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Rotational diffusion and rotational correlations in
frictional amorphous disk packings under shear†

Dong Wang, ‡ab Nima Nejadsadeghi,‡c Yan Li,‡d Shashi Shekhar,*d Anil Misra *e

and Joshua A. Dijksman *f

We show here that rotations of round particles in amorphous disk packing reveal various nontrivial

microscopic features when the packing is close to rigidification. We analyze experimental measurements

on disk packing subjected to simple shear deformation with various inter-particle friction coefficients

and across a range of volume fractions where the system is known to stiffen. The analysis of

measurements indicates that shear induces diffusive microrotation, that can be both enhanced and

suppressed depending upon the volume fraction as well as the inter-particle friction. Rotations also

display persistent anticorrelated motion. Spatial correlations in microrotation are observed to be directly

correlated with system pressure. These observations point towards the broader mechanical relevance of

collective dynamics in the rotational degree of freedom of particles.

Amorphous packings of particles occur in many contexts, ranging
from glassy polymers to colloidal gels, geological sediments and
active matter. These materials are well known to have complex
mechanical behavior. For example, their mechanical response is
often strain history dependent.1–4 Their phase behavior can also be
complex, ranging from solid to liquid and gas-like, which is
especially fascinating for purely athermal systems.5,6 The amor-
phous nature of the microstructure of these systems makes it
notoriously challenging to understand the origin of such behavior
in general.7 Notably, these ‘‘granular’’ material systems are char-
acterized by a length-scale proportional to particle size, that makes
their theoretical description using classical continuum physics
concepts particularly challenging. For accurate descriptions of
amorphous packing mechanics, in which various micro-scale
mechanisms exist that give rise to non-standard kinematics, such
as those resulting in vortex type structures,8,9 the traditional views

of continuum mechanics desperately need updating. One route
towards a more general continuum description considers material
point rotations and has an origin in the work from the Cosserat
brothers.10 Indeed, it has long been recognized that the rotational
motion of particles in thermally driven amorphous packings
can be linked to slowdown effects and glassy dynamics11–13 and
are relevant for phase behavior of strongly driven granular
systems.6,14,15 Nevertheless, much progress is needed to include
(particle) rotational degrees-of-freedom in continuum mechanics
approaches.16–19 There is ample evidence that particle rotations
indeed contribute to the mechanical response of particle
packings,20–23 although there is precious few systematic experi-
mental data available that can disentangle the various mechanisms
that drive rotational dynamics on the local scale. The purpose of this
paper is to illustrate the diffusive and spatially correlated dynamics
of particle rotations in a strain-history dependent material that
undergoes a transition to rigidity when its particle volume fraction is
varied. We make use of an athermal disk packing to avoid tem-
perature and displacement-rotation couplings and invoke special
boundary conditions that allow us to decouple shear from packing
fraction-dependent effects.

Mechanical phases

Athermal granular material systems exhibit many non-standard
physical phenomena, such as that of negative group velocity,24,25

frequency band gaps,26–29 chirality30 and load path dependency.
The latter is the key physical phenomenon that underlies our
results: collections of discrete athermal particles have the remark-
able property that they can become rigid when assembled into
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certain arrangements. These loose particle packings can resist
shear or compression when a sufficient number of them is
present per unit volume, a feature commonly called jamming.
Notably, even when not spatially confined, packing of particles
can enhance its stiffness when the assembly is subject to shear
strain. This shear deformation induced stiffening is known as
shear jamming. With ‘‘shear’’ here we refer to system-level
deformation unless otherwise noted.

The role of rotation

To study the role of rotational degrees of freedom, decoupling
rotation from translation is challenging. In many materials the
involved particles (be it molecules, colloids or grains) are not
spherically symmetric, hence their rotation requires also spatial
displacement of their neighbors, particularly for high density,
jammed granular materials. To probe the role of only the
rotational degrees of freedom in the strain dependence of
amorphous packings, athermal round particle systems are an
optimal prototypical choice. Such particles can be designed to
experience contact friction, which directly couples rotational
degrees of freedom to displacements. In an athermal packing
of frictional disks, shear for even circular particles is thus
directly coupled to rotations without necessarily requiring
particle displacements.

While rotational dynamics of spherical particles in athermal
packings has been probed via wave-propagation measurements31

and compression,32 particle-level experimental evidence that
links rotational degrees of freedom directly to shear in amor-
phous packings has so far not been obtained. We use a unique
set of experimental data to show that suppressing the particles’
microrotation dynamics by making them more frictional induces
a marked stress response in the packing. We will see that particle
rotations display strain-induced diffusive behavior even at very
small strain amplitudes. The diffusive behavior can be correlated
with mechanical packing behavior as it depends on particle
packing density and friction coefficient in manners consistent
with previously observed mechanical packing properties.33–35

Additionally, particle rotations display non-local correlations as
revealed by spatial auto-correlation measures36. These meso-
scopic correlations change markedly when the packing becomes
more jammed, suggesting that the non-local mechanical effects
well known to exist in sheared glassy granular media and
amorphous materials in general37–39 and mediated by displace-
ment correlations, can be additionally mediated by correlated
rotational dynamics.

Rotational dynamics across the phase
boundary

We systematically vary the friction coefficient and packing
density of the particles to capture the entire transition region
of jamming and shear-induced jamming, known to exist for our
model system. Our data reveals that in our completely athermal
amorphous packing, suppressing rotational degrees-of-freedom

directly coincides with a mechanical stiffening. More signifi-
cantly, we observe that suppressing rotational diffusion also
suppresses mesoscopic spatial anticorrelations in the microrotation
field. Our work thus shows that shear jamming may be intricately
related to the suppression of rotational degrees of freedom. Indeed,
some work had already hinted at the relevance of rotational degrees
of freedom of particles in loose particle assemblies for both
slow,16,40–42 irreversibility43 and fast granular flows44–46 and recently
also for the statistical mechanics of sheared packings.47,48 Our data
is however the first that provides systematic experimental particle
level statistics and correlation analysis across a range of friction
coefficients and volume fractions. We also provide strong evidence
that particle rotations are an essential kinematical quantity in the
study of dense amorphous packings, as they are already in the field
of active matter6 and metamaterials.30 More broadly, the spatial
autocorrelation analysis of rotations that we employ may reveal
essential features in materials science of a large variety of materials
that exhibit the effects of intrinsic length scales.

Methods
Experimental setup

In our experiments, we analyze a series of experiments that allow
for the tracking of rotation of every disk-shaped particle in a
B1000-particles large simple shear geometry. In our experiments
we have used quasi-two dimensional packings, as three dimen-
sional shear experiments have the propensity for formation of
finite shear localization bands into which the particle rotations
typically concentrate.42,49–51 In contrast, our two dimensional
geometry with articulated base allows us to suppress shear
localization entirely, as reported elsewhere.33,34 Shear is applied
quasi-statically from an isotropic stress free state and tracked
during the initial shear transient up to a strain of 0.5. For a sketch
of the setup, see Fig. 1a. The slats have a width of the diameter of
a small particle. Previous experiments have described dilatancy
and displacement dynamics in these packings.33,34 A fluorescent
bar placed on the particles combined with UV imaging allows us
to track the absolute orientation of every particle in the packing;
see Fig. 1b.

