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Motility-induced inter-particle correlations and
dynamics: a microscopic approach for active
Brownian particles

J. K. G. Dhont, *ab G. W. Park a and W. J. Briels*ac

Amongst the theoretical approaches towards the dynamics and phase behaviour of suspensions of

active Brownian particles (ABPs), no attempt has been made to specify the motility-induced inter-

particle correlations as quantified by the pair-correlation function. Here, we derive expressions for the

pair-correlation function for ABPs with very short-ranged direct interactions for small and large

swimming velocities and low concentrations. The pair-correlation function is the solution of a

differential equation that is obtained from the Fokker–Planck equation for the probability density func-

tion of the positions and orientations of the ABPs. For large swimming Peclet numbers, l, the pair-

correlation function is highly asymmetric. The pair-correlation function attains a large value, Bl, within

a small region of spatial extent, B1/l, near contact of the ABPs when the ABPs approach each other.

The pair-correlation function is small within a large region of spatial extent, Bl1/3, when the ABPs move

apart, with a contact value that is essentially zero. From the explicit expressions for the pair-correlation

function, Fick’s diffusion equation is generalized to include motility. It is shown that mass transport,

in case of large swimming velocities, is dominated by a preferred swimming direction that is induced by

concentration gradients. The expression for the pair-correlation function derived in this paper could

serve as a starting point to obtain approximate results for high concentrations, which could then

be employed in a first-principles analysis of the dynamics and phase behaviour of ABPs at higher

concentrations.

1 Introduction

Active matter consisting of suspensions of self-propelling
particles ranges from synthetic colloidal particles to cells and
bacteria. Several different types of synthetic colloidal particles
have been developed over the past few years with a variety of
propulsion mechanisms. Self-propulsion affects the dynamics
and stability of phases, induces new phases with no counter-
parts in systems of passive particles, and affects phase separa-
tion kinetics. For overviews on the various types of propulsion
mechanisms and motility-induced phase separation (MIPS), see,
for example, ref. 1 (an introduction in German) and ref. 2–8.

The inter-particle correlations that underly the behaviour
of active systems originate from direct and hydrodynamic
interactions between the particles. The central quantity that

specifies the degree of correlations between particles is the so-
called pair-correlation function (see, for example, ref. 9 and 10).
Since propulsion is achieved by forces exerted by the particles
onto the surrounding fluid, there are additional contributions
to their hydrodynamic interactions as compared to passive
particles. These additional hydrodynamic interactions depend
on the propulsion details and lead to highly anisotropic attrac-
tive/repulsive interactions depending on the relative distance
between the particles (see, for example, ref. 8 and 11–16).
Simulations in 3D on spherical active particles show that the
differences in hydrodynamic interactions between pullers and
pushers have a pronounced effect on the pair-correlation func-
tion at close contact (with a center-to-center distance of 2.01a,
where a is the radius of the spheres), but a much smaller effect
for somewhat larger distances (equal to 2.50a).17 The effect of
hydrodynamic interactions on inter-particle correlations has
been studied for model flagellum swimmers by means of
simulations in ref. 18, where increased correlations between
the rear parts of swimmers and decreased correlations between
the rear and the front parts are found. Strong inter-particle
correlations due to long-ranged hydrodynamic interactions in
3D have been observed in large-scale simulations in ref. 19,
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where direct interactions (for example, due to excluded-volume
interactions) have been neglected. In general, self-propelled
particles with a solid core, interacting hydrodynamically in
addition to hard-core interactions, are referred to as squirmers.
For comparison, active Brownian particles (ABPs) are intro-
duced that do not exhibit hydrodynamic interactions. In the
present paper, we study inter-particle correlations between
ABPs, thus neglecting hydrodynamic interactions. It remains
a largely open question to which extent inter-particle correla-
tions of spherical ABPs and squirmers with excluded-volume
interactions differ in 3D bulk.

A microscopic statistical mechanics approach towards the
behaviour of active systems can be based on the so-called
Smoluchowski equation, which is a Fokker–Planck-type equa-
tion of motion for the probability density function of the
positions and orientations of the active particles. This approach
can be used, for example, to generalize the van’t Hoff law for
the osmotic pressure20 and expressions for Casimir forces
between two plates21 to active systems, and explain the align-
ment of active colloids in a gravitational field.22 These general-
izations aim at dilute active systems, and therefore depart from
the Smoluchowski equation neglecting inter-particle correla-
tions. For concentrated systems, however, such inter-particle
correlations are essential.

An approach that addresses concentrated systems on a
microscopic level is dynamic density functional theory
(DDFT)23 (for an overview on DDFT approaches, see ref. 24).
This approach is based on the equation of motion for the one-
particle distribution function as obtained from the Smolu-
chowksi equation. Approximations are made in ref. 23 to
eliminate three-particle correlation functions which arise from
the coupling between the hydrodynamic and direct interac-
tions, in favour of two-particle correlation functions. The two-
particle correlation functions are then largely ignored, which is
stated to be a good approximation for weak and long-ranged
direct interactions. In the present paper, we are interested in
the pair-correlation function for very steep and short-ranged
interactions between ABPs, for which the DDFT approach in
ref. 23 is inappropriate.

The Smoluchowski equation has been employed, within
certain approximations, to analyse the stability of MIPS in
2D.25–29 Here, a linear decrease of the average velocity, v B
v0(1 � z r) (where v0 is the free-swimming velocity), of swim-
mers with the increasing concentration, r, is found, which is in
accordance with semi-empirical approaches30,32–34 and simula-
tions in 2D.35 Without the specification of the pair-correlation
function, however, the coefficient z remains an unknown para-
meter. In ref. 36 and 37, the analysis of MIPS for non-chiral and
chiral ABPs in 2D is similarly based on the Smoluchowki equation,
where inter-particle correlations are accounted for by numerical
input obtained from simulations.38 An independent calculation
of the pair-correlation function is not pursued in these studies.
It is the purpose of the present study to derive explicit expressions
for the 3D pair-correlation function, for small concentrations
where binary interactions are dominant. For an overview of several
theoretical approaches, see ref. 27 and 39.

In ref. 40, an expression for the pair-correlation function has
been derived on the two-particle level from a model where
orientational motion is mimicked by introducing a Gaussian
type of noise imposed on the propulsion velocity with a finite
relaxation time. This allows for a description on the basis
of position coordinates alone, thus eliminating orientational
variables. Within this approach, it is possible to extract an
effective potential, the Boltzmann exponent of which gives the
low-density pair-correlation function. As will turn out, within the
microscopic approach in the present work, where orientational
motion is explicitly accounted for, it is not possible to represent
activity by means of an effective pair-interaction potential.

The pair-correlation function (averaged with respect to the
orientation of one of the particles) for a dilute 2D system of
Brownian Janus particles with induced-charge electrophoresis
activity is experimentally obtained in ref. 41, and similarly for
externally driven binary mixtures in ref. 42. Good agreement is
found in ref. 41 with numerical solutions of a differential
equation for the pair-correlation function for weak inter-
particle interactions, which is similar but not identical to the
Smoluchowski equation in 2D (the difference is discussed in
Section 3). It is stated in ref. 41 that ‘‘the depletion wake
consists of two depletion wings’’, which we will comment on
at the end of Section 5.

An extensive overview of the current status and challenges
concerning active systems can be found in ref. 43, and in ref. 44
with an emphasis on simulation methods.

Surely, the above-cited references represent only a biased
fraction of the vast literature on active systems. There is,
however, essentially no literature that addresses the analytical
determination of the pair-correlation function. The aim of the
present paper is to derive closed analytic expressions for the
pair-correlation function for dilute 3D systems of spherical ABPs,
where binary interactions dominate. It remains a future challenge
to extend the theory given in the present paper to higher concen-
trations and to include hydrodynamic interactions.

This paper is organized as follows. In Section 2, we recapi-
tulate the Smoluchowski equation for ABPs, the derivation of
the equation of motion for the orientation-dependent local
density from it, and the definition and relevance of the pair-
correlation function for collective dynamics and MIPS. In
Section 3, the fundamental differential equation for the pair-
correlation function for small concentrations is derived, which
is solved for small swimming Peclet numbers in Section 4, and
for large Peclet numbers in Section 5. Section 6 discusses the
collective diffusion to leading order in concentration for large
Peclet numbers. The summary, conclusion, and outlook are
given in Section 7.

