in
an observation cuboid is calculated according to

uðk; tÞ ¼ 1

No

XNo

i¼1
viðtÞeik�riðtÞ; (24)

where vi(t) is the velocity of fluid particle i at position ri(t) inside
the considered cuboid. For the cuboid centered around the A–B
interface, half of the particles summed over are, on average, of
A-type and half of B-type. For the present purpose, we consider
only wave vectors k = k8 parallel to the xy-plane, with wave-
length l = 2p/k smaller than the cuboid width Lo. This reduces
boundary artifacts due to fluid particles leaving or entering the
observation cuboid.

Fig. 4(a) displays the normalized TVCFs

CT
v ðk; tÞ ¼

uT ðk; tÞ � uT ð�k; 0Þ
� �
uT ðk; 0Þ � uT ð�k; 0Þh i (25)

of the fluid inside the A and B cuboids, respectively, as well as
the TVCF of the mixed-fluid cuboid enclosing the A–B interface.
The horizontally oriented wavectors employed here are k =
(32p/L)(1,0,0) and k = (32p/L)(0,1,0), of wavelength l = 5a
smaller than the cuboid width. Notice that uT(k,t) = (1 � k#
k/k2)u(k,t). Owing to the non-isotropic three-layer structure,
CT

v(k,t) is in principle an anisotropic function of the wave vector,
depending also on the vertical location and width of the
considered cuboid.

Within the correlation time window t r 3t0 depicted in
Fig. 4(a), the MPC-calculated normalized TVCFs of the pure A
and B-fluid cuboids (open symbols) decay exponentially accord-
ing to exp(�k2nt), with kinematic viscosity values nA and nB as
numerically obtained in Section 3. The reason why the isotropic

bulk fluid TVCF form is recovered in the anisotropic three-layer
system (within numerical accuracy) is that the viscous diffusion
time, tA,B

n = (L/8)2/nA,B, over a distance from the cuboid center to the
interface is large compared to the resolved correlation time window;
the viscous diffusion times are tA

n = 24t0 and tB
n = 115t0, respectively.

Hence, in the considered time window and the considered wave
vector of wavelength l = 5a, the velocity correlations in the single-
fluid cuboids are yet unperturbed by the interfaces.

On the same basis one could expect that the MPC data for
the TVCF of the cuboid symmetrically enclosing the A–B inter-
face are for t r 3t0 decently well reproduced by the super-
position of two bulk-fluid exponential TVCFs according to

CT,int
v (k,t) = xAe�nAk2t + xBe�nBk2t, (26)

Fig. 4 (a) Normalized TVCFs, CT
v(k,t), for a wave vector k parallel to

xy-plane with wavelength l = 5a obtained from MPC simulations for the
fluid A (red, up triangles), B (blue, down triangles), and the A–B interface
cuboid (green, circles). The corresponding solid lines represent the bulk-
fluid prediction exp(�nA,Bk2t) and the double-exponential expression in
eqn (26) with weights xA = 0.541 = 1� xB (green solid line) and xA = xB = 1/2
(orange dashed line), respectively. Inset: TVCF dependence on nak

2t for aA
{A,B,int} and nint = nAnB/[xAnA + xBnB]. (b) Time-integrated normalized
TVCFs, T(k,t) (27). Solid lines represent eqn (27) and (28), respectively.
Inset: Data collapse for nak

2t.
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for equal weight factors xA = xB = 1/2, and nA and nB determined
from the MPC simulation data for the single-fluid layers. The
equal-weight superposition according to eqn (26) somewhat
underestimates the decay of the correlation function for t 4 t0,
reflecting the growing influence of the interfacial region with
increasing time. A fit of the simulation data by eqn (26),
for unchanged values of nA and nB, yields the weight factors
xA = 0.541 and xB = 1 � xA = 0.469 (dark-green solid line). The
asymmetry could be a consequence of the shorter viscous
diffusion time across the half-width Lo/2 for the fluid- A part
of the two-fluid observation cuboid.

The time integral of the normalized TVCF (25), characterizing
a one-component fluid in the hydrodynamic regime, is

Tðk; tÞ ¼
ðt
0

dt 0CT
v ðk; t 0Þ ¼

1

nak2
1� e�nak

2t
	 


; (27)

where T(k,t), in the limit t -N, is related to the Oseen tensor in
reciprocal space.14,90,92 The accordingly time-integrated TVCF in
eqn (26) for the cuboid enclosing the interfacial region is

T intðk; tÞ ¼ xA
nAk2

1� e�nAk
2t

	 

þ xB
nBk2

1� e�nBk
2t

	 

; (28)

with Tint(k,N) = 1/k2nint and nint = nAnB/[xAnA + xBnB].
The time dependence of T(k,t) and Tint(k,t) for the three

observation cuboids, obtained from the data of Fig. 4(a), are
shown in Fig. 4(b). The time-integrated MPC simulation data
(open symbols) agree overall well with the analytic expressions
in eqn (27) and (28) based on the single-fluid theoretical
expressions. As shown in the inset, the time-integrated TVCFs
are universal functions of nak2t, as expected by the identical
universal behavior of the TVCFs. The factor nint = nAnB/[xAnB +
xBnA] can be considered as a common effective kinematic
viscosity of the A and B fluid contributions in the cuboid
enclosing the interface. The inset further illustrates that the
crossover to the long-time plateau values 1/(k2na) is characterized
by the viscous diffusion times tak = (nak

2)�1 = 0.63a2/na. Since tA
k o

tint
k o tB

k , the Stokesian regime of inertia-free, quasi-instantaneous
hydrodynamics is reached for the considered wavenumber at
times distinctly smaller than the viscous diffusion time across
the colloid diameter (2R)2/nB = 29t0 c tB

k .

5 Mobility of a colloidal sphere near a
fluid–fluid interface

The (strong) viscosity difference between two immiscible fluid
phases affects the dynamics of a colloidal particle moving near
the fluid interface. To explore the hydrodynamic coupling, and
to scrutinize the according MPC coupling predictions in
our three-layer model, we calculate the mobility coefficients
of a sphere embedded in fluid A which moves steadily under
low-Reynolds-number conditions parallel or perpendicular to
the planar A–B interfaces. The coefficients are determined as
functions of the reduced distance dz = z/(2R) of the sphere
center from the A–B interface (see Fig. 5). To reduce finite-size
effects due to the periodic boundary conditions in z-direction,

different from Section 4, we consider a non-cubic simulation
box of lengths 2Lx = 2Ly = Lz = 80a.

As indicated in Fig. 5, the sphere of radius R = 2.5a is
subjected to a weak constant force F8 (F>) applied to its center,
and oriented parallel (perpendicular) to the fluid–fluid interface.
Due to the no-slip boundary conditions employed on the sphere
surface, the moving sphere drags nearby fluid along, which is
compensated by fluid backflow such that the total momentum of
the system in any spatial direction is zero (quiescent fluid system
assumed).29,94 Under low-Reynolds-conditions, where in the con-
tinuum mechanics picture the fluid flow is described by the
quasi-stationary linear Stokes equation, the reduced translational
mobilities follow from the relations

GkðdzÞ ¼ 6pZAR
hvkðdzÞi

Fk
; (29)

G?ðdzÞ ¼ 6pZAR
hv?ðdzÞi

F?
(30)

by measuring the steady-state mean velocity hv8,>i of the sphere
for a given constant force F8,>. In our MPC simulations, the
thermal force value F8,> = 4kBT/a is used. After applying the force
to the sphere, the steady-state with constant mean drift velocity is
reached for times t c R2/nA. Note that G8,> = 1 in the bulk region
of the fluid far from any interface or boundary.90

Fig. 5 (a and b) Schematics of the three-layer system for determining the
lateral and transverse translational mobility coefficients, G8 and G>, of a
no-slip sphere of radius R = 2.5a embedded in fluid A, as functions of the
reduced distance dz = z/(2R) from the sphere center to the A–B interface.
The employed viscosity ratio is ZB/ZA = 0.21. (c and d) Lateral and
transverse mobility coefficients from MPC simulations (symbols) and
hydrodynamic force-multipole-expansion calculations (green lines)93 in
units of the bulk mobility value 1/(6pZAR).
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Fig. 5(c) and (d) display the MPC results (open blue symbols)
for the normalized lateral and transverse mobilities, G8(dz) and
G>(dz), as functions of the reduced distance dz = z/(2R). For
comparison, according reduced mobilities are shown (green
solid lines) as obtained numerically using an elaborate Stokesian
dynamics-based hydrodynamic force-multipole expansion method,
encoded in the software package HYDROMULTIPOLE.93 The
depicted mobility curves by the force multipoles method, valid
under creeping-flow conditions, are taken from93 and constitute
accurate continuum hydrodynamics results for a no-slip sphere
in a half-infinite Newtonian fluid A which moves steadily
parallel or perpendicular to an ideally flat and clean interface
of zero interfacial viscosity and Marangoni stress. The interface
separates the fluid- A half-space from the fluid–B half-space.
Note that G8,> depend on the ratio of the shear viscosities of the
two fluids.

Both the MPC simulation and continuum hydrodynamic
results predict the lateral sphere mobility to increase with
decreasing distance dz from the A–B interface. They are in good
overall agreement, except for small distances where the simulation
data are somewhat larger (see Fig. 5(c)). Regarding the transverse
mobility depicted in Fig. 5(d), the continuum hydrodynamics curve
for G> decreases strongly with decreasing distance, and assumes
the value G> = 0 at the sphere-interface contact distance dz = 0.5
due to lubrication. In contrast, while the MPC simulation data in
Fig. 5(d) are in accord with a mild decline of the mobility for
deceasing distance dz \ 1.5, they do not reproduce the strong drop
in G> at small distances dz t 1 (i.e., z t 5a). On first sight, this
discrepancy is surprising, since friction and lubrication effects for
a hard-sphere colloid embedded in a single MPC fluid close to a
solid no-slip wall are well reproduced.95 However, it can be
attributed qualitatively to the mixing of the two fluids in the
interfacial region over a thickness larger than a collision cell size
a, and to a local perturbation of the hydrodynamic flow field by the
no-slip sphere moving normally to the nearby interface. In the
HYDROMULTIPOLE calculations, the two fluid half-spaces are
taken as ideally incompressible, and the interface as ideally thin
and flat, without any sphere-induced perturbation. Notice
further that the sphere size is comparable with the MPC inter-
facial thickness. At any rate, the MPC implementation of
immiscible fluids captures the dynamics of the immersed
colloidal sphere overall quite well.

6 Summary and conclusions

In this article, we have presented a MPC-based mesoscale
hydrodynamic simulation scheme for modeling immiscible
(layered) binary fluids with viscosity contrast separated by a
flat interface.

Shear flow, external and internal shear stress, fluctuating
hydrodynamic velocity correlations, and the hydrodynamic
mobilities of an embedded spherical particle moving close to
a flat fluid interface have been analyzed for a three-layer MPC fluid,
and validated against continuum hydrodynamics predictions. We
obtained a piece-wise linear stationary fluid velocity profile in

excellent agreement with the continuum hydrodynamics pre-
diction. By computing the shear stress in relation to the shear
rate, we confirmed that the analytically obtained viscosity values for
single-phase MPC fluids are reproduced by the binary fluid model,
in regions distant from the fluid–fluid interface. Considering the
build-up of the shear profile from a resting fluid, we obtain excellent
agreement between MPC simulation results and hydrodynamic
predictions for the moving time averages of the external and
internal shear stresses, in the time range assessed in the simula-
tions. For this comparison, we have derived an analytical solution of
the linearized Navier–Stokes equation for the shear stress functions
of the B–A–B system under starting flow conditions, using the
Laplace transformation technique. The analytic expressions have
allowed us to assess quantitatively the differences between instan-
taneous and moving time averaged stress functions.

To examine the predictions by our two-fluids MPC model
regarding time-dependent correlations of thermally induced
velocity fluctuations, we calculated the transverse velocity auto-
correlation function (TVCF) in different observation cuboids. We
showed that the TVCFs for the single-fluid cuboids follow closely
the expected exponential decay, characterized by the kinematic
viscosity of the respective fluid and the considered wave number.
In contrast, the calculated TVCF of the cuboid enclosing the A–B
interface is overall well fitted by a linear combination of the
exponential TVCFs for bulk fluids A and B, using the viscosity
values determined in our shear-flow studies. The approximate
validity of linear superposition suggests that the TVCF of the
cuboid is only mildly affected by the interfacial region. A stronger
interfacial influence can be expected for a narrower cuboid of
width smaller than the employed value Lo = 10a.

Finally, we have probed the hydrodynamic coupling of a
steadily moving no-slip sphere to a nearby flat two-fluids inter-
face by determining its hydrodynamic mobilities. The distance
dependence of the lateral mobility coefficient for the three-
layers MPC model agrees well with the according mobility
result by a hydrodynamic force-multipole expansion method
for a sphere moving close to an ideally flat, clean interface
separating two incompressible fluids. While decent agreement
is observed also regarding the transverse mobility for sphere-
interface distances larger than three times the sphere radius,
the sharp mobility decline at small distances predicted by the
continuum hydrodynamics approach for a non-deformable
planar interface of zero thickness, is not obtained by the MPC
simulations. We attribute this to the mixing of the two fluids in
the MPC interfacial region of thickness larger than the collision
cell size a, and possibly a local perturbation of the interface
caused by the transverse motion of the sphere. Moreover, and
different from what is assumed in the force multipoles calculation,
the two fluids in the MPC model are compressible. The non-zero
compressibility of the fluids may play a role in particular for
transverse (i.e., squeezing) sphere motions. To reduce the
influence of the finite interface width on the sphere mobilities,
a significantly larger sphere can be considered. Moreover, an
alternative method to determine the mobilities may be better
suited95 in order to reduce fluid perturbations by the translating
sphere. Here, further studies will be performed in the future.
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A numerical advantage of the two-fluids MPC model is that
the desired viscosities of the fluid phases can be easily pre-
scribed using the analytic viscosity expression for a single-phase
MPC fluid.14 Compared to other mesoscale simulation models
of immiscible binary fluids, the present model is straightfor-
wardly implemented, since it does not involve the computation
of thermodynamic properties and kinetic processes related to phase
separation. Hence, the computational cost is comparable to simu-
lating two single-phase MPC fluids with different collision times.

The two-fluids MPC simulation method can be applied to a
wide range of biological soft matter systems. For example, the
approach can be suitably extended to study interfacial rheological
properties including interfacial viscosity96,97 and interfacial tension.
Furthermore, as noted already in the introduction, the model can be
applied to investigate the lateral self- and collective diffusion of
different in-membrane or membrane-attached proteins. The effects
of the viscosity contrast between a membrane and the adjacent
cytosol, and hydrodynamic interactions between proteins and
membrane, and among the proteins, on protein diffusion can be
simulated over several timescales using a simplifying coarse-
graining of the system. In this context, we will perform further
simulations, specifically of colloids with a diameter comparable to
the width of the fluid A domain. In a more refined analysis, lipid
molecules and other macromolecules forming the membrane con-
stitute a crowded environment which slows down the diffusion
of embedded proteins.98 Molecular crowding effects cause
so-called sub-diffusion, identified recently to play a vital
role in many biological phenomena,99–102 including neuronal
signaling.103,104 For future assessment, molecular crowding
mechanism can be implemented into our three-layer model,
with the middle layer playing the role of the membrane, by
adding a planar layer of interacting host particles to the middle
layer, or alternatively and more realistically, by accounting for
visco-elastic effects in the middle layer through semi-atomistic
memory function calculations. Work by us in both directions is
in progress.

Furthermore, the present MPC model can be extend to inter-
faces with imposed sinusoidal fluctuations mimicking membrane
fluctuations. Moreover, the quantitative control of viscosity values
opens the possibility to study systems with designed viscosity
gradients. This provides a means to study the dynamics of
biological macromolecules or microorganisms responding to
viscosity gradients, such as in viscotaxis.105
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Appendix

We present here the analytic hydrodynamic expressions for the
transient (starting flow) shear stress and velocity profiles for the
layered two-fluid system depicted in Fig. 1, valid under laminar
flow conditions where the linearized Navier–Stokes equation of
continuum hydrodynamics applies to.

Consider the horizontal planar walls at z = �Lz/2 to be quasi-
instantaneously set into motion at time t = 0, with constant
velocities �uex, respectively. The B–A–B layered composite fluid,
originally at rest for t o 0, is then gradually set into laminar motion,
through the diffusive transport of momentum (viscous stress) away
from the moving walls into the fluid interior. The accordingly
unidirectional starting flow velocity field, v(z,t) = vx(z,t)ex, is incom-
pressible. Since the fluid pressure remains spatially uniform, the
linearized Navier–Stokes equation for the starting flow reduces to
the one-dimensional transversal momentum diffusion equations

@vBx ðz; tÞ
@t

¼ nB
@2vBx
@z2

; 0o zoLz=4;

@vAx ðz; tÞ
@t

¼ nA
@2vAx
@z2

; Lz o zoLz=2

(31)

for fluids A and B, respectively. For convenience, z = 0 denotes
throughout the Appendix the midplane between the two walls in
Fig. 1, so that vx(�z,t) = �vx(z,t) by symmetry. The initial and
boundary conditions are here

vA;Bx ðz; t ¼ 0Þ ¼ 0;

vAx ðz ¼ 0; tÞ ¼ 0;

vBx ðz ¼ Lz=2; tÞ ¼ u;

vAx ðz ¼ Lz=4; tÞ ¼ vBx ðz ¼ Lz=4; tÞ;

ZA
@vAx
@z
ðz ¼ Lz=4; tÞ ¼ ZB

@vBx
@z
ðz ¼ Lz=4; tÞ;

(32)

expressing that fluid A sticks to the walls, and that velocity and
shear stress are changing continuously across the A–B fluid
interfaces at z = �Lz/4.

We have solved this linear boundary value problem using
the time Laplace transform method and the method of resi-
dues, to obtain the composite velocity fields of A and B in the
time domain. Skipping the lengthy derivation, we directly
present the infinite series solution

vx(%z,t) = vA
x(%z,t)wA(%z) + vB

x (%z,t)wB(%z), (33)

with

vAx ðz; tÞ
u

¼ vA;stx ð�zÞ
u
þ
X1
k¼1

4m
wk

sin
�zwk

m

� �
NðwkÞ

expð�wk
2tÞ;

vBx ðz; tÞ
u

¼ vB;stx ðzÞ
u
þ
X1
k¼1

4m
wk

cos wkð�z� frac12Þ½ � sin wk

2m

� �
þ m sin wkðz� 1=2Þ½ � cos wk

2m

� �
NðwkÞ

expð�wk
2tÞ

(34)
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and denominator function

NðwÞ ¼ ð1þ m2Þ cos w

2

	 

cos

w

2m

� �
� 2m sin

w

2

	 

sin

w

2m

� �
: (35)

Here, m2 = nA/nB = ZA/ZB, since we have assumed equal mass
densities of both fluids such as in the MPC simulations.
Moreover, %z = 2z/Lz is the reduced vertical distance and t =
4tnB/Lz

2 the reduced time. The characteristic functions for the
considered slabs [0,Lz/4] and [Lz/4,Lz/2] of A of B fluids, respec-
tively, are wA(%z) = Y(1/2 � %z)Y(%z) and wB(%z) = Y(1 � %z)Y(%z � 1/2),
respectively, with Y denoting the unit step function.

The piecewise linear, long-time stationary velocity field has
the fluid A and B contributions

vA;stx ð�zÞ
u

¼ 2�z

1þ m2
;

vB;stx ð�zÞ
u
¼ 1

1þ m2
1þ 2m2 �z� 1

2

� �� �
:

(36)

The infinitely growing sequence of relaxation values, 0 o w1 o
w2 o . . ., are the purely simple, positive roots of the trans-
cendental equation (for an associated heat conduction problem
see ref. 107)

m sin
w

2

	 

cos

w

2m

� �
þ cos

w

2

	 

sin

w

2m

� �
¼ 0; (37)

associated with the purely imaginary, pairwise conjugate simple
poles, {�iwk}, of the Laplace transformed velocity field ṽx(%z,s)
constituting a meromorphic function in the complex s-plane.
The exponentially decaying modes in the series solution
reflect the overdamped dynamics described by the momentum
diffusion eqn (31). In the limiting case m = 1 of equal kinematic
viscosities, wk = pk with integer values of k. For m close to or large
compared to one, approximate expressions for wk(m) are
obtained using perturbation theory. However, these are not
useful for the intermediate viscosity ratio m2 = 4.74 used in
our MPC simulations. For arbitrary m, we conveniently deter-
mined the roots of eqn (36) using Mathematica.

Fig. 6 depicts the starting flow velocity profiles according to
eqn (33) and (34), for m2 = 4.74 and values of t as indicated. For
the smallest considered time, 100 terms in the sum over
exponentially decaying modes have been accounted for. The
stationary profile is reached for t 4 0.2.

The shear stress field follows from the velocity field using
sA,B

xz (z,t) = ZA,BduA,B
x (z,t)/dz. The external stress exerted by the

walls on the neighboring fluid layer B is obtained in particular
as

sexzðtÞ
sstxz

¼ 1þ2ð1þm2Þ
m

X1
k¼1

mcos
wk

2

	 

cos

wk

2m

� �
� sin

wk

2

	 

sin

wk

2m

� �
NðwkÞ

� expð�wk
2tÞ;

(38)

where

sstxz ¼
2ZBu
Lz

2m2

1þ m2
(39)

is the spatially uniform stationary long-time stress in the
sheared composite system. The internal hydrodynamic stress
is the spatially averaged shear stress, i.e.,

sixzðtÞ ¼
2

Lz

ðLz=4

0

dzsAxzðz; tÞ þ
2

Lz

ðLz=2

Lz=4

dzsBxzðz; tÞ; (40)

which yields

sixzðtÞ
sstxz

¼ m2 þ 1

2m2
1þ ðm2 � 1ÞvA;Bx ð�z ¼ 1=2; tÞ
� �

¼ 1þ
2 m4 � 1

 �

m

X1
k¼1

1

wk

sin
wk

2m

� �
NðwkÞ

exp �wk
2t


 �
:

(41)

As noted in Section 3, in lieu of si,e
xz (t), we use the moving time

averages in the analysis of the MPC data to smooth out
statistical errors (see eqn (22)). The respective analytical stress
expressions follow from eqn (41) and (22) by the replacement

expð�wk
2tÞ ! 1

wk
2t

1� expð�wk
2tÞ


 �
: (42)

The moving time-averaged stress converges more slowly toward
the stationary stress value sst

xz than the stress itself. Both se
xz(t)

and its moving time average decay monotonically in time
toward sst

xz, which reflects the diffusive broadening of the zone
of changing fluid velocity with increasing time (see Fig. 6). At
very short times, where the influences of the fluid interfaces and
the opposite wall are still negligible, the velocity decays steeply
near the wall, from value u at the wall to 0 slightly off the wall.
This implies the approximate inverse square-root time depen-
dence of the external stress sexzðt� 1Þ 	 2ZBu= Lz

ffiffiffiffiffiffiffiffiffiffi
pnBt
p
 �

. The
inverse square-root short-time divergence is shared by the

Fig. 6 Starting flow velocity profiles of the sheared B–A–B system,
obtained from eqn (33)–(35) for the viscosity ratio m2 = 4.74, and for
reduced time values t as indicated.
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moving time average stress, except with a twice as large amplitude
for the latter. Different from the external stress, the internal stress
is finite at t = 0 where it attains its minimal value

sixzðt ¼ 0Þ
sstxz

¼ hs
i
xzit¼0
sstxz

¼ 1

2
1þ 1

m

2� �
: (43)

For equal viscosities of fluids A and B, where the hydrodynamic
effect of the A–B fluid interfaces is absent, the intrinsic stress is
constant at all times and equal to the stationary stress.

In the MPC simulation results for the moving time average
stress depicted in Fig. 3(b) for m2 = 4.74, time is measured in
units of t0 = a2/n0 instead of the reduced time t ¼ t=t
0 employed

here where t
0 ¼ ðLz=2Þ2=nB. Using that Lz = 39a in our MPC
study of shear flow, the conversion relation (t/t0)� 10�3 E 0.44t
is obtained. We recall furthermore the relation sst

xz = 0.077s0

between stationary stress and MPC thermal stress s0 = kBT/a3.
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40 A. Zöttl and H. Stark, Phys. Rev. Lett., 2012, 108, 218104.
41 S. B. Babu and H. Stark, New J. Phys., 2012, 14, 085012.
42 J. Elgeti and G. Gompper, Proc. Natl. Acad. Sci. U. S. A.,

2013, 110, 4470.
43 S. Y. Reigh, R. G. Winkler and G. Gompper, Soft Matter,

2012, 8, 4363.
44 M. Theers and R. G. Winkler, Soft Matter, 2014, 10, 5894.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
A

ug
us

t 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
/2

4/
20

26
 1

:5
1:

51
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sm00541c


7990 |  Soft Matter, 2021, 17, 7978–7990 This journal is © The Royal Society of Chemistry 2021

45 M. Yang and M. Ripoll, Soft Matter, 2014, 10, 1006.
46 S. M. Mousavi, G. Gompper and R. G. Winkler, Soft Matter,

2020, 16, 4866.
47 M. Yang and M. Ripoll, Soft Matter, 2016, 12, 8564.
48 Z. Tan, M. Yang and M. Ripoll, Phys. Rev. Appl., 2019,

11, 054004.
49 Y. Hashimoto, Y. Chen and H. Ohashi, Comput. Phys.

Commun., 2000, 129, 56.
50 Y. Inoue, Y. Chen and H. Ohashi, J. Comput. Phys., 2004,

201, 191.
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