Particles with different friction

Having access to rotational dynamics of the particles, we can
explore the effect of inter-particle friction using granular
assemblies with controlled variations of inter-granular friction
coefficient, as well as the effect of different initial packing
fractions f. Three sets of particles were used in our experi-
ments. One set of particles was cut from photoelastic sheets,33

having an inter-particle friction coefficient mm of approximately
0.7. After conducting experiments with this set, we wrapped
these particles with Teflon tape. Dry Teflon–Teflon contacts
have a friction coefficient of ml B 0.1535. A third set of data was
obtained with photoelastic disks cut with fine teeth on their
circumference so that particles will interlock when they come
into contact. Such a particle shape mimics an extremely large
friction coefficient; we refer to these particles as mh. Examples of
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these particle types are shown in Fig. 1c–e. The diameter ratio of
big to small disks is 1.25 : 1 (a small particle has a diameter of
B1.3 cm), and the number ratio is roughly 1 : 3.3 (big to small)
for each packing. Although it is well-known that polydispersity
affects packing mechanics,52–54 we did not vary the ratio of big
to small particles for any m or f in the present study.

Experimental protocol

Particles were first randomly placed in the shear cell and manually
relaxed until no inter-particle contact force was visible by eye. Then
starting from either an initial parallelogram or a rectangular
configuration, the shear cell was deformed by strain steps of
0.0027. The system was then relaxed for 10 seconds followed by
taking three kinds of images: one with white light, one with
polarized light, and one with UV light. These three images reveal
particle positions, particle contact forces/pressure, and particle

orientation, respectively. Such a process of shearing, relaxing and
image taking was repeated until a certain total shear strain was
achieved. For each packing fraction and friction coefficient, we
repeated all the experiments five times with the exception of the
lowest two density ml runs; they were repeated twice. Note that the
analysis of the images acquired during the experiment reveals that
not all the grains were detected in all frames, where some grains
move out of or inside the boundaries of the images from one
frame to another. As a result, for the analysis performed in the
current paper, only grains common between all the frames were
considered, and the grains present at one frame and not detected
in another frame are excluded. Moreover, the grains on the
boundary were removed from the analysis.

Particle rotations under simple shear

We probe the dynamics of orientations obtained from image
analysis of each frame. The observed grain rotations in simple
shear experiments can be decomposed into two parts. One part
of the rotation of each grain is a result of the imposed affine
macro-scale deformation field, which contributes an overall
rigid body rotation. In our calculations, the rigid body rotation
between any two frames is not assumed from the imposed
strain on the boundaries, but obtained as half of the difference
in the slope of straight lines fitted to the coordinates of grains
centroids in the two frames. We note that, in general, the
relation between the measured change in slope and the rigid
body rotation is nonlinear especially in finite deformation.
However, a linear relation in the current analysis for the
considered shear strain range is a good approximation. One
can also extract the rigid body rotation on a local scale around
every particle, for example from the Delaunay triangulation.55

Such a choice gives different scientific insights, just like one
can compare the displacement field with a field imposed from
the boundaries (globally) versus the one that emerges locally.
However, it is not trivial to select which local region to analyze
to find the local rigid body rotation. Moreover subtracting the
local rigid body motion might also remove the vorticity we aim
to analyze. The linear fit works because from previous work we
know that in our particular shear geometry,35 grain displacements
tend to follow the imposed macro-scale deformation field. While
there exist fluctuations from the imposed linear macro-scale
deformation field in the grain centroid displacements, we have
shown previously that these fluctuations are small.

Separating out microrotations

The second rotation contribution is due to the micro-scale
phenomena of individual grain spin that we call microrotation.
Denoting the rotation of grain i by yi and the macro-scale rigid
body rotation by yR, the microrotation of grain i, is obtained as
ym

i = yi � yR. Fig. 1f gives the microrotation field for a mm

packing. Additional examples of microrotation fields for different
m, are given in ESI† Fig. S1. The initial frame is taken as the
reference configuration to obtain the evolution of the grain-spin
measures as a function of imposed strain. The rigid body rotation
yR grows linearly with strain as expected from the linearly
increasing strain field imposed on the packing (see Fig. 1g).

Fig. 1 (A) Schematic of special apparatus for applying simple shear strain
to a collection of photoelastic discs at the different strain steps (indicated
by color). In the sketch, both the slats and particles are drawn much larger
relative to the boundaries than in the real experiment. The x–y axes
indicate the coordinate system in the lab frame, where simple shear is
applied along the y axis. Shear strain g is defined as g = Dy/l. The magenta
dashed rectangle indicates the region of imaging. (B) Examples of the UV
image taken to track particle orientation. Blue bars show actual UV marks
and white lines indicate tracked orientation. Red circles mark edges
of disks. (C–E) Examples of photoelastic particles used for different
inter-particle friction coefficients ml, mm, mh respectively. (F) The spatial
distribution of microrotation of grains induced by the first shear step;
particle locations shown in their initial configuration. Lines connecting
particles indicate closest local neighbors. Results obtained for g = 0.27, mm

with packing fraction f = 0.816. (G) evolution of the almost negligible
mean hyi

mi and strain-dependent standard deviation sm of the microrotation,
and the rigid body rotation yR, for five shear tests at a given density, growing
linearly at a rate of 0.0013 rad per frame as expected from the imposed
strain.
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The mean of the microrotations hym
i i and the standard deviation

of microrotations
ffiffiffiffiffiffiffiffiffiffiffi
hym2

i i
q

¼ sm also change as a function of

strain as observed in Fig. 1g for all five repeats done for mm at
f = 0.816. An overview of microrotation kinematics for several
other m and f can be found in Fig. 2 in ESI.† Notably, the mean
microrotation hym

i i is nearly zero for all the cases measured in
this work: that is, there is no preferred direction in which grain
microrotation fluctuations occur. Note that the slats on which
the particles rest are likely to contribute to yi. It appears that the
slats mechanism ensures that the mean particle rotations tracks
the rigid body rotation on average. We have also examined many
spatial plots and videos of the particle rotation yi and never
noticed any signature of bias that the slats might induce; see
Fig. 1f. The metrics derived from yi did not show any sign of
structures that can be traced back to the slat geometry. For
examples of typical microrotation trajectories, see Fig. S3 in
ESI.† This null-result is highly reproducible between different
repeats of the experiments and consistent with earlier numerical
simulations.40,41,51,56,57 It is also noteworthy that the microrotations
follow a nearly Gaussian distribution for all cases (see Fig. S4 in
ESI†). However, the amplitude of grain microrotation fluctuations
increases monotonically with strain. Note that some of such
shear induced rotational fluctuations have been observed in
the experimental work of Matsushima in ref. 16 on non-
spherical particles.

Diffusive microrotation

Focusing further on the growth of sm(g) we see that its strong
growth with g and the reproducibility among different initial

configurations is also observed for different f over the entire
range of relevant densities and m as shown in Fig. 2a–c. Up to a
strain of 0.15, sm can be well described by the empirical
relation sm = Dgn + s0 as shown by the good quality of the fits.
We interpret prefactor D as (the square root of) a diffusion
constant as done previously for rotations induced by thermal
fluctuations.58,59 Power law index n indicates the (weakly) non-
linear strain dependence and s0 is a possible offset that is
negligible for all experiments. We see that the strength of the
fluctuations captured by D(f) and n(f) is very sensitive to
friction m as shown in Fig. 2d and e. The friction dependence
does however capture the mechanical performance of the
packing as well: at large m, particle interactions associated with
rotation are stronger even at smaller f, and this trend is
observed in both D(f) and n(f). Considering D as a diffusion
constant, its thermal analogue would be given by the ratio of
thermal fluctuations and viscous damping. Such competition
can also be seen in the rotational diffusion: both D and n
indicate that there are two mechanisms that play a role in the
rotational diffusion, which is especially visible for mm. Initially,
D, n(f) grows with f, indicating the enhanced particle inter-
actions that give more fluctuations in rotations. However,
above a certain fc(m), D decreases, and above the packing
fraction, f E 0.80, trends in the parameters D, n seem to
converge, although we do not have access to a large enough
range of f to show that the decreasing trend for D,n visible for
mm and mh reaches the plateau visible for ml. The trends do
indicate that competing mechanisms emerge in high packing
fractions suppressing the growth of further rotational fluctuations.
We naively expect that with increasing f, the number of contact

Fig. 2 Standard deviation of rotations as a function of imposed shear strain in three different packing fractions for the (A) ml, (B) mm, and (C) mh particles
(solid lines). All experiments are repeated five times and each fit well to power law behavior sm p Dgn (dashed lines). (D) and (E) show, respectively, the
variation of the parameters D and n as a function of packing fraction of the sets in ml, mm, mh. The highlighted data in yellow are the data used in panels a–c
and Fig. 3. Error bars indicate the range among the repeats.
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interactions between particles per unit of strain increases, hence
increasing D. This effect cannot continue indefinitely, as also steric
hindrance effects must be reducing the intensity of such contact
interactions. Steric hindrance does play a role for mh, the gear-
shaped particles, but less so for the much smoother ml,mm particles.
The mechanisms that determine n are not as intuitive but note

that if we consider g as a time variable and ym
2

i

D E
¼ sm2 as a

displacement fluctuation metric, normal diffusive behavior would
have n = 0.5. Consequently, all behavior observed in our experi-
ment can be considered superdiffusive. Interestingly, the values
for n(f) converge above a volume fraction of about 0.81, although a
decreasing trend persists. The value of n tends towards 1 at very
high packing fraction, indicating a linear dependence of sm on
strain. These trends are even more visible if we consider smaller
strain, see Fig. S5 in ESI.†

Correlations in microrotations

The observed Gaussian nature of the particle microrotation
fluctuations is accompanied by underlying correlations in
particle microrotation, which can be expected to exist in dense
amorphous packings where many grains are in contact. Indeed,
there are long range correlations in particle microrotations as
visible in our three-step approach to quantifying the spatial
autocorrelation of microrotations, leading to a mathematically
well defined quantitative system average signal called Moran’s
I, that is widely used for geographical data36.

Average neighborhood variance

We first compute the particle average neighborhood microrotational
variance Sn. The neighborhood variance of each particle refers to the
product of its microrotation deviation from mean microrotation
and the mean microrotation deviation of its Voronoi neighborhood
from mean microrotation. We compute the ‘‘average neighborhood
variance’’ by

Sn ¼
ZTWZ

N � 1
; and Z ¼ Ym � ymi

� �
; (1)

where Ym is a vector of particles’ microrotation whose i-th element
is ym

i , hym
i i is the mean of all particles’ microrotation, and N is the

number of particles. W is the row-wise normalized spatial weight
matrix. The spatial weight matrix used here is the adjacency matrix
whose element at the i-th row and j-th column indicates whether the
i-th particle is adjacent to the j-th particle. If the particles are
adjacent, the element is 1. Otherwise, the element is 0. A row-wise
normalized spatial weight matrix is gotten by dividing each row of a
spatial weight matrix by the row sum of the matrix. The
adjacency matrix was found by constructing Delaunay triangles
to link grains with their neighbor grains, and removing the link
whose length was greater than the sum of the radius of the two
grains connected by the link.

Physically, a positive/negative value of Sn means that in general a
particle rotates in the same/opposite direction as its neighborhood.
Trivially, for two touching gears, Sn should be negative. However, in
a large packing of gear or disk-shaped particles, it is not obvious

how Sn behaves as a function of strain or volume fraction. Fig. 3a
shows the average neighborhood variance for three different
packing fraction f for different m: ml; f = 0.783,0.810,0.828;

Fig. 3 (A) The average neighborhood variance Sn(g); different colors
reveal its monotonic dependence on m and different hues on f; color
scheme applies to all panels. (B) I as a function of g depends strongly on m
and changes markedly around g E 0.03. (C) Ii standard deviation sI as as
function of g shows a distinctive peak around gE 0.03 for ml, mm but not for
ml. Different types of clustering visible in local Moran’s I in (D) ml, f = 0.828
(short range) and (E) mh, f = 0.807 (string-like), with examples highlighted
by dashed ellipses. Error bars indicate the standard deviation among the
repeats.
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mm; f = 0.692, 0.758, 0.816; mh; f = 0.713, 0.744, 0.807. The
average neighborhood variance is clearly monotonically depen-
dent on both m and f and grows with g. We observe that higher
friction or density results in lower average neighborhood
variance, which means greater difference between a particle’s
microrotation and its neighborhood’s. As mentioned, this
anticorrelation makes mechanical sense: gear-like motion
forces rotation of opposite direction in interlocking particles.

Global Moran’s I

A large absolute value of Sn may be caused by two effects: either
there is a (dis)similarity between neighborhood particle micro-
rotations, or there is a large variance in the microrotation. To
focus only on the comparison of the dissimilarity among
neighborhood particles microrotation across the packing, we
normalize Sn by the variance of the particle microrotation, sm

2.
We have shown the dynamics of sm

2 and its non-monotonic
dependence on friction and packing fraction in Fig. 2. By
computing Sn/sm

2, we arrive immediately at the system wide
spatial autocorrelation metric called Moran’s I. For completeness,
global Moran’s I is defined as follows:

I ¼ ZTWZ

ZTZ
¼ Sn=sm2; and Z ¼ Ym � ymi

� �
; (2)

where Ym is a vector of particles’ microrotation whose i-th
element is ym

i . From each of these i elements, we subtract hym
i i,

the scalar mean of all particles’ microrotation, which is
negligible. W is the the row-wise normalized spatial weight
matrix. This metric measures the average spatial autocorrela-
tion of the entire dataset. The expected value of global Moran’s
I under the null hypothesis of no spatial autocorrelation is

EðIÞ ¼ � 1

N � 1
, where N is the number of observations. In

other words, the more observations there are, the closer the
expectation to 0. Values of I usually range from �1 to +1. Values
significantly below E(I) indicate negative spatial autocorrelation
and values significantly above E(I) indicate positive spatial
autocorrelation. A value of 0 for Moran’s I implies that the
neighbors are independent of each other, while positive values
imply that neighbors are similar (e.g., smoothly varying field)
and negative values imply that neighbors are dissimilar (e.g., a
chessboard).

Generally, the microrotations of the grains in all the materials
in these analyses are negatively autocorrelated: the grains rotate
like a chain of gears to some extent. Fig. 3b shows the trends of I
as the shear strain increases. The differences in behavior for
ml,mm,mh is evident: low friction particles have a weak spatial
autocorrelation, whereas particles with higher friction coefficient
develop stronger autocorrelations, with I decreasing to �0.3. The
difference between the packings with a different f is small
but not insignificant. In general, anti-autocorrelations increase
with larger packing fractions. Strikingly, also the rotational
correlations are very strain sensitive, with 3% strain being
enough to indicate significant difference between packings of
the different f and m.

Local Moran’s I

We go one step further and use the normalized neighborhood
variance to gain insight into the local mechanics of sheared
amorphous packings. There are cases where there is no global
trend of spatial autocorrelation, but there are local communities
where spatial autocorrelation is strong. Spatial autocorrelations
as captured by I are thus not the same everywhere; in fact there
are clusters of (anti)correlated rotations. We can quantify the
local variability of these correlations by computing the standard
deviation of what is called Local Moran’s I and often used to
represent the spatial autocorrelation within the local neighbor-
hood of each observation. The formal definition is as follows:

Ii ¼
ziWi:Z

ZTZ=ðN � 1Þ; and zi ¼ ymi � ymi
� �

; (3)

where ym
i is the i-th particle’s microrotation and Wi: is the

normalized spatial weight vector of particle i. A positive value
of Ii means within the i-th observations neighborhood the obser-
vations are similar, while a negative value means the observations
are different. To analyze whether the local communities in a
dataset are homogeneous regarding to spatial autocorrelation,
we compute the standard deviation of local Morans I defined as
sI. The greater this standard deviation, the greater the differences
between local communities.

The standard deviation of Local Moran’s I captures the
rotational ‘‘floppiness’’ in the packing. With floppiness we refer
to the presence of low-energy deformation modes as is typical,60

in this case deformations coming from rotations. A large sI

signifies the presence of large relative rotations between neigh-
boring particles, which are mechanically likely to occur when
particles are not touching, hence ‘‘floppy’’. At large f in a highly
overconstrained system, interlocking grains must all have the
same rotational behavior so the variability of I in the packing
should be small, hence sI should be small. At smaller f, there
are more ways to reach mechanical equilibrium, hence the
variability among correlations should be higher. Similarly, sI

should express the phenomena of shear jamming: at small
strain, the shear jamming mechanisms has not been activated
yet, so sI is small. We see in Fig. 3c that as strain increases, the
packing moves from partially to completely constrained and
should thus achieve a small sI. Finally, the role of m should also
be non-linear: at small and large m, the rotational variability
should be high as per previous arguments, so sI(m) should have an
optimum. We observe indeed all these mechanically reasonable
trends in sI(f, g, m). Ii standard deviation is strain dependent,
exhibiting a distinct peak floppiness at about 3% strain (Fig. 3c).
Note that at these strain levels, system level pressure is undetect-
able, highlighting again the sensitive nature of rotations.

The connection of spatial correlations to the rotational
diffusion is also still visible in the fluctuations of the anti-
correlated microrotation: observe how for f 4 0.80, sI is small
for all m, precisely where also the diffusivity of microrotation
becomes independent of m. Finally, we show two examples of
the spatial distribution Ii(x, y) for two situations ml, f = 0.828
and mh, f = 0.807 in Fig. 3d and e. These examples clearly show
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clusters of isotropic and and anisotropic shapes emerging along
boundaries and in the bulk of the packing. Examples can be seen
in the highlighting in Fig. 3d and e; further evidence for string-
like clusters can be seen in Fig. S6 in ESI,† especially at mh. The
nine supplementary videos show the entire range of qualitative
features in Ii(g) for the three characteristic packing fractions for
each ml, mm and mh. Spatial correlations can span up to ten particle
diameters and can be string-like or globular, highlighting again
the spatial anisotropy that can build up in the amorphous
system. While the complete spatial dynamics of neighborhood
microrotation similarity is challenging to interpret due to the
dual and non-monotonic role of both friction and density, we can
clearly see particle rotations becoming an essential parameter
necessary to be included in both the statistical physics of
and continuum modeling theories with non-local mechanical
couplings inside sheared amorphous packing.

Relating microrotations to pressure

We evaluate the connection between the particle rotations and
the mechanical response of the system by examining the
packing pressure as a function of strain as obtained from the
photoelastic signal of the particles. Fig. 4a gives the pressure P
evolution with applied shear strain g. We observe that for the
selected data sets, pressure evolution at the low and high

packing density f are vastly different. At low density (for f o 0.8),
P is small for all mi. For the high density, we see that pressure
grows strongly with g in similar manner way for all mi, although
it should be remarked that the similarity is fortuitous as the
packing with ml is denser than that for mm and mh. The key points
to note are two-fold. One, at low f, regardless of friction,
significant enduring normal forces are absent while particle
rotations grow with deformation. However, for larger m, there is
an important difference: while enduring normal forces remain
absent at f o 0.8, we see an optimum for microrotation
diffusion constant D and a clear difference in exponent n for
both mm and mh, indicating that competing mechanisms drive
the particle rotations. These may include rotations that result
due to rolling friction versus those due to sliding friction. The
results suggest that during brief particle contacts, one of these
mechanisms (rolling or sliding) dominates for different packing
densities f. Two, in contrast to low f, at large f, both the
pressure P and particle rotations grow with deformation with
the particle microrotation standard deviation sm growing to
greater than 0.2 rad for the three mi. It is noteworthy that the
particle displacements are very much suppressed in this
regime61 and hence rotations must be a significant source of
sliding between particles and hence a dominant dissipation
mechanism32. The sliding between particles must be especially
strong at large f as per the insights provided by Moran’s I
standard deviation sI, which is remarkably suppressed for the
case of large f, while the particle rotations continue to grow as
seen from Fig. 2. Although anticorrelated motion should sup-
press rotational sliding, anticorrelations themselves are sup-
pressed at large f.

The relevance of rotations for the mechanics of packings at
large densities is further highlighted by considering Sn(P). The
local neighborhood variance for ml is very small while P is large
as shown in Fig. 4b. This indicates that particles are mostly
sliding with respect to each other at this high density. It is clear
that low friction is unlikely to induce anticorrelations among
rotations. The situation is very different for mm and mh. For
these, Sn(P) are clearly linear functions, indicating that for that
particular f pressure can be associated with a certain amount
of anticorrelated motion of particles. We note again that the
similarity of the data in Fig. 4b is probably due to a fortuitous
choice of data. In general one might expect the slope in
dSn/dP(f) to have a sharp transition with f for ml. On the other
hand, it is reasonable to expect for mm, mh the slope change
could have a smooth variation. Further investigations may be
needed to verify this expectations. Nevertheless, the presented
data shows unequivocally that local correlations in rotations
can function as an indicator of the transition from a an
unjammed to (shear)jammed solid.

Conclusions

We have shown that simple shear induces spatially correlated
fluctuations in the a rotational dynamics of round, frictional
particles. Individual particle rotational motion is diffusive, and

Fig. 4 (A) Pressure (P) as a function of shear strain g with different colors
indicating different experiment systems. (B) Neighborhood variance Sn vs.
pressure P for g up to 0.15. Color scheme is the same in (A) and different
symbols correspond to different initial packing configurations at the same
m and f.
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diffusive motion is m and f dependent as one would expect
based on the mechanical characteristics of the packing.
The local neighborhood of particles shows on-average anti-
correlated motion that reveals that two distinct mechanisms
affect the mechanics of individual grains. Rotational motion
fluctuations indicate the state of the system early in the
deformation regime after a few percent shear strain, even
though the average particle microrotation is zero. Critically,
by controlling the rotational degrees-of-freedom, the meso-
scopic spatial anticorrelations in the microrotation field can
be suppressed leading to packing stiffening and the concomitant
increase in system pressure.

Our results suggest that rotational motion is a highly relevant
field in the study of amorphous particulate materials, ranging
from sands to frictional emulsions, colloids and even molecular
glasses. Beyond materials analyses, the results have a broader
relevance to spatial data science, particularly in reference to the
‘‘first law of Geography’’62 stating that nearby things are similar.
The value of the widely used geographical spatial autocorrelation
measure Moran’s I is negative for granular materials systems with
a clear physical interpretation related to particle friction.
Intriguingly, the role of absolute interparticle orientations has
long been recognized for system mechanics: the role of the
bond angle is recognized as essential in constraint counting
approaches for glassy polymeric systems60 and is also relevant
for protein folding dynamics.63 Not surprisingly rotational
dynamics has been measured indirectly on a system scale via
dielectric spectroscopy,64 for example to probe glassy dynamics
in rotational degrees of freedom in nonspherically symmetric
glassforming molecules. Note that friction is not the only
parameter that can make the rotational degree of freedom
relevant for the packing dynamics. Rotations also play a significant
role for particle packings that are composed of aspherical,
adhesive or deformable particles, which covers many types
of particulate materials, ranging from granular materials to
colloids, proteins,65 emulsions and even metamaterials in
which the node hinges are not ideal.30 In particular, it is of
interest to explore how energy is stored in sheared granular
packings and how rotations and friction in contacts play a role
in this. Our work in the context of prior work on rotational
particle dynamics in other materials thus suggests that rotational
particle dynamics is a broadly relevant characteristic that can aid
a deeper understanding of the often suggested similarity among
amorphous materials.
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