2 Fokker–Planck approach and
relevance of the pair-correlation
function

A microscopic particle-based starting point to predict motility-
induced collective motion and phase separation (MIPS) of active
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Brownian particles (ABP) with a spherically shaped core is the
N-particle Smoluchowski equation. This is a Fokker–Planck equa-
tion in the over-damped limit for the (non-equilibrium) probability
density function (pdf), PN, of the position coordinates, {rj}, and the
orientations, {ûj}, of a total number of N ABPs within a given
volume. The standard Smoluchowski equation is a generalized
diffusion equation for the time-rate of change of PN, which
expresses probability conservation in terms of the divergence of
a probability flux. There are several contributions to the probability
flux. There is a contribution arising from translational Brownian
motion, which gives rise to changes of position coordinates. The
position coordinates also change due to direct inter-particle inter-
actions, while rotational Brownian motion results in changes of
the orientations. Including the flux due to active swimming, the
Smoluchowski equation reads as follows:

@

@t
PN ¼ D0

XN
j¼1
rj � ½rjPN þ bPNrjC�

þDr

XN
j¼1

R̂j
2PN �

XN
j¼1
rj � ½PNv0ûj �;

(1)

where the various contributions are displayed in the same order as
discussed above. Here, D0 and Dr are the translational and rota-
tional diffusion coefficients for a single sphere in an unbounded
fluid, respectively, b = 1/kBT is the inverse thermal energy (where kB

is the Boltzmann constant and T is the temperature), rj is the
gradient operator with respect to the position coordinate, rj, of the
jth particle, and

R̂jð�Þ ¼ ûj �ruj ð�Þ; (2)

is the rotation operator, withruj
the gradient operator with respect

to the Cartesian coordinates of the unit vector, ûj, that specifies the
orientation of the jth particle. The orientation defines the direction
in which an ABP would actively move when submerged in an
unbounded fluid without the presence of other ABPs. Further-
more, C is the total potential interaction energy of the assembly of
ABPs, which depends only on the position coordinates, not on
orientations, and v0 is the bare swimming velocity. The average
swimming velocity in a concentrated dispersion of ABPs is differ-
ent from v0 as a result of interactions between the ABPs, the
calculation of which requires the solution of the Smoluchowski
equation (see Section 6).

The Smoluchowski equation assumes overdamped dynamics,
where inertial effects are neglected, which is a valid approxi-
mation on time scales of the order of a few tens of nanoseconds
for sizes of the ABPs not larger than a few microns. An analysis of
inertial effects for larger ABPs can be found in ref. 45. What has
been neglected in eqn (1) are hydrodynamic interactions
between the swimmers. Including hydrodynamic interactions
remains a future challenge, and would enable to make a
distinction between, for example, pullers and pushers.

The formulation of the Smoluchowski equation given above
relates to 3D. A 2D formulation leads to a different form of the
rotational operators, but is most probably amenable to the
same type of analysis given in the present 3D case. Most of

the experiments (like in ref. 41 and 42) have been conducted
in 2D, where hydrodynamic interactions with the confining
geometry will probably play a major role. Including such
hydrodynamic interactions requires a major extension of the
present approach. In addition, one should make a distinction
whether the swimming direction is confined within the 2D
plane of motion, or whether rotation in all directions is still
possible. In the latter case, the rotational operators in the
Smoluchowski equation remain unchanged, but the swimming
contribution involves projections of the orientations onto the
2D plane.

The dynamics, phase separation kinetics, phase behaviour,
spatial inhomogeneities, and local orientational order para-
meters can be computed from the orientation-dependent local
density r(r,û,t) � NP1(r,û,t), where P1 is the one-particle pdf for
the position and orientation of an ABP, which is defined as the
integral of the N-particle pdf, PN, with respect to all coordinates
except for those of a single particle:

P1ðr; û; tÞ

¼
ð
dr2 � � �

ð
drN

þ
dû2 � � �

þ
dûNPNðr; r2; . . . ; rN ; û; û2; . . . ; ûN ; tÞ;

(3)

where the integrals
H
dûj range over the surface of a unit sphere,

that is, over all orientations of ûj. The orientation-dependent
local density is the number concentration of ABPs at a position
r with an orientation û. The equation of motion for P1 is
obtained by the integration of the N-particle Smoluchowski
equation with respect to all position coordinates and orienta-
tions, with the exception of a single position and orientation.
This leads to the following equation:

@

@t
rðr; û; tÞ ¼ D0r2 þDrR̂

2
� �

rðr; û; tÞ � r � ½rðr; û; tÞv0û�

þ bD0r � rðr; û; tÞ½

�
ð
dr0
þ
dû
0rðr0; û0; tÞgðr; r0; û; û0; tÞrVðjr� r0jÞ

�
;

(4)

where the interaction energy of the assembly of ABPs is
assumed to be pair-wise additive, that is,

C ¼
XN
n4m

Vðjrn � rmjÞ; (5)

where V is the pair-interaction potential. Furthermore, the pair-
correlation function that appears in the integral in eqn (4) is
defined as follows:

P2(r,r0,û,û0,t) = P1(r,û,t)P1(r0,û0,t)g(r,r0,û,û0,t), (6)

where the two-particle pdf, P2, is equal to the integral of PN with
respect to all particle coordinates except for two of them
(similar to the definition of P1). For non-interacting ABPs, P2

factorizes into a product of two P1s, so that g = 1. The pair-
correlation function thus describes the degree of correlation
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between two particles embedded in a (concentrated) system of
remaining ABPs.

For an isolated ABP, for which the last term in eqn (4)
involving the pair-correlation function is absent, the following
well-known expression for the mean-squared displacement W
can be derived46:

WðtÞ ¼ 6 D0 þ
v0

2

6Dr

� �
tþ v0

2

2Dr
2
½expf�2Drtg � 1�: (7)

This expression has been verified experimentally in 2D in
ref. 47, in 2D for small times in ref. 48, and by simulations in
ref. 35 and 49. For times much larger than 1/Dr, it is found that
W(t) = 6Dst, where the long-time self-diffusion coefficient is
equal to Ds = D0 + v0

2/6Dr. As will be seen in Section 6, the
collective diffusion coefficient at infinite dilution is equal to the
self-diffusion coefficient, just like for passive systems.

An analysis of MIPS based on the Smoluchowski equation
(eqn (4)) requires an explicit expression for the pair-correlation
function. The aim of the present analysis is to derive an explicit
expression for the pair-correlation function, depending on the
bare swimming velocity, v0. This will be done on the two-
particle level, where binary interactions dominate, thus neglecting
the indirect interactions between two particles via the surrounding
particles. The extension of the results obtained in this work to
higher concentrations requires a separate study, where, for
example, a similar Ornstein–Zernike approach may be followed
as for systems in equilibrium.9

3 A differential equation for the pair-
correlation function

Before addressing the equation of motion for the pair-
correlation function, note that the pair-correlation function in
eqn (4) for the orientation-dependent local density is only
needed for short distances between two ABPs, since the pair-
correlation function in the integral in eqn (4) occurs as a
product with the pair-interaction potential. We therefore need
a closure for g(r,r0,û,û0,t) for distances |r � r0| o RV, where RV is
the range of the pair-interaction potential, which is of the order
of the size of the ABPs. This has two important consequences.
First, the interest here is in spatial variations of the orientation-
dependent local density on length scales much larger than the
size of single particles. Unstable modes involve the growth of
density variations with a relatively large spatial extent, much
larger than the range of the pair-interaction potential. We can
therefore evaluate the pair-correlation function as needed in
eqn (4) for a homogeneous system, at the local density at r to
within a neigbourhood of extent RV from r0. Second, since
structural relaxation over small distances (of the order RV) is
much faster than the relaxation or growth of inhomogeneities
varying over large distances (of the order of the spatial extent of
unstable density variations), the pair-correlation function may
be assumed to instantaneously adapt to the local density.
That is, on the time scale on which density variations relax or
grow, the pair-correlation function attains its stationary form.

These considerations are similar to those in ref. 50, where the
Cahn–Hilliard theory for spinodal gas–liquid phase separation
is derived from the Smoluchowski equation. Also, in that case,
the pair-correlation function instantaneously relaxes to its
equilibrium value corresponding to the local density, which
may be regarded as the statistical analogon of local thermo-
dynamic equilibrium approximations.

Note that phase separation kinetics from a meta-stable state
(like nucleation and growth) cannot be described on the basis
of the above-discussed local homogeneity and fast relaxation of
the pair-correlation function. Such a phase separation mecha-
nism involves the formation of a nucleus, which may have a
spatial extent that is not much larger than the range RV of the
pair-interaction potential.

The equation of motion for the two-particle pdf, P2, can be
obtained by integrating the N-particle Smoluchowski equation
(eqn (1)) with respect to all particle coordinates except for two,
similar to the derivation of eqn (4) for the one-particle pdf. This
leads to an equation of motion for the pair-correlation function
from its definition in eqn (6). On the two-particle level, neglect-
ing higher-order correlations related to the three-particle pdf
leads to the following stationary equation of motion:

0 ¼ 2D0r � r þ b rVðRÞ � v0

2D0
û1 � û2ð Þ

� �
gðR; û1; û2Þ

þDr R̂1
2 þ R̂2

2
� 	

gðR; û1; û2Þ;
(8)

where r, R̂1, and R̂2 are understood to act on the distance R =
r1 � r2 between two ABPs, and the orientations û1 and û2 of the
two ABPs, respectively. Note that the pair-correlation function is
a function of the relative distance r1 � r2 due to the approxi-
mate homogeneity on length scales larger than RV, and is
independent of time due to the fast relaxation of correlations
over short distances, as discussed above.

We note that with the so-called linearized Dean equation
applied to a dilute system in ref. 41 to analyze the experimental
data for the pair-correlation function in 2D, the contribution
2D0br�[grV] = (2/g)r�[grV] in eqn (8) (where g is the Stokes–
Einstein friction coefficient) is replaced by (2/g)r2V, thus
neglecting pair-correlations to this contribution. Such a neglect
is not allowed within the Smoluchowski-equation approach,
neither for short-ranged nor for long-ranged pair-interaction
potentials. In particular, including hard-core-excluded volume
interactions, the product grV is proportional to the delta
distribution at the contact of the two ABPs (see eqn (27) in
Section 6), while rV by itself is undefined.

Without activity, it follows from eqn (8) that the pair-
correlation function is given by the Boltzmann exponential
g(R) = exp{�bV(R)}. This is the well-known leading order term
in an expansion of the pair-correlation function with respect to
the overall concentration for passive systems. For such low
concentrations, binary inter-particle interactions are dominant.
Terms that account for higher-order collisions involving more
than two particles have been omitted in eqn (8). For excluded-
volume interactions, it is expected that this limits the validity of
our analysis to volume fractions less than about 0.10. It should
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be noted that activity cannot be included in eqn (8) in terms of
the gradient of an interaction potential. If this would have been
possible, the pair-correlation function would simply be given by
the afore-mentioned Boltzmann exponential of that potential.

Specializing to hard-core interactions (in which case, V(R) = 0
for R 4 2a, where a is the radius of a particle, and V(R) = N for
R o 2a), with a possibly super-imposed very short-ranged
attractive ‘‘sticky-sphere’’ interaction, eqn (8) reduces for
R 4 2a to

0 ¼ 2D0r � r �
v0

2D0
û1 � û2ð Þ

� �
gðR; û1; û2Þ

þDr R̂1
2 þ R̂2

2
� 	

gðR; û1; û2Þ; for R4 2a:

(9)

In solving this equation, the hard-core interactions are
accounted for by the no-flux boundary condition:

0 ¼ R̂ � r � v0

2D0
û1 � û2ð Þ

� �
gðR; û1; û2Þ; for R ¼ 2a; (10)

where R̂ = R/R is the unit vector normal to the spherical surface
with radius 2a. This boundary condition physically means that
the cores of two particles cannot interpenetrate.

The differential equation (eqn 9) and the boundary condi-
tion (eqn 10) are most conveniently rewritten in terms of
dimensionless variables, introducing the dimensionless dis-
tance and gradient operator:

R! R=2a ;

r ! 2ar :
(11)

Hereafter, we use the same symbols for the dimensionless
distance and gradient operator as before for the distance and
gradient operator with dimensions. Note that R = 1 at the
contact of the two particles. The free diffusion coefficients are
equal to D0 = kBT/6pZ0a and Dr = kBT/8pZ0a3, where Z0 is the
shear viscosity of the solvent, so that the dimensionless Peclet
number,

l ¼ av0

D0
; (12)

can be introduced (some times also denoted by Pe) to arrive at

0 ¼ r � r � lUf ggþ 3

2
R̂1

2 þ R̂2
2

� 	
g; for R4 1;

0 ¼ R̂ � r � lUf gg; for R ¼ 1;

g! 1; for R!1;

(13)

where

U = û1 � û2. (14)

The dimensionless Peclet number, l, characterizes the relative
importance of the swimming velocity of an isolated ABP as
compared to translational and rotational diffusion. Note that
it is not necessary to make a distinction between a transla-
tional and rotational Peclet number: for the spherical particles
under consideration, the ratio D0/Dr for the translational
and rotational diffusion coefficients is equal to 4a2/3, which

results in identical Peclet numbers (apart from a factor 3/2) in
the dimensionless form of the stationary equation of motion
(eqn 13) for the translational and rotational contributions.
The last boundary condition in eqn (13) at infinity results
from the fact that particles become uncorrelated at large
separations.

We have not been able to solve this set of equations
analytically for arbitrary values of the Peclet number. In the
sections below, we shall therefore determine the asymptotic
solutions for small and large swimming velocities.

As will turn out, these asymptotic expressions are approxi-
mately cylindrically symmetric around the direction of U, so
that the pair-correlation function for these limiting Peclet
numbers can be expressed in terms of the cylindrical coordi-
nates Z = R cosY and r = R sinY, where Y is the angle between
R and U (as depicted in Fig. 1), that is,

cosY = R̂�Û, (15)

where R̂ and Û are the unit vectors in the directions of R and U,
respectively. In addition, the asymptotic expressions for the
pair-correlation function depend on the magnitude of U, which
is equal to

U ¼ jû1 � û2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2a
p

; (16)

where

a = û1�û2 (17)

is the cosine of the angle between û1 and û2 (also indicated
within sphere 2 in Fig. 1). For intermediate Peclet numbers,
there is an additional dependence on R̂�(û1 + û2). Due to the
approximate independence of the asymptotic solutions for
small and large Peclet numbers on this variable, the pair-
correlation function might be a weak function of this variable
for intermediate Peclet numbers as well.

Fig. 1 Definition of the variables R, Z, r and U in relation to the previously
defined orientations, û1,2, and the center-to-center distance, R. For
simplicity, all vectors are drawn within the same 2D plane. The asymptotic
expressions derived below are the functions of these four scalar variables.
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4 The pair-correlation function for
small Peclet numbers

For small Peclet numbers, the pair-correlation can be expanded
as follows:

g = 1 + lg1 + l2g2+ � � �. (18)

After substitution into eqn (13), it is found that the leading
order contribution satisfies the following set of equations:

0 ¼ r2g1 þ
3

2
R̂1

2 þ R̂2
2

� 	
g1; for R4 1;

0 ¼ R̂ � rg1 �Uf g; for R ¼ 1;

g1 ! 0; for R!1:

(19)

The solution of this set of equations is determined in Appendix
A by means of a spherical harmonics series representation,
leading to

gðR;U;YÞ ¼ 1� 1

5þ 2
ffiffiffi
3
p

ffiffiffi
3
p

R
þ 1

R2

" #

� exp �
ffiffiffi
3
p

R� 1ð Þ
n o

lU cosðYÞ;

(20)

where the various coordinates are defined at the end of the
previous section (see also Fig. 1). The contact value gc of the
pair-correlation function (for which R = 1) is thus equal to

gcðU;YÞ ¼ 1� 1þ
ffiffiffi
3
p

5þ 2
ffiffiffi
3
p lU cosðYÞ: (21)

A little consideration (see also Fig. 1) shows that the particles
move toward each other when cosY o 0, and move away from
each other when cosY 4 0. Eqn (20) thus shows that the pair-
correlation function is larger than unity when the particles
move toward each other, and is equally less than unity in case
they move away from each other.

Note that the dimensionless relative velocity of two particles
is equal to lU. In case U = 0, for which û1 = û2, the two particles
move side-to-side along with each other with the same velocity.
The motility-induced distortion of the pair-correlation is zero in
that case, as the particles do not interact with each other.
Hence, no matter how large the Peclet number may be, for
U = 0, there is no effect of motility on the pair-correlation
function. This explains why the leading order correction for
small velocities in eqn (20) is proportional to lU instead of
just l.

Numerical results for g � 1 are given in Fig. 2 for lU = 1. The
spherical white area with radius unity is the excluded volume by
particle 1 for particle 2, within the coordinate frame that moves
along with particle 1, the center of which is chosen at the
origin. As discussed above, the two particles approach each
other when Z o 0, leading to an increase of the pair-correlation
function, and move apart when Z 4 0, leading to a decrease.

The angular average of the contact value of the pair-
correlation function is zero. Beyond the linear approximation
discussed here, however, this angular average will be non-zero.

In particular, for the large Peclet numbers considered in the
subsequent section, the angular averaged contact value varies
like l, and thus attains very large values.

5 The pair-correlation function for
large Peclet numbers

For large velocities, the behavior of the pair-correlation is quite
different in case the particles approach each other or move
apart. We therefore define the so-called front-sector as the
space where the two particles approach each other (for which
cosYo 0), and the wake-sector as the space where the particles
move apart (for which cosY 4 0). Contrary to the behavior of
the pair-correlation function for small velocities, where the
increase in the front-sector is equal to the decrease in the wake
sector, for large velocities, there is a much more pronounced
asymmetry. When the two particles approach each other, there
is a probability accumulation within a narrow region where the
pair-correlation function attains large values, whereas when the
two particles move apart, there is a probability shadow within
an extended region where the pair-correlation function is
essentially zero. The analysis in both sectors will be discussed
separately in the following subsections.

5.1 The front-sector: cos H o 0

Multiplying eqn (13) by the small parameter 1/l, it is obvious
that this small parameter multiplies the highest order spatial
Laplacian derivative. A perturbation expansion approach where
the second-order Laplacian derivative would be simply
neglected (as it is multiplied by the small parameter 1/l) leads
to a first-order differential equation. There are, however, two
boundary conditions, which cannot be satisfied simultaneously
by adjusting the single integration constant of the solution of

Fig. 2 Deviation of the pair-correlation function from unity for lU = 1
according to eqn (20) for small Peclet numbers. The coordinates Z =
R cosY and r = R sinY are the cylindrical coordinates around the direction
of U, which are defined in Fig. 1.
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that first-order differential equation. This implies that the
second-order derivative must be very large near the contact,
so that the Lapacian derivative cannot be neglected, even
though it is multiplied by the small parameter 1/l. This is the
standard situation for singularly perturbed differential
equations51,52 and leads, in the present case, to a narrow boundary
layer near contact of the two particles where the pair-correlation
function exhibits large spatial gradients, as schematically depicted
in Fig. 3 in red. In this figure, the dark-grey sphere is overtaken by
the light-grey sphere. Outside the boundary layer, the pair-
correlation function is unity (which is the value that the pair-
correlation function attains without interactions).

In a singular perturbation approach, the boundary layer is
spatially stretched by introducing the so-called boundary-layer
variable, S = ln(R � 1), where the exponent n is determined in
such a way that the second-order derivative with respect to S
is of the same order as the remaining dominant terms in
the differential equation, commonly referred to as ‘‘dominant
balance’’, which in the present case is the contribution from
the motility-induced flux. The boundary-layer analysis of
eqn (13) is given in Appendix B, leading to the following
expression for the pair-correlation function, valid up to the
leading order of the expansion:

gfrontðR;U;YÞ ¼ 1� 1

2
lU cosðYÞ expfðR� 1Þ ½lU cosðYÞ � 2�g;

(22)

where the index ‘‘front’’ indicates that this expression is only
valid in the front-sector, where cosY o 0. As before, Y is the
angle between R and U = û1 � û2. Note that the contact value of
the pair-correlation function, where R = 1, is equal to

gcfrontðU;YÞ ¼ 1� 1

2
lU cosY: (23)

For cosY = 0, eqn (22) predicts that g = 1, as it should be, since
the particles do not interact in that configuration (the two
particles are side-by-side, like the left upper light-grey sphere
and the dark-grey sphere in Fig. 3). Furthermore, the distance
R � 1 from the contact over which the pair-correlation function
relaxes to unity is B1/lU. This quantifies the behavior dis-
cussed above, which is schematically depicted in Fig. 3.

As shown in Appendix B, the rotational contributions to
eqn (13) can be neglected. The physical interpretation of this
result is that, due to the small extent of the boundary layer, the
time during which the particles interact (where the light-grey
sphere rolls over the dark-grey sphere, as depicted in Fig. 3) is
sufficiently short that the rotational diffusion is not effective.
Note that g = 1 in case U = 0, as it should be, since in that case
the two spheres move along with each other with the same
velocity.

Numerical results are given in Fig. 4 for lU = 10 in the
Z-versus-r plane as before, which shows the boundary-layer
behavior of the pair-correlation function within the front-
sector. The boundary-layer type of behaviour of the pair-
correlation function in 3D at low concentrations is confirmed
by simulations in ref. 53, where orientational averages show a
very steep increase near contact. The probability accumulation
in the front-sector in 2D has also been observed in simulations
in ref. 28. Such a steep increase of the pair-correlation function
and large contact value correspond to a sticky-sphere type of
interaction for passive systems. This has been used in ref. 54 to
compare the equation of state for active particles to the
equation of state of a system of passive adhesive particles.

5.2 The wake-sector: cos H 4 0

The result in eqn (22) diverges for large distances when lU cos
Y 4 2, so that the above result does not describe the behavior
of the pair-correlation function in the wake-sector where cosY
4 0. In the wake-sector, the behavior is very different from that
in the front-sector. Once the particles enter the wake-sector (the
light-grey spheres depicted in Fig. 5), there is a probability-
depleted region indicated in blue in Fig. 5, which we will refer
to as the probability shadow.

Fig. 3 Schematic representation of the boundary-layer behaviour of the
pair-correlation function in the front-sector, where two particles approach
each other: the light-grey sphere overtakes the dark-grey sphere. As soon
as the two spheres are side-to-side (where cosY = 0), the light-grey
sphere enters the wake-sector. Within the boundary layer (indicated in
red), with a spatial extent B1/l, the pair-correlation function attains large
values, Bl. The pair-correlation function is unity outside the boundary
layer (but within the front-sector).

Fig. 4 The pair-correlation function in the front-sector for lU = 10
according to eqn (22). As before, Z = R cosY and r = R sinY are the
cylindrical coordinates relative to the direction of U (see Fig. 1). The pair-
correlation function takes large values, Bl, within a boundary layer of
extent B1/l.
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For infinite Peclet numbers, there is a cylindrical region of
infinite extent in the direction of U where the pair-correlation
function is zero.55 For finite Peclet numbers, there is an
approximate cylindrically symmetric region around the direc-
tion of U, where the pair-correlation function is essentially zero
for short distances, as time has been too short for the over-
taking particle to move into the probability shadow. Therefore,
the pair-correlation function attains an almost step-function-
like behavior for short distances as a function of the cylindrical
coordinate r = R sinY at r = 1, as indicated by the solid line in
Fig. 5 (see Fig. 1 for the definition of coordinates). For r o 1,
the pair-correlation function is essentially zero, while for r4 1, its
value is approximately unity. The pair-correlation function relaxes
to unity at large distances in the direction of U due to translational
and rotational diffusion into the probability shadow (as indicated
by the thin solid lines for the light-grey sphere on the right in
Fig. 5). In contrast to the large spatial derivatives in the direction
perpendicular to U at r = 1, spatial derivatives in the direction of U
are very small. Furthermore, the spatial derivatives along the
direction of U (and for r o 1) decrease with the increasing swim-
ming velocity, while the extent of the probability shadow increases
with the increasing velocity. This behavior is to be contrasted to the
front-sector, where the opposite occurs: here, the spatial derivatives
in the direction of U are very large, and increase with the increasing
swimming velocity, while the extent of the boundary layer decreases
with the increasing velocity.

An approximate asymptotic solution of eqn (13) for large
Peclet numbers within the wake-sector is constructed in Appen-
dix B, the result of which is

gwakeðR;U;YÞ ¼ 1�
ð1
0

dC J1ðCÞJ0 CR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ðYÞ

q� �

� exp �C24þU2

8U2

R3

lU
cos3ðYÞ

� �
:

(24)

where J0,1 are the Bessel functions of the first kind (of order 0 and 1).
The index ‘‘wake’’ refers to its validity within the wake-sector.
As shown in Appendix B by numerical integration, the contact value
of the above expression for the pair-correlation function decays to
zero faster than 1/l. Therefore, the contact value is zero,

gc
wake(U,Y) = 0, (25)

to within leading order in 1/l, in contrast to the front-sector
side where the contact value is very large. A constant contact
value for the pair-correlation function, uniformly spread over
the surface of the sphere, is found in ref. 40 on the basis of a
theoretical approach that does not explicitly account for orien-
tational diffusion, as discussed in the introduction. According
to the above Smoluchowski-type of approach, orientational
diffusion is, however, essential for small Peclet numbers as
well as for high Peclet numbers in the wake-sector.

The extent of the probability shadow can be calculated from
eqn (24) as follows. In the Z-direction, we have cosY = 1, so that
the Bessel function J0 in eqn (24) is equal to unity. The
remaining integral can be calculated analytically as follows:56

gwakeðR;U;Y ¼ 0Þ ¼ 1�
ð1
0

dC J1ðCÞ exp �C24þU2

8U2

R3

lU

� �

¼ exp � 2U2

4þU2

lU
R3

� �
:

(26)

Note that the contact value for Y = 0 is exponentially small with
the increasing l. Furthermore, this result shows that the extent
l of the probability shadow scales like l B l1/3 for non-zero
relative velocities, U. As shown in Appendix B, this scaling is
entirely due to rotational diffusion. Translational diffusion can
be neglected in the wake-sector, contrary to the front-sector,
where it is dominant. The scaling relation for the extent of the
probability shadow can be understood as follows.57 Let dy
denote a small angle over which the spheres depicted in
Fig. 5 rotate relative to each other in a direction where the
overtaking light-grey sphere moves into the blue, probability-
depleted region. The time dt it takes for such a small rotation is
dt B (dy)2/Dr. Let l be the extent of the probability shadow in
the Z-direction. Since the width of the probability shadow is
Ba, we have dy B a/l. Furthermore, l B v0dt, so that eliminat-
ing dy and dt in favour of l leads to (l/a)3 B v0/(aDr) Bav0/D0 = l.
This confirms the scaling found in eqn (24) and (26), and shows
that the scaling is solely due to rotational diffusion.

Fig. 5 Schematic representation of the probability shadow in the wake-
sector, where the particles move away from each other. Within the blue
region where r o 1, the pair-correlation function is essentially zero for
inter-particle distances less than l1/3, while for r 4 1, it is unity. For large
distances in the direction of U, and r o 1, the pair-correlation function
relaxes to unity due to (rotational) diffusion into the probability shadow, as
indicated by the wiggly lines for the light-grey particle on the right which
overtakes the dark-grey sphere in the middle.
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Numerical results are given in Fig. 6 for l = 5 and U = 2. This
density plot quantifies the expected step-like function behavior
for r = 1 in case the spheres are not too far apart, and the very
slow convergence to unity in the direction along U within the
probability shadow.

In ref. 41, it is found that the depletion wake in 2D consists
of two wings, where the two wings are surrounded by regions
where the pair-correlation function is enhanced due to moti-
lity (see, for example, Fig. 1 in ref. 41). There, the pair-
correlation function is plotted in a coordination frame that
is fixed to the orientation, û1, of a single colloid and averaged
with respect to the orientation, û2, of the second colloid.
We have plotted the pair-correlation function in a coordina-
tion frame that is fixed to the relative velocity, B(û1 � û2). The
latter allows us to make a distinction between the approaching
swimmers and the swimmers moving away from each other, and
thus distinguishes between what we referred to as the wake-sector
and the front-sector. Averaging over the orientation, û2, mixes parts
of the wake-sector and the front-sector, which probably explains the
two-wing structure reported in ref. 41.

The 2D simulations in ref. 28 do not show a clear long-
ranged probability shadow. These simulations have been per-
formed at very high packing fractions, and thus indicate that
higher-order inter-particle correlations affect the spatial extent
of the probability shadow in the wake-sector.

6 Collective diffusion

With the expressions for the pair-correlation function derived
in the previous sections, the equation of motion (eqn 4) can be
evaluated in closed form. Since the pair-correlation function is
evaluated to the leading order in concentration, that equation

of motion is also valid up to leading order in concentration.
In this section, we derive expressions for the Fickian collective
diffusion coefficient and the motility-induced polarization due
to concentration gradients for hard-sphere interactions.

Since the pair-correlation function is zero when the spheres
overlap, we have:

gðr;r0; û; û0ÞrVðjr� r0jÞ ¼�b�1gcðr;r0; û; û0Þ r� r0

jr� r0jdðjr� r0j�2aÞ;

(27)

where, as before, gc is the contact value of the pair-correlation
function, a is the radius of the particles, and d(�) is the delta
distribution. Substitution into eqn (4) gives

@

@t
rðr; û; tÞ ¼ D0r2þDrR̂

2
� �

rðr; û; tÞ�r� ½rðr; û; tÞv0û�

�D0

2a
r� rðr; û; tÞ

þ
dû
0
þ
dSgcðR; û; û0ÞRrðr�R; û

0
; tÞ

� �
:

(28)

Here, R = r � r0 is the non-scaled distance between the two
ABPs, and

H
dS is the integral with respect to R ranging over a

spherical surface with radius 2a. For small spatial gradients in
the orientation-dependent local density, such that the density
varies linearly over distances of the order of the size of the
particles, the leading order gradient expansion,

r(r � R,û0,t) = r(r,û0,t) � R�rr(r,û0,t), (29)

can be used in eqn (28) to obtain

@

@t
rðr; û; tÞ ¼ D0r2 þDrR̂

2
� �

rðr; û; tÞ � r � ½rðr; û; tÞv0û�

þD0

2a
r � rðr; û; tÞ

þ
dû
0
I1ðû; u0Þrðr; û0; tÞ

� �

þD0

2a
r � rðr; û; tÞr �

þ
dû
0
I2ðû; û0Þrðr; û0; tÞ

� �
;

(30)

where

I1ðû; u0Þ ¼ �
þ
dSgcðR; û; û0ÞR;

I2ðû; û0Þ ¼
þ
dSgcðR; û; û0ÞRR:

(31)

Since for large swimming velocities the contact value of the
pair-correlation function is zero on the wake-sector side, the
integrals in eqn (31) range over the hemispherical surface
corresponding to the front-sector side, as depicted in Fig. 7.
The large contact value on the front-sector side is given in
eqn (23), so that the integrations in eqn (31) lead to

I1ðû; u0Þ ¼ 8pa3 1þ 1

3
lU

� �
U

U
;

I2ðû; u0Þ ¼
16

3
þ lU

� �
2pa4Îþ 2pa4lU

UU

U2
;

(32)

where, as before, U = û � û0 and U = |û � û0|.

Fig. 6 The pair-correlation function in the wake-sector for l = 5 and
U = 2 according to eqn (24). As before, Z = R cosY and r = R sinY are the
cylindrical coordinates relative to the direction of U (see Fig. 1). The pair-
correlation function is essentially a step-function as a function of r at r = 1 when
the spheres are not too far apart, while it converges to unity in the direction along
U within the probability shadow over large distances of order Bl1/3.
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The local fraction of the volume that is occupied by the cores
of the particles with an orientation û, is by definition equal to

fðr; û; tÞ ¼ 4p
3
a3rðr; û; tÞ: (33)

Fick’s diffusion equation is the equation of motion for the
volume fraction irrespective of their orientation:

fðr; tÞ ¼
þ
dûfðr; û; tÞ; (34)

where the so-called polarization,

Pðr; tÞ ¼
þ
dû ûfðr; û; tÞ; (35)

plays an important role. The polarization is proportional to the
particle volume flux in the direction of the average polar
alignment. This is the most important contribution to the
motility-induced mass transport. We will therefore use an
expansion of j(r,û,t) (similar to what is discussed in, for
example, ref. 21, 28, 39, 58 and 59) with respect to the
orthonormal polyadic products of û up to first order (see
Appendix C for the discussion of such expansions):

fðr; û; tÞ ¼ 1

4p
fðr; tÞ þ 3

4p
Pðr; tÞ � û: (36)

The next higher-order term in the expansion is proportional toþ
dû ûû� 1

3
Î

� �
fðr; û; tÞ;

which measures the degree of motility-induced nematic order.
Since the mass transport for large Peclet numbers is severely
affected by the motility-induced polar alignment and much less
by nematic ordering, this higher-order contribution to eqn (36)
will not be considered.

For large swimming velocities, it is found from eqn (30) and
(32), with some effort, that (see Appendix C for mathematical
details)

@

@t
fðr; tÞ ¼ 4

3
lD0r � frfð Þ � v0r � Pðr; tÞ; (37)

where only the dominant contributions for large Peclet num-
bers and leading order terms in spatial gradients are kept.

As will be seen below, P is of the order rj, so that eqn (37) is
valid up to second order in spatial gradients, just like the
original Fick’s equation for passive systems. Keeping only the
leading terms in the swimming velocities for the large Peclet
numbers under consideration, the equation of motion for the
polarization, P, is similarly found, noting that lD0/a = v0 (again,
mathematical details are given in Appendix C):

@

@t
Pðr; tÞ ¼ �2DrP�

1

3
v0f1� 2fðr; tÞgrfðr; tÞ: (38)

where, as before, higher-order spatial gradients have been
neglected. The solution of this equation is

Pðr; tÞ ¼
ðt
�1

dt 0 Hðr; t 0Þ exp 2Dr t 0 � tð Þf g;

Hðr; tÞ ¼ � ð1=3Þv0 1� 2fðr; tÞf grfðr; tÞ:
(39)

In case spatial gradients are sufficiently small, so that these
evolve on time scales much larger than 1/Dr, this expression
reduces for t c 1/Dr to

Pðr; tÞ ¼ Hðr; tÞ
2Dr

: (40)

This principle is commonly referred to as enslavement, where
the non-conserved polarization, P(r,t), is enslaved by the con-
served concentration, j(r,t).28,58,59 Physically, this amounts to a
coarse graining to time scales where orientation is fully relaxed,
while spatial gradients are sufficiently small to evolve on much
larger time scales. It thus follows that,

Pðr; tÞ ¼ �2
9
laf1� 2fðr; tÞgrfðr; tÞ: (41)

Terms like Br2P2 and Brr:PP that contribute to the right-
hand side of eqn (37) (see Appendix C) are thus of fourth order
in spatial gradients. Similarly, terms like Br2P, Pr�P, r�PP,
[rj]�[rP], etc. are neglected in eqn (38), since these terms also
contribute to higher-order gradients.

The condition for the steepness of the concentration gradi-
ents for which enslavement holds will be addressed below.
Eqn (41) implies that there is a preferred orientation in the
opposite direction to the concentration gradient. Thus, there is
an enhanced motility-induced particle flux from high to low
concentrations.

Substituting eqn (41) into the diffusion equation (eqn 37)
finally leads to Fick’s diffusion equation:

@

@t
fðr; tÞ ¼ r � Deff

c ðr; tjlÞrfðr; tÞ
� �

; (42)

where the effective collective diffusion coefficient is equal to

Deff
c ðr; tjlÞ ¼

2

9
l2D0f1� 2fðr; tÞg; for l� 1; (43)

where terms proportional to orders of l less than two have been
neglected. Mass transport at high Peclet numbers is thus
dominated by motility due to the polar alignment along the
concentration gradients.

The enslavement argument used above holds when the
relaxation time of the density is much larger than the rotational

Fig. 7 For large Peclet numbers, the integrations in eqn (31) range over
the semi-spherical surface with radius 2a indicated in blue, corresponding
to the front-sector side where cosY o 0.
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relaxation time, 1/Dr. From the above result for the effective
diffusion coefficient, it thus follows that enslavement requires that

L�2D0l
2 { Dr - L c la, (44)

where L specifies the extent over which the concentration varies
(which is the typical wavelength corresponding to the Fourier-mode
decomposition of the volume fraction). This inequality is a condi-
tion for the validity of the above Fick’s diffusion eqn (42) and (43)
for large l. Without motility, the wavelength L should be much
larger than the radius a of the spheres. For Fick’s equation to hold
for active systems, the wavelength should be much larger than la.
The condition (eqn 44) physically means that the concentration
should not change during the time needed for orientational
relaxation, where an ABP migrates over a distance la.

Including all terms of second order in the spatial gradients
originating from the asymptotic solution of the pair-correlation
function in the equations of motion for density and polariza-
tion leads to (see Appendix C for the list of all these terms)

Deff
c ðr; tjlÞ ¼ D0 1þ 4fðr; tÞ þ 20

9
lfðr; tÞ

�

þ2
9
l2f1� 2fðr; tÞg

�
:

(45)

Note that the collective diffusion coefficient at infinite dilution
is equal to the self-diffusion coefficient for long times, t c 1/Dr

(see the discussion below, eqn (7), in Section 2), just like for
passive systems. An expression for the thermally averaged
velocity, v(r,t), of ABPs (including averaging with respect to the
ABP orientations) can be found from the number conservation
law qj/qt = �r�[vj], in combination with eqn (42) and (45):

vðr; tÞ ¼ � 1þ 4fðr; tÞ þ 20

9
lfðr; tÞ

�

þ2
9
l2f1� 2fðr; tÞg

�
rfðr; tÞ:

(46)

For large l, where the last term dominates, the velocity v B
(1 � 2j)rj thus decreases (in the opposite direction of the
spatial gradients) with increasing concentration due to binary
ABP interactions. For high concentrations, a similar form,
v B (1 � zj)rj, is found in 2D simulations of disks, with z =
0.9, essentially independent of v0 and concentration.35 Such a
concentration-dependent velocity is introduced phenomenologi-
cally in, for example, ref. 30–34, and can be semi-empirically
obtained from the Smoluchowski equation (in 2D), where z is
related to an integral that involves the pair-correlation function,
which remains unknown without specification of the pair-
correlation function.25–29 At high concentrations, the decrease of
the average translational velocity with the increasing concen-
tration is at least in part due to multi-body interactions: when
several ABPs approach each other head-on, the sliding motion
along one of the neighbouring ABPs is blocked by the presence of
the other ABPs. When such head-on interactions occur in large
clusters, the dynamics of single ABPs is kinetically arrested. Such
a diminishing translational motion due to multi-particle interac-
tions is not accounted for in the above expression for the velocity,

since only binary collisions are considered. The expressions for
the pair-correlation function derived in the present work may be
used as a starting point to obtain the pair-correlation function
for higher concentrations (for example, by means of an Ornstein–
Zernike approach). This would establish a first-principles
approach toward the dynamics and MIPS for ABPs with very
short-ranged direct interactions.

For small Peclet numbers, it is found from the contact value in
eqn (21) that the leading order contribution arising from motility
varies like l2. It may well be that the second-order contribution,
g2, in the expansion of the pair-correlation function in eqn (18)
contributes to the same order. We will therefore refrain here from
the derivation of Fick’s diffusion coefficient for small Peclet
numbers. The diffusion equation as obtained from just the leading
order term, g1, in eqn (18) is given at the end of Appendix C.

7 Summary and conclusions

Starting from the N-particle Smoluchowski equation, we derived
analytic expressions for the low-density pair-correlation function
for active Brownian particles (ABPs) in 3D for small and large
swimming Peclet numbers, l. The pair-interaction potential is
assumed to be very short-ranged, consisting of an excluded-
volume interaction and a possible sticky-like attractive interaction.
In the analysis for large Peclet numbers, a distinction must be
made between the front-sector, where two ABPs approach each
other, and the wake-sector, where two ABPs move away from each
other. The front-sector requires a singular perturbation analysis,
leading to a boundary layer at ABP-contact with a spatial extent
B1/l, and contact values of the order l. Due to the small times
during which the two ABPs interact while sliding over each other,
rotational diffusion does not affect the pair-correlation function in
the front-sector. The behaviour of the pair-correlation function in
the wake-sector is quite opposite as compared to the front-sector:
there is now a large region of extent Bl1/3 where the pair-
correlation function is essentially zero, and where rotational
diffusion is solely responsible for the recovery of the pair-
correlation function to unity at large distances. For passive
colloids, such a pair-correlation function corresponds to a
Janus particle with a very strong and short-ranged attraction
at the front-sector side, and a strong but very long-ranged
repulsion at the wake-side.

The same kind of behaviour of the pair-correlation function
for large Peclet numbers is to be expected in 2D systems in case
the orientations of the particles are also confined to the same
2D plane in which the particles move: a compact front-sector
with large values of the pair-correlation function and an
extended wake-sector with a near-zero pair-correlation func-
tion. In those 2D cases where rotation in all 3D directions is
still possible, however, the physics may very well change, and
the pair-correlation function may take a very different form.

The analytic expression for the pair-correlation function for
large Peclet numbers is used to derive Fick’s diffusion equation
for the volume fraction of ABPs with excluded-volume inter-
actions. We find that there is a preferred swimming direction
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from high to low concentrations, which dominates the relaxa-
tion of concentration inhomogeneities over translational diffu-
sion. Motility is thus expected to suppress thermodynamically
driven spinodal decomposition, where diffusion occurs from
regions of low to high concentrations due to strong attractive
inter-particle interactions.

The present low-density calculation of the pair-correlation
function obviously accounts only for binary collisions. It remains
a future challenge to construct the pair-correlation function for
concentrated systems of ABPs based on the low-density expres-
sions as derived in the present paper. One possibility to achieve
this extension is through an Ornstein–Zernike type of approach,
where the low-density pair-correlation function identifies the
direct-correlation function. This approach towards the dynamics
and MIPS of ABPs would supplement the existing theories with a firm
microscopic basis without the need for semi-empirical considera-
tions and assumptions necessary to account for inter-particle correla-
tions. The calculation of the pair-correlation function presented here
also neglects hydrodynamic interactions. Even without hydrody-
namic interactions, the analysis of pair-correlations for active systems
poses a highly non-trivial problem. A further future challenge is to
include hydrodynamic interactions, to be able to make a distinction
between, for example, pullers and pushers.

The analysis of demixing kinetics and dynamics based on
Fickian-like diffusion equations requires an additional extension,
where higher-order spatial gradient contributions are included.
These contributions stabilize the system against the demixing of
short-wavelength concentration variations, that is, they prevent
the unphysical growth of concentration variations with steep
spatial gradients. Not including such higher-order gradient con-
tributions still allows us to identify the phase-stability region, but
excludes the analysis of demixing kinetics.

Conflicts of interest
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Appendix A: The pair-correlation
function for small Peclet numbers

The set of equations (eqn 19) is most conveniently solved by
expanding the pair-correlation in terms of spherical harmonics:

g1ðR; û1; û2Þ¼
X
l1;m1

X
l2;m2

X
p;q

F
ðp;qÞ
l1;m1;l2 ;m2

ðRÞYl1;m1
ðû1ÞYl2;m2

ðû2ÞY�p;qðR̂Þ:

(47)

The Laplace operator is rewritten as follows:

~r2¼ 1

R2

@

@R
R2 @

@R

� �
þ 1

R2
R̂2; (48)

where R̂¼ R̂� ~rR̂ is the rotation operator with respect to R
(whererR̂ is the gradient operator with respect to the Cartesian
coordinates of the unit vector R̂). Using that,

R̂1
2Yl1;m1

ðû1Þ¼�l1ðl1þ1ÞYl1 ;m1
ðû1Þ; (49)

and similarly for R̂2
2Yl2;m2

ðû2Þ and R̂2Yp;qðR̂Þ, and using ortho-
normality of the spherical harmonics, it is found that,

0¼ R2 d2

dR2
þ2R

d

dR
� k2R2þpðpþ1Þ
� 	� �

F
ðp;qÞ
l1;m1;l2;m2

ðRÞ; (50)

where

k2 ¼ 3

2
l1ðl1þ1Þþ l2ðl2þ1Þ½ � : (51)

The solution of eqn (50) that tends to zero at infinity is as
follows:

F
ðp;qÞ
l1;m1;l2;m2

ðRÞ¼C
ðp;qÞ
l1 ;m1;l2;m2

K
pþ1

2
ðkRÞffiffiffiffiffiffi
kR
p ; (52)

where

K
pþ1

2
ðxÞ¼

ffiffiffiffiffiffi
p
2x

r
expf�xg

Xp
s¼0

ðpþ sÞ!
s!ðp� sÞ!

1

ð2xÞs; (53)

is a modified Bessel function. The integration constants

C
ðp;qÞ
l1;m1;l2 ;m2

must be determined such that the no-flux boundary

condition is fulfilled. Using the addition theorem for spherical
harmonics for the first-order Legendre polynomial (where Y1 is
the angle between R̂ and û1),

R̂ � û1¼P1ðcosY1Þ¼
4p
3

X1
m¼�1

Y1;mðû1ÞY�1;mðR̂Þ; (54)

and similarly for R̂�û2, and using that Y0;0¼ 1=
ffiffiffiffiffiffi
4p
p

, it is readily
found from the orthonormality of the spherical harmonics that
the no-flux boundary condition is fulfilled when

k
d

dx

K3=2ðxÞffiffiffi
x
p

� �
x¼k
�Cð1;mÞ1;m;0;0¼

ð4pÞ3=2
3

;

k
d

dx

K3=2ðxÞffiffiffi
x
p

� �
x¼k
�Cð1;mÞ0;0;1;m¼�

ð4pÞ3=2
3

;

(55)

for m = �1,0,1, while all the remaining constants vanish, and

k¼
ffiffiffi
3
p

. Hence,

g1ðR; û1; û2Þ ¼
1ffiffiffi
3
p d

dx

K3=2ðxÞffiffiffi
x
p

� �� ��1
x¼
ffiffi
3
p

�
K3=2ð

ffiffiffi
3
p

RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffi
3
p

RÞ
q R̂ � û1� û2ð Þ:

(56)

Thus, from eqn (53), it is finally found that

g1ðR; û1; û2Þ ¼ �C

ffiffiffi
3
p

R
þ 1

R2

" #

� exp �
ffiffiffi
3
p

R�1½ �
n o

R̂ � û1� û2ð Þ;

(57)

where

C ¼ 1

3
ffiffiffi
3
p 2

3
þ 5

3
ffiffiffi
3
p

� ��1
	 3

25
: (58)

This then leads to eqn (20) in the main text.
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Appendix B: The pair-correlation
function for large Peclet numbers

Due to rotational and translational invariance, the pair-
correlation function depends on four variables: the distance,
R, between the particles; (the cosine of) the angles between R
and û1,2, that is, x1 = R̂�û1 and x2 = R̂�û2; and (the cosine of) the
angle between û1 and û2, that is, a = û1�û2. The differential
equation (eqn (13)) in terms of these variables reads as follows:

0 = Trans + Flux + Rot, (59)

where the contribution ‘‘Trans’’ from translational diffusion is
equal to

Trans ¼ r2g ¼ 1

R2

@

@R
R2 @g

@R

� �

þ 1

R2

@

@x1
1� x1

2
� � @g

@x1

� �
þ 1

R2

@

@x2
1� x2

2
� � @g

@x2

� �

þ 2

R2
a� x1x2½ � @2g

@x1@x2
;

(60)

the contribution ‘‘Flux’’ resulting from motility is equal to

Flux ¼ � lU � rg ¼ �l 1

R

@g

@x1
1� a� x1

2 þ x1x2

 ��

þ1

R

@g

@x2
a� 1þ x2

2 � x1x2

 �

þ ðx1 � x2Þ
@g

@R

�
;

(61)

while the rotational contribution ‘‘Rot’’ is equal to

Rot ¼ 3

2
R̂1

2 þ R̂2
2

� 	
g

¼ 3

2

@

@a
1� a2
� �@g

@a

� ��

þ @

@x1
1� x1

2
� � @g

@x1

� �
þ 2 x2 � ax1ð Þ @

2g

@x1@a

�
;

þ 3

2

@

@a
1� a2
� �@g

@a

� ��

þ @

@x2
1� x2

2
� � @g

@x2

� �
þ 2 x1 � ax2ð Þ @

2g

@x2@a

�
:

(62)

As will be shown below, the important related variables are as
follows:

x = x1 � x2 = R̂�U = U cosY,
X = x1 + x2, (63)

where

U = û1 � û2, (64)

and Y is the angle between R and U.
A little consideration shows that when x o 0, the two

particles approach each other while for x 4 0, they move apart.
The region where x o 0 will be referred to as the front-sector,
and where x 4 0 as the wake-sector. The pair-correlation

function behaves very differently in both regions, as addressed
in the main text on the basis of physical arguments. The
mathematical analysis in the front-sector and wake-sector will
be discussed separately in the following subsections.

7.1 The front-sector: x o 0

As will be shown below, the rotational contribution in eqn (62)
is of lower order in the small parameter 1/l as compared to the
translational and flux contributions. Transforming (x1,x2) to
(x,X), and assuming that the pair-correlation function in this
sector does not depend on X, the equation 0 = Trans + Flux,
with ‘‘ Trans’’ and ‘‘ Flux’’ given in eqn (60) and (61), becomes

0 ¼ 1

R2

@

@R
R2 @g

@R

� �
þ 1

R2

@

@x
U2 � x2
� �@g

@x

� �

� l
U2 � x2

R

@g

@x
þ x

@g

@R

� �
:

(65)

As will turn out, integration constants can be chosen such that
the solution of this equation obeys both boundary conditions,
which justifies the neglect of the X-dependence.

Multiplying the above differential equation by the small
parameter 1/l obviously shows that the highest-order derivative
with respect to R is multiplied by this small parameter. This is
the standard form of a singularly perturbed differential equation,
the solution of which requires a boundary-layer analysis. Since the
second-order derivative is needed to match two boundary condi-
tions, this implies that the derivatives with respect to R are large
near contact where R E 1. Thus, there is a small region close to
contact where spatial derivatives are very large, which is referred
to as the boundary layer. The fact that the variables x and a do
not exhibit boundary-layer behavior will be verified below.
Introducing the boundary-layer variable

S = ln(R � 1), (66)

and insisting that the second-order derivative with respect to S
in eqn (65) is of the same order in 1/l as the flux contribution
implies that

n = 1. (67)

By introducing the variable S, the width 1/l { 1 of the
boundary layer in terms of the original variable R is re-scaled
to unity. This spatial stretching of the region close to contact
renders the pair-correlation function a regular function of 1/l
when expressed in terms of S, and can therefore be expanded in
a power series with respect to 1/l. Within the boundary layer,
where S = l(R � 1) o 1, eqn (65) thus reduces to

@2g

@S2
þ 2

l
� x

� �
@g

@S
¼ 0: (68)

As will turn out, the no-flux boundary condition can only be
satisfied when the zeroth and the first-order contributions in 1/
l arising from derivatives with respect to S are kept. This is the
reason why the first-order contribution B1/l in the above
differential equation is kept. The first-order contribution aris-
ing from qg/qx is not needed to satisfy the boundary conditions,
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which is therefore neglected. The solution of eqn (68) is

g ¼ Aþ B exp �S 2

l
� x

� �� �
; (69)

where A and B are the integration constants. The no-flux
boundary condition in eqn (13) in terms of the boundary
variable S is

@g

@S
� xg ¼ 0; for S ¼ 0; (70)

which leads to

ginner ¼ A 1� 1

2
lx exp �S 2

l
� x

� �� �� �
: (71)

where the subscript ‘‘inner’’ is used to indicate that this is the
solution within the boundary layer.

The outer solution, gouter, where S 4 1, is simply a constant,
which is unity since for infinite distances between the two
particles, the pair-correlation function tends to unity:

gouter = 1. (72)

Matching the inner and outer solutions implies that A = 1 in
eqn (71) for the inner solution. It is thus finally found that, in
terms of the original coordinates x and R,

gfrontðx;R;UÞ ¼ 1� 1

2
lx expfðR� 1Þ½lx� 2�g; (73)

where the index ‘‘front’’ is used to indicate that this solution is
only valid within the front-sector. Recall that x o 0 within the
front-sector.

Re-substituting this expression into eqn (59)–(62) shows that
the above expression satisfies the differential equation to the
leading order in 1/l, and by construction satisfies both bound-
ary conditions. In doing so, it is important to notice that inside
the boundary layer, (R � 1) B 1/l, while outside the boundary
layer, g = 1, where the exponential in eqn (73) is essentially zero.
In particular, this justifies the neglect of the derivatives with
respect to X and a in eqn (65), and thus shows that the
rotational contribution can be neglected within the front-
sector. The interpretation of the latter is that, for the large
relative velocities under consideration, the time that the parti-
cles spent within the narrow boundary layer is sufficiently small
that rotation does not occur. Furthermore, for x = 0 (and in
particular, for U = 0), the pair-correlation function is identically
equal to unity, as it should be.

7.2 The wake-sector: x 4 0

The asymptotic solution in eqn (73) diverges for large distances
when x 4 0. This shows that the behavior in the wake-sector is
quite different compared to that in the front-sector. On the
basis of the discussion in the main text, spatial derivatives in
the direction along the relative velocity BU of the two particles
are expected to be very small for large lU. We therefore
introduce the scaled variable (not to be confused with the

S-coordinate introduced in the previous subsection),

S ¼ f ðaÞ Rx
lU2

¼ f ðaÞ R
lU

cosY ; (74)

where the function f (a) will be specified below. As a second vari-
able, the distance r between the two particles perpendicular to U,

r ¼ R

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � x2
p

¼ R sinY ; (75)

is introduced. The reason for the introduction of this cylindrical
variable is, as discussed in the main text, that a step-function-like
behavior at r = 1 is expected for small separations between the
particles, since diffusion has not yet been effective for the large
relative velocities under consideration. As will be shown below, an
approximate solution for the boundary-value problem within the
wake-sector can be found, assuming that the pair-correlation
function depends on R, x1, x2, and a only through the combinations
of S and r.

It is found by direct differentiation with respect to the
Cartesian coordinates of R, or from eqn (60), that

Trans ¼ 1

r
@

@r
r
@gðr;SÞ
@r

� �
; (76)

where terms of the order 1/l corresponding to the differentiations
with respect to S have been neglected. The differentiation
with respect to S in the contribution to the flux in eqn (61) is
multiplied with l, and should therefore be kept. It is readily
found that

Flux ¼ �f ðaÞ@gðr;SÞ
@S

: (77)

Contrary to the front-sector, the rotational contribution cannot be
neglected in the wake-sector. With some effort, the rotational
contribution is found to be given by (the most efficient way to
compute the differentiations is to first introduce the variable
r2, instead of just r, and, after performing all differentiations,
express the differentiations with respect to r2 in terms of r)

Rot ¼ Rx

U

� �2
1

U2
12�U2

x2
6� 3

2
x2 þ X2

 �� �� �

1

2r
@gðr;SÞ
@r

þ Rx

U

� �4
1

U2
�6ð1þ aÞ þ 2U2

x2
6� 3

2
x2 þ X2

 �� �� �

� 1

4r
@

@r
1

r
@gðr;SÞ
@r

� �
;

(78)

where, as before, X = x1 + x2. Here, the terms of the order R/l
resulting from differentiations with respect to S have been
neglected. As will turn out, the pair-correlation function relaxes
to unity for R B l1/3, so that the restriction of the analysis given
below to distances where R/l{ 1 is not severe. In addition, it will
turn out that the solution that we find converges to unity for large
distances, as it should be, which thus correctly interpolates
between R { l and R - N. The variables R and x can be
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expressed in terms of S, r, and U, using that

U2

x2
¼ 1þ r2

f ðaÞ
lUS

� �2

;

Rx

U
¼ lUS

f ðaÞ;
(79)

leading to (here we leave X as it occurred before)

Rot ¼ � r
2U2

@gðr;SÞ
@r

6� 3

2
X2

� �

þ 1

2U2

lUS

f ðaÞ

� �2
1

r
@gðr;SÞ
@r

3� 3aþ 3X2
� 	�

þ@
2gðr;SÞ
@r2

6� 3

2
X2

� ��

� 3X2

4U2

lUS

f ðaÞ

� �4

� 1

r3
@gðr;SÞ
@r

þ 1

r2
@2gðr;SÞ
@r2

� �
:

(80)

Adding all contributions leads to a differential equation that we
were unable to solve analytically. Instead, a solution will first be
obtained in the region where (lUS/f) = Rx/U = R cosY c 1 (note
that this further limits the region where the analysis is valid, on
top of the earlier condition R { l). This is the region where the
most significant relaxation of the pair-correlation function occurs.
At first sight, only the last term in eqn (80) for the rotational
contribution survives in this region. However, a little thought
shows that

X2 ¼ V2r2

r2 þ ðlUS=f Þ2 	
V2r2

ðlUS=f Þ2;

V2 ¼ ð2þ 2aÞ cos2 f;
(81)

where j is the angle between Ũ = û1 + û2 (the magnitude of which

is ~U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2a
p

) and the projection of R onto the plane perpendi-
cular to U. For lUS/f c 1, it follows that the last term in the
rotational contribution in eqn (80) is of the order (lUS/f)2 instead
of the order (lUS/l)4. Expanding eqn (80) with respect to ( f/lUS)
{ 1 thus leads to

Rot ¼ 3

4U2

lUS

f ðaÞ

� �2
1

r
@gðr;SÞ
@r

U2 þ V2
� 	

þ@
2gðr;SÞ
@r2

4� V2
� 	� �

:

(82)

Since V varies between 0 and 2 + 2a (depending on the angle j),
the combinations U2 + V2 and 4� V2 both vary between 2� 2a and
4. For a = 1, we have U = 0, for which the pair-correlation function
must be trivially equal to 1 (since the relative velocity is 0 in that
case). The largest relative velocity is attained for a = �1, in which
case U2 + V2 = 4 � V2 = 4. We thus restrict the validity of our
analysis further to values of a which are sufficiently negative, such
that U2 + V2 and 4 � V2 are not very different. For such values of a,
one can average V2 with respect to the angle j, for which both U2 +
V2 and 4 � V2 take the same value equal to 3 � a, which also
equals the average of the extreme values that both combinations

take. To quantify this further, note that

1

r
@gðr;SÞ
@r

U2 þ V2
� 	

þ @
2gðr;SÞ
@r2

4� V2
� 	

¼

ð3� aÞ 1

r
@gðr;SÞ
@r

þ @
2gðr;SÞ
@r2

� �

� ð1þ aÞð1� 2 cos2 fÞ 1

r
@gðr;SÞ
@r

� @
2gðr;SÞ
@r2

� �
:

(83)

‘‘Sufficiently negative a’’ thus refers to the values of a where
3 � a is at least an order of magnitude larger than 1 + a. For a
o �7/11, for example, 3 � a is more than ten times larger than
(1 + a)(1 � 2cos2j), for which the neglect of the last term on the
right-hand side in eqn (83) against the first term is justified. The
further analysis is thus restricted to angles between û1 and û2

larger than about 1301. Note that 3� a is never smaller than (1 + a)
(1 � 2cos2j), for any a, so that the second term on the right-hand
side in eqn (83) is never dominant over the first term.

Since the contribution ‘‘Trans’’ in eqn (76) is of the zeroth
order in lUS/f (a), we have Flux + Rot = 0 for the large distances
under consideration. It thus follows from eqn (77), (82) and
(83), with the neglect of the last term in eqn (83), that

f ðaÞ@gðr;SÞ
@S

¼ 3

4
ð3� aÞ lS

f ðaÞ

� �2

� 1

r
@gðr;SÞ
@r

þ @
2gðr;SÞ
@r2

� �
:

(84)

Choosing the function f (a) as

f ðaÞ ¼ 3

4
ð3� aÞ

� �1=3
; (85)

reduces eqn (84) to

@gðr;SÞ
@S

¼ l2S2 1

r
@gðr;SÞ
@r

þ @
2gðr;SÞ
@r2

� �
: (86)

As will be seen below, this choice of f (a) leads to a solution of
the differential equation that satisfies the required boundary
conditions. Separation of variables, writing g(r,S) = F(S)H(r), gives

dFðSÞ
dS

¼ � C2l2S2FðSÞ;

1

r
@

@r
r
@HðrÞ
@r

� �
¼ � C2HðrÞ;

(87)

where C2 is a constant. The solutions of these equations are as
follows:

FðSÞ 
 exp �C
2

3
l2S3

� �
;

HðrÞ 
 J0ðCrÞ;
(88)

where J0 is the zeroth order Bessel function of the first kind. Hence,

g ¼ 1�
ð1
0

dC AðCÞJ0ðCrÞ exp �
C2

3
l2S3

� �
; (89)
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where unity is added in order to satisfy the boundary condition at
infinity (the integral tends to zero for large S and r).

The final expression for the pair-correlation function has
been subjected to the conditions that R/l { 1, Z = R cosY c

1, and a o �7/11. The above expression for the pair-
correlation function satisfies the boundary condition g - 1
for R - N, and therefore correctly interpolates between
distances where R/l is small and where R - N. Furthermore,
as will be seen below, the function A(C) can be chosen such
that g = 1 for Z = 0, as it should be. Hence, the above
expression for the pair-correlation function also correctly
interpolates between large values of Z and Z = 0. Finally, for
U = 0 (for which a = +1 and S - N), g = 1, as it should be, so
that there is a correct interpolation with respect to the values
of a not smaller than �7/11 as well. The interpolation arguments
are very similar to the matching procedure of the inner and outer
solutions in the boundary-layer analysis of the front-sector as
discussed in the previous subsection. The outer region in the
wake-sector corresponds to the region where the conditions R/l
{ 1, R cosY c 1, and a o �7/11 are not satisfied.

The function A(C) is first chosen such that the expected step-
function-like behavior at r = 1 for S { 1 is reproduced. This can
be achieved using the following integral identity56:ð1

0

dC J1ðCÞJ0ðCrÞ ¼ 0; r4 1;

¼ 1=2; r ¼ 1;

¼ 1; ro 1;

(90)

where J1 is the first-order Bessel function of the first kind. This
identity implies that the step-function-like behavior is obtained
for A(C) = J1(C), so that

g ¼ 1�
ð1
0

dC J1ðCÞJ0ðCrÞ exp �C
2

3
l2S3

� �
: (91)

As a last step, the no-flux boundary condition (eqn 13) should
be verified, which, in terms of the variables R and x, reads as
follows:

@gðx;R;UÞ
@R

� lxgðx;R;UÞ ¼ 0; for R ¼ 1: (92)

First consider the contact value, gc = g(x,R = 1,U), of the pair-
correlation function, which is equal to

gcðcosY;wÞ ¼ 1�
ð1
0

dC J1ðCÞJ0 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 Y
p� �

� exp �C2w cos3 Y
� 	

:

(93)

where, as before, Y is the angle between R and U, and where

w ¼ 1

l
4þU2

8U3
: (94)

As will turn out, both terms in eqn (92) approach zero with
decreasing values of w, i.e., increasing values of l.

The combination (cosY/w)gc(cosY,w) = [8U3/(4 + U2)]lxgc is
plotted in Fig. 8a as a function of w B 1/l for various values of
cosY, as indicated in the plots. As can be seen, lxgc tends to
zero for small w (corresponding to large l). The particular value
of w for which lxgc tends to zero, however, decreases with
decreasing values of cosY, and goes through a maximum.
The point of contact where cosY is zero, and therefore

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 Y
p

¼ 1, corresponds to a relative position for
which R>U, that is, where the two particles just move from
the front-sector to the wake-sector. For these positions at

Fig. 8 (a) The combination (cosY/w)gc B lxgc (where Y is the angle between
R and U, w B 1/l given in eqn (94), and gc is the contact value of the pair-
correlation function) as a function of w, for various values of cosY, as indicated
in the figure. (b and c) The radial derivative of the pair-correlation function at
contact as a function of w for two different ranges of the derivative.
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contact, diffusion becomes almost immediately effective, lead-
ing to a deviation from the step-function at r = 1. This is the
physical origin of the relative large velocities required for which
the contact value becomes zero for small values of cosY. Note
that these numerical results imply that the contact value of the
pair-correlation function tends to zero as l�g, with g 4 1.
Within the leading order expansion with respect to 1/l con-
sidered here, the contact value is therefore zero.

The spatial derivative in eqn (92) is plotted in Fig. 8b and c
(with different scales of the vertical axes), again as a function of
w for various values of cosY. The spatial derivatives are seen to
tend to zero for large values of l. For the same reason as for the
contact value of the pair-correlation function, the spatial deri-
vative for small values of cosY requires larger values of l to
converge to zero. Again, this is due to the step-function-like

behavior at the point where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 Y
p

	 1 and R>U.
Both terms in the no-flux boundary condition (eqn 92) thus

tend to zero for large l.
In terms of the original (dimensionless) coordinