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Defects in crystals of soft colloidal particles

Marjolein de Jager, Joris de Jong and Laura Filion *

In this paper we use computer simulations to examine point defects in systems of ‘‘soft’’ colloidal particles

including Hertzian spheres, and star polymers. We use Monte Carlo simulations to determine the deformation of

the different crystals associated with vacancies and interstitials and use thermodynamic integration to predict the

equilibrium concentrations of such defects. We find that the nature of the lattice distortion is mainly determined

by the crystal structure and not by the specifics of the interaction potential. We can distinguish one-, two-, and

three-dimensional lattice distortions and find that the range of the distortion generally depends on the

dimensionality. We find that in both model systems the deformation of the body-centered cubic (BCC) crystal

caused by an interstitial is one-dimensional and we show that its structure is well described as a crowdion.

Similarly, we show that the one-dimensional deformation of the hexagonal (H) crystal of Hertzian spheres

caused by a vacancy can be characterized as a voidion. Interestingly, with the exception of the FCC crystal in

the Hertzian sphere model, in all cases we find that the interstitial concentration is higher than the vacancy

concentration. Most noteworthy, the concentration of interstitials in the BCC crystals can reach up to 1%.

1. Introduction

In equilibrium, all crystals contain a finite concentration of point
defects, such as vacancies and interstitials. The way these defects
manifest themselves can play an important role in the mechanical,
optical, and electronic properties of the crystalline material.

One of the few three-dimensional models in which point defects
have been examined is the face-centered cubic (FCC) crystal of
single-component hard spheres. Studies have shown that in this
system point defects cause relatively local lattice distortions and
occur in low concentrations, 10�4 vacancies and 10�8 interstitials
per lattice site near melting.1,2 For a couple of decades, this
uneventful defect behavior was expected for other crystals as well,
discouraging the examination of point defects in other three-
dimensional model systems.

However, relatively recent work on simple cubic (SC) lattices
have shown that at least for some colloidal crystals, even simple
point defects can extend over large areas and occur in high
concentrations.3–5 In particular, it was found that these SC crystals
contain large numbers of vacancies, up to 0.06 per lattice site, that
cause one-dimensional lattice distortions along the three main
crystalline lattice directions. These one-dimensional deformations
are aptly named voidions, as a counterpart to the crowdion – a
largely one-dimensional lattice distortion caused by an inter-
stitial. Since its proposed existence by Paneth in 1950,6 the
crowdion has been explored in multiple atomic BCC crystals.7–9

Moreover, crowdions have recently been predicted to exist in

relatively high quantities in the colloidal BCC crystal of repul-
sive point Yukawa particles.10 This all leads to the question of
the importance of the crystal structure in determining the
defect behavior and whether other non-FCC crystal structures
show interesting defect behaviors as well.

One easy way to access more exotic crystal phases is to add a
‘‘soft’’ repulsion between spherical particles – for instance,
charged colloids,11–15 star polymers,16,17 colloids covered by a thick
polymer layer,18,19 or microgel particles.20–25 In this paper, we use
computer simulations to explore both the structure and concen-
tration of point defects in the crystal phases of two of these model
systems: star polymers and Hertzian spheres. We find similar
deformations of the FCC and BCC crystals of both models,
indicating that the nature of the lattice distortion is mainly
determined by the crystal structure and not by the specifics of
the model. The one exception observed was the SC phase in the
Hertzian model whose vacancies were extended in two dimen-
sions, in contrast to the one-dimensional distortions seen in the
previous studies of SC crystal of repulsive particles.5 We did,
however, observe a number of other ‘‘one-dimensional’’ defects,
including voidions in the hexagonal (H) crystal of Hertzian
spheres and crowdions in BCC crystals of both models, with
the concentration of the latter reaching up to 0.01 interstitials
per lattice site.

2. Models

In this paper we treat two soft colloidal models: Hertzian
spheres and star polymers. The first model describes elastically
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deformable spheres of diameter s that have a softly repulsive
interaction given by

jðrÞ ¼
e 1� r

s

� �5=2
r � s;

0 r4 s;

8><
>: (1)

where r is the center-of-mass distance between the two Hertzian
spheres.26 Here e 4 0, such that the interaction is repulsive.
The phase behavior of Hertzian spheres is fully characterized by
the dimensionless temperature kBT/e and density rs3, with
kB the Boltzmann constant and T is the temperature. In
ref. 25, Pàmies et al. predicted that Hertzian spheres exhibit a
stable FCC, BCC, H, SC, and body-centered tetragonal (BCT)
phase and computed the phase diagram using free-energy
calculations. See Fig. 1 for schematic representations of these
crystal structures.

The second model describes colloids consisting of a negligible
small central particle with polymer chains – the so-called ‘‘arms’’ –
attached to it. The purely entropic interaction between two star
polymers at distance r is given by

jðrÞ ¼ 5

18
kBTf

3=2

� ln
r

s
þ 1

1þ
ffiffiffi
f

p
=2

r � s;

s=r

1þ
ffiffiffi
f

p
=2

exp �
ffiffiffi
f

p
ðr� sÞ=2s

� �
r4 s;

8>>>><
>>>>:

(2)

where s is the corona diameter and f is the arm number.16 The
phase behavior of star polymers is fully characterized by the arm
number and packing fraction Z = ps3N/6V, with N the number of
particles and V the volume. In ref. 16, Watzlawek et al. predicted
that star polymers are able to from stable FCC, BCC, body-centered
orthorhombic (BCO), and cubic diamond crystals (see Fig. 1) and
computed the phase diagram using free-energy calculations.

3. Methods
3.1. Lattice deformation

To examine the manifestation of point defects in the different
colloidal crystals, we predicted the average structural deformation
associated with a vacancy and with an interstitial, and predicted
the equilibrium concentrations of these defects. For determining

the structural deformation, we performed Monte Carlo (MC)
simulations in the NVT-ensemble27 with a single vacancy or
interstitial present. We simulated (approximately) cubic boxes with
periodic boundary conditions, and prevented the defect from
hopping by confining all particles to their Wigner–Seitz cells.4,28

The interaction potential of star polymers was truncated and
shifted such that the shift was never more than 10�5kBT.

First, we looked for any symmetry breaking in the deformations
by either slowly quenching the system or going to the zero
temperature limit. When, in this limit, the particles belonging to
the same neighbor shell are not displaced in a similar, symmetric
fashion, i.e. all moving either equally towards or equally away from
the defect, we say that the symmetry is broken. In practice, it is
sufficient to just look at the nearest and next-nearest neighbor shells.

For the Hertzian spheres, we accessed the zero temperature
limit by slowly increasing e/kBT during the simulation, while
adjusting the maximum displacement of the particles, Drmax, to
maintain an acceptance ratio larger than 30%. Once Drmax

became smaller than 10�4s, we stopped increasing e/kBT and
measured the average location of each particle. To verify the
resulting lattice distortion, we performed multiple simulations
with different cooling rates ranging from increasing e/kBT with
a factor 1.001 roughly each 10 MC cycles to a factor 1.01. For all
crystals of Hertzian spheres this practical definition of the zero
temperature limit was reached when e/kBT is of the order of 107.

For star polymers, we quenched equilibrated systems by
accepting only moves that lowered the potential energy of the
system. During the quenching, Drmax was decreased to com-
pensate for the decrease in accepted moves. As the system can
be quenched into one of the many local minima instead of the
desired global minimum, we performed 10 quenching simula-
tions for each crystal and took the one with the lowest energy.

Next, when no symmetry breaking was found, we simply
calculated the average deformation by measuring the average
location of each particle during a simulation. However, when
a deformation had a broken symmetry, we averaged over
configurations where the deformation had the same orientation.
This was done by rotating each snapshot of the crystal after the
simulation, such that the deformation had the same orientation
in each snapshot. For instance, if the deformation was found to
be one dimensional, we rotated all snapshots so that the one-
dimensional deformation pointed in the same direction before
averaging.

Fig. 1 Schematic representation of the different crystal structures considered in this paper. The colors of the particles have no meaning, but are chosen
for clarity purposes. Note that for the SC, BCC, FCC, and diamond crystals, the corner particles (blue) form a cube (ax = ay = az), whereas for the BCT and
BCO crystals they form a rectangular cuboid with ax = ay a az and ax a ay a az, respectively. For the H crystal, the ratio az/ax is a free parameter.
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3.2. Defect concentration

To predict the defect concentrations, we assumed that the
defects do not interact and that their effect on the pressure P of
the system is negligible. Note that there are methods for calculating
true equilibrium concentrations of defects,29 but we chose to follow
the method used by Pronk and Frenkel in ref. 2. Within these
approximations the vacancy concentration is given by

hnvaci �
M �N

M

� �
¼ exp �bmvac½ �; (3)

where M is the number of lattice sites, b = 1/kBT, and mvac =
fvac(rM,T) + mdf(P,T) with rM = M/V the density of the lattice sites,
fvac(rM,T) the free energy associated with creating a single
vacancy, and mdf(P,T) the chemical potential of the defect-free
crystal.2 Similarly, the interstitial concentration is given by

hninti �
N �M

N

� �
¼ exp �bmint½ �; (4)

where mint = fint(rM,T) � mdf(P,T) with fint(rM,T) the free energy
associated with creating a single interstitial.

We determined the defect-free chemical potential using

mdf(P,T) = Fdf(M,V,T)/M + P/rM, (5)

where we calculated the Helmholtz free energy of the defect-free
crystal Fdf(M,V,T) using Einstein integration with finite-size
corrections,27,30,31 and the pressure P using an NVT MC simulation
combined with the virial equation.

Following ref. 10, we determine fvac(int)(rM,T) using thermo-
dynamic integration in combination with MC simulations. For
fvac, we measured the free-energy difference between a normal
particle at a given lattice site and an ideal particle at the same
lattice site, and combined this with the free-energy cost of
removing the ideal gas particle

fremove ¼ kBT ln
VWS

L3

	 

; (6)

where VWS = 1/rM is the volume of the Wigner–Seitz cell and L is
the thermal DeBroglie wavelength.

Similarly, for fint, we measured the free-energy difference
between a system where one of the lattice sites contains two
particles, and a system where that lattice site contains one
normal particle and one ideal particle.10 This was then com-
bined with the free energy of inserting the ideal gas particle
into the relevant Wigner–Seitz cell finsert = �fremove.

4. Results
4.1. Hertzian Spheres

We start our investigation by exploring the deformations of the
different crystal phases of Hertzian spheres. For each crystal
phase, we focus on one state point where the crystal is stable,
and examine the behavior as a function of temperature and
density starting from this state point. The temperature at these
state points is kBT/e = 0.0020 for all crystal phases and the
densities are given in Table 1 together with the number of

particles simulated. Note that the system size is chosen to
always be large enough to ensure that defects are not affected
by their periodic image.

Since the H and BCT crystals have one free parameter, the
ratio az/ax with ax(z) as indicated in Fig. 1, we needed to
determine the equilibrium value of this ratio first. To this
end, we performed MC simulations in the NPT-ensemble with
disconnected volume changes, i.e. where the volume changes
are performed by independently changing the box size in the
xy-direction and z-direction. We started with an initial guess for
az/ax based on the findings of Pàmies et al.,25 and measured the
average value after the system has relaxed. The resulting ratios
as a function of the density and temperature are given in Fig. 2.
Notice that, for the H crystal, the difference in az/ax is at most
on the order of 0.5%. We thus assume that it is negligible, and
use az/ax = 0.841 henceforth. For the BCT crystal, the ratio
as a function of the temperature differs at most on the order
of 0.2%. However, for the simulations of various densities the
difference is on the order of 1%, which we consider to be
significant. Thus, for further simulations we take the appropriate
az/ax for each density.

Fig. 3–7 show the average deformations of the FCC, BCC, H,
SC, and BCT crystals of Hertzian spheres. In these figures,
(a) and (d) show the deformation for a typical vacancy and

Table 1 The number of Hertzian spheres N simulated for each crystal
phase together with the density rs3

Crystal rs3 N

FCC 1.75 1372
BCC 3.00 1024a

H 4.10 1440
SC 5.00 1331
BCT 6.46 1240

a For the interstitial in the BCC crystal we used N = 2000.

Fig. 2 The ratio az/ax as a function of the density rs3 and temperature
kBT/e for (a and b) the H and (c and d) the BCT crystals of Hertzian spheres.
The results of (a and c) are obtained at kBT/e = 0.0020, of (b) at rs3 = 4.06
(pressure Ps3/e = 2.2), and of (d) at rs3 = 6.46 (pressure Ps3/e = 5.75).
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Fig. 3 Average deformation of the FCC crystal of Hertzian spheres associated with (a–c) a vacancy and (d–f) an interstitial. In (a and d) the deformation
at density rs3 = 1.75 and temperature kBT/e = 0.0020 is shown. The vacancy is indicated by the red dot, and the interstitial and its companion by the two
black dots. The gray points represent the lattice sites and the arrows represent the deformation. The size of the arrows is exaggerated, but the color
indicates the displacement in terms of the nearest-neighbor distance a. (b, c, e and f) Average displacement hui/a for the first three neighbor shells
(1 = nn, 2 = nnn, and 3 = nnnn) as a function of the density (at kBT/e = 0.0020) and temperature (at rs3 = 1.75). When the displacement of the particles in a
neighbor shell has a broken symmetry, the label ‘‘A’’ indicates the most displaced particles and ‘‘B’’ the others. The distance between the interstitial and its
companion – the ‘‘dumbbell’’ – is given in (e and f) as well (right axis).

Fig. 4 Average deformation of the BCC crystal of Hertzian spheres associated with (a–c) a vacancy and (d–f) an interstitial at density rs3 = 3.00 and
temperature kBT/e = 0.0020. Figures and legends as explained in the caption of Fig. 3.
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interstitial, respectively, while (b, c, e and f) give the displace-
ment for the first three neighbor shells as a function of the
density and temperature. Additionally, (e–f) give the distance

between the interstitial and its companion, i.e. the particle that
it is sharing a Wigner–Seitz cell with. For convenience we will
use the term ‘‘dumbbell’’ when referring to these two particles.

Fig. 5 Average deformation of the H crystal of Hertzian spheres associated with (a–c) a vacancy and (d–f) an interstitial at density rs3 = 4.10 and
temperature kBT/e = 0.0020. Figures and legends as explained in the caption of Fig. 3.

Fig. 6 Average deformation of the SC crystal of Hertzian spheres associated with (a–c) a vacancy and (d–f) an interstitial at density rs3 = 5.00 and
temperature kBT/e = 0.0020. Figures and legends as explained in the caption of Fig. 3.
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As expected, we observe that the largest deformations caused
by a vacancy are associated with the first shell of neighbors.
Notice, however, that the displacement in the FCC crystal is 6 to
10 times as small as in the other crystals. The reason for this
difference is most likely the high number of nearest neighbors
in the FCC crystal, i.e. 12 in comparison to 8 for BCC, 6 for SC,
and 2 for H and BCT. The 12 nearest neighbors in the FCC
crystal constrain each particle’s displacement.

Furthermore, we find that the deformation of the FCC and
BCT crystals associated with a vacancy is largely three-dimensional,
symmetric, and local. This was also found for the FCC crystal of
hard spheres32 and repulsive point Yukawa particles.10 More inter-
esting are the deformations of the other crystals. In the BCC crystal,
the vacancy causes a symmetry-broken, three-dimensional deforma-
tion in which only 4 of the 8 nearest neighbors are displaced, each
leaving a trail of inwards moving particles behind. Similarly, in the
SC crystal, only 4 of the 6 nearest neighbors are displaced, again
each leaving a trail of inwards moving particles behind. As a result,
the deformation of the BCC and SC crystals has a longer range than
that of the FCC and BCT crystals. The two-dimensional deformation
of the SC crystal is suprising, as vacancies in the SC crystal of
(slanted) hard cubes and several other repulsive potentials cause
one-dimensional deformations.3–5 The softness combined with the
shape of the Hertzian spheres make it apparently more favorable for
4 of the nearest neighbors to move into the vacancy instead of 2. For
the H crystal, we do find that the deformation associated with a
vacancy is essentially one-dimensional, with the main distortion

oriented along the z-axis through the vacancy. Notice that the size
and range of this vacancy structure is greater than in any of the
other crystal structures. This further indicates that decreasing the
dimensionality of the lattice deformation increases its range.

Contrary to the vacancy cases, the deformation caused by an
interstitial has a broken symmetry by default, as it depends on
the preferred orientation of the dumbbell. For the FCC crystal, we
find that the dumbbell orients itself along one of the three h100i
directions, pushing 8 of the 12 nearest neighbors away (Fig. 3d).
Interestingly, the displacement caused by an interstitial is larger
than the displacement caused by a vacancy, which was seen for
hard spheres as well,32 whereas it is the other way around for the
other crystals. Nevertheless, the deformation of the FCC crystal
associated with an interstitial is still local.

In general, we find that the deformations associated with an
interstitial are three-dimensional and local. The only exception is
the BCC crystal, in which the dumbbell orients itself along one
of the h111i directions, causing an extended, one-dimensional
deformation. This one-dimensional deformation was also found
in the BCC crystal of repulsive point Yukawa particles.10

Moreover, looking at the displacement of the first three
neighbor shells as a function of density, we find that the deforma-
tion caused by a vacancy generally increases as the density
increases, while the deformation caused by an interstitial decreases.
Note that this is directly opposite what is observed for defects in
crystals of hard spheres, where the deformation from a vacancy
decreases with density, and the deformation of an interstitial grows

Fig. 7 Average deformation of the BCT crystal of Hertzian spheres associated with (a–c) a vacancy and (d–f) an interstitial at density rs3 = 6.46 and
temperature kBT/e = 0.0020. Figures and legends as explained in the caption of Fig. 3.
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with density.32 The important difference here is the fact that, when
the density is increased, hard spheres are extremely restricted by
their no-overlap rule, whereas soft, repulsive spheres are relatively
less restricted as a result of their ability to deform. Consequently, in
the case of soft, repulsive particles like we examine here, the
dominant feature controlling the density dependence of the defect
deformation is likely the ‘‘soft push’’ from the surrounding particles
on the particles nearest to the defect. For the case of a vacancy, this
means that the neighboring particles are pushed more into the
vacant lattice site, whereas the outward displacement of the
particles neighboring an interstitial is restricted by this ‘‘push’’.
A noteworthy exception to this general behavior is the vacancy
in the H crystal, for which the displacement of the two nearest
neighbors drastically decreases with increasing density. The
reason for this is that the particles of the second neighbor
shell, which lie in the xy-plane of the vacancy, are pushed more
into the vacancy, hindering the displacement of the two nearest
neighbors positioned above and below the vacancy.

Likewise, we find that increasing the temperature generally
increases the deformation caused by a vacancy and decreases
that caused by an interstitial. This can be explained by observing
that increasing the temperature makes it easier for Hertzian
spheres to overlap. For neighbors of a vacancy, this means that
their displacement towards the vacancy is less constrained by the
displacement of other neighbors. For the interstitial, this means
that the distance between the dumbbell particles and its effect on

the surrounding particles decreases. Note, however, that the
effect of the temperature is generally significantly smaller than
the effect of the density.

The extended, one-dimensional deformations of the H crystal
associated with a vacancy and the BCC crystal associated with an
interstitial strongly resemble a voidion and crowdion. The classic
characteristic of crowdions and voidions is that their shape is
well captured by the Frenkel-Kontorova model.33–36 Hence, in
order to characterize the structure of these one-dimensional
defects, we measure the average particle displacements un =
xn � adn around the vacancy and interstitial, along the defect
direction. Here xn is the position of particle n along the defect
and ad is the crystal lattice spacing in this direction. We choose
n = 0 to correspond to the particle just before the defect center
and use the standard boundary conditions: un=�N = ad, un=+N = 0
for the interstitial and un=�N = 0, un=+N = ad for the vacancy.37

Fig. 8 shows the average displacement along the h111i
direction for an interstitial in the BCC crystal and along the
z-direction for a vacancy in the H crystal for different densities
and temperatures. We compare these displacements to the
soliton solution of the sine-Gordon equation, i.e. the continuum
limit of the Frenkel–Kontorova model, using a single fitting
parameter to match the extension of the defect. We observe
excellent agreement for the interstitial in the BCC crystal
(Fig. 8a and b) and good agreement for rs3 t 4.1 for the
vacancy in the H crystal (Fig. 8c and d). Recall that increasing

Fig. 8 Average displacement huni along (a and b) the h111i direction of a crowdion in the BCC crystal and (c and d) the z-direction of a voidion in the H
crystal, both of Hertzian spheres. (a and c) Show the displacement for different densities at kBT/e = 0.0020 and (b and d) for different temperatures at
rs3 = 3.00 and rs3 = 4.10 for the BCC and H crystal, respectively. The lines represent the corresponding fitted soliton solutions. Note that for the H crystal
the simulation box was extended in the z-direction to prevent any effects of its own periodic image on the voidion.
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the density results in a less one-dimensional and more three-
dimensional deformation of the H crystal associated with a
vacancy. For this reason, the deformation cannot be fully
characterized as a voidion for higher densities.

Aside from this, notice that the structure and range of the
crowdion and voidion are essentially independent of the den-
sity and temperature. This was seen in other systems as well.5,10

Next, to fully understand the impact of the defects on the overall
structure of the different crystals, we also predicted the equilibrium
concentration of vacancies and interstitials in the different crystals,
as explained in Methods. For each crystal phase we choose one
density (see Table 1) and varied the temperature to get some insight
in the concentrations as a function of the proximity of the solid-fluid
phase transition. The resulting concentrations are shown in Fig. 9.
We observe that all defect concentrations increase with increasing
temperature; thus, similar to what was seen for hard (slanted)
cubes,3,4 the concentrations are the highest closest to melting.

Furthermore, we find that the vacancy concentration is
higher than the interstitial concentration in the FCC crystal, which
was also found for the FCC crystal of hard spheres near melting.1,2

Surprisingly, in the other crystals, the interstitial concentrations are
higher than the vacancy concentrations, with the difference ranging
from 4 orders magnitude in the BCC and BCT crystals to 3 orders in
the H crystal and 1 order in the SC crystal. This goes against the
general expectation that vacancies are easier to accommodate than
interstitials, leading to higher vacancy concentrations. The highest
concentrations are found for interstitials in the BCC crystal.
Specifically, near melting the concentration is on the order of
1%, which is 6 orders of magnitude higher than the interstitial
concentration for hard spheres near melting.2

4.2. Star polymers

We continue our investigation by exploring the manifestation
of defects in the different crystal phases of star polymers in a

similar fashion as we did for Hertzian spheres. First, we take a
look at the deformations. For each crystal phase, we focus on
one state point where the crystal is stable, and examine the
deformation as a function of the arm number and packing
fraction starting from this state point. Based on ref. 16, the arm
number and packing fraction at these state points are given in
Table 2 together with the number of particles simulated. Note
that the system size is chosen to always be large enough to
ensure that defects are not affected by their periodic image.
Furthermore, note that ref. 16 also predicts a BCO crystal;
however, we did not find it to be stable in our simulations.

Fig. 10–12 show the average deformations of the FCC, BCC,
and diamond crystals of star polymers. In these figures, (a) and (d)
show the deformation for a typical vacancy and interstitial,
respectively, while (b, c, e and f) give the displacement for the
first three neighbor shells as a function of the packing fraction and
arm number. Additionally, (e and f) give the distance between the
two dumbbell particles, i.e. the interstitial and its companion.

Comparing Fig. 10 and 11 with Fig. 3 and 4, we see that the
structure of the deformation of the FCC and BCC crystals of star
polymers is essentially the same as that for Hertzian spheres.
Similar deformations were also seen for the FCC crystal of hard
spheres32 and the FCC and BCC crystals of repulsive point
Yukawa particles;10 hence, we conclude that the nature of the
lattice deformation is mainly determined by the crystal struc-
ture and not by the specifics of the interaction potential.

Fig. 9 Vacancy and interstitial concentrations as a function of the temperature kBT/e for the different crystal phases of Hertzian spheres. The density of
each crystal is given in Table 1. Note that the temperatures on the right side of the figures are near melting.

Table 2 The number of star polymers N simulated for each crystal phase
together with the packing fraction Z and arm number f

Crystal Z f N

FCC 0.45 100 2048
BCC 0.45 45 2000
diamond 1.25 100 2744
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Fig. 10 Average deformation of the FCC crystal of star polymers associated with (a–c) a vacancy and (d–f) an interstitial. In (a and d) the deformation at
packing fraction Z = 0.45 and arm number f = 100 is shown. The vacancy is indicated by the red dot, and the interstitial and its companion by the two
black dots. The gray points represent the lattice sites and the arrows represent the deformation. The size of the arrows is exaggerated, but the color
indicates the deformation in terms of the nearest-neighbor distance a. (b, c, e and f) Average deformation hui/a for the first three neighbor shells (1 = nn,
2 = nnn, and 3 = nnnn) as a function of the packing fraction (at f = 100) and arm number (at Z = 0.45). When the displacement of the particles in a
neighbor shell has a broken symmetry, the label ‘‘A’’ indicates the most displaced particles and ‘‘B’’ the others. The distance between the interstitial and its
companion – the ‘‘dumbbell’’ – is given in (e and f) as well (right axis).

Fig. 11 Average deformation of the BCC crystal of star polymers associated with (a and c) a vacancy and (d–f) an interstitial at packing fraction Z = 0.45
and arm number f = 45. Figures and legends as explained in the caption of Fig. 10.
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Note that the deformation of the diamond crystal associated
with a vacancy is similar to that of the BCC crystal. This is not
entirely surprising, as the diamond crystal can be constructed
from the BCC crystal by removing a particular set of particles.
Nonetheless, the deformation of the diamond crystal caused by
the interstitial is very different from that of the BCC crystal.
Like in the BCC crystal, the dumbbell aligns itself along the
h111i direction, but, since there are particles ‘‘missing’’ along
this direction in the diamond crystal, the deformation is not
extended.

Furthermore, as for Hertzian spheres, we generally find that
increasing the packing fraction increases the deformation
caused by a vacancy and decreases that caused by an inter-
stitial. Notice, however, that for the interstitials in the FCC and

BCC crystals, the deformation first slightly increases before
significantly decreasing. Additionally, just as increasing the
temperature makes it easier for Hertzian spheres to overlap,
decreasing the arm number makes it easier for star polymers to
overlap; hence, decreasing the arm number generally increases
the deformation caused by a vacancy and decreases that caused
by an interstitial.

Next, to confirm that the interstitial also forms a crowdion
in the BCC crystal of star polymers, we compute the average
displacement along the defect direction and compare the result
to the soliton solution of the sine-Gordon equation. Fig. 13 shows
the resulting displacement for different packing fractions and
arm numbers. As for Hertzian spheres, we observe excellent
agreement and find that the structure and range of the crowdion

Fig. 12 Average deformation of the diamond crystal of star polymers associated with (a–c) a vacancy and (d–f) an interstitial at packing fraction Z = 1.45
and arm number f = 100. Figures and legends as explained in the caption of Fig. 10.

Fig. 13 Average displacement along the h111i direction of a crowdion in the BCC crystal of star polymers for (a) different packing fractions (at f = 45) and
(b) different arm numbers (at Z = 0.45). The lines represent the corresponding fitted soliton solutions. *Quenched result.
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is practically independent of the packing fraction and arm
number. Notice that the quenched crowdion (Fig. 13a) has a
slightly longer range than the averaged crowdions. The range of
the averaged crowdions is most likely slightly reduced by the
(noisy) transitions from one orientation to another.

Lastly, we predicted the equilibrium concentration of vacancies
and interstitials in the different crystals of star polymers. Similar to
Hertzian spheres, we choose one packing fraction (see Table 2)
and varied the arm number to get some insight into the concen-
trations as a function of the proximity of a phase transition. For
the BCC and diamond crystals this was the melting transition,
while for the FCC crystal this was the FCC-BCC phase boundary.
The resulting concentrations are shown in Fig. 14. We observe that
all concentrations increase with decreasing arm number, meaning
that they are highest closest to the phase transition. Notice,
however, that the concentrations in the FCC crystal are extremely
low, i.e. more than 8 orders of magnitude lower than in the BCC
and diamond crystals. The most probable reason for this is the
different nature of the phase transitions: solid-fluid for BCC and
diamond crystals versus solid–solid for FCC crystal.

As for most of the Hertzian sphere crystals, we find that the
concentration of interstitials is higher than that of vacancies in
all three star polymer crystals. This is even the case for the FCC
crystal, for which hard spheres and Hertzian spheres have
higher vacancy concentrations. Yet, most noteworthy, is the
very high concentration of interstitials in the BCC crystal: on
the order of 0.1% near melting.

5. Conclusions

In conclusion, we have characterized the point defects that appear
in the wide range of crystal structures that occur in Hertzian
spheres and star polymers. We found that the defects caused
similar deformations in the FCC and BCC crystals of different
models with isotropic repulsion, and thus concluded that the
nature of the lattice distortion is mainly determined by the crystal
structure and not by the specifics of the repulsive (isotropic)
interaction potential. Hence, even though not all of the models
we study here are directly realizable in the lab, this work provides
new insights into how defects manifest in crystals of soft particles.

For most crystal structures, we found three-dimensional and
local deformations, with three interesting exceptions: (i) the

vacancy in the SC crystal, which causes a lattice distortion that
is extended in two dimensions, (ii) the vacancy in the H crystal,
which forms a voidion, and (iii) the interstitial in the BCC
crystals, which forms a crowdion. We showed that the structure
of these voidion and crowdions is essentially independent of
the system parameters.

Interestingly, in all cases outside of the FCC crystal of Hertzian
spheres, the interstitial concentrations were found to be higher
than the vacancy concentrations. The largest defect concentrations
arose as interstitials in the BCC crystals, which reached as high as
1% in the Hertzian sphere model.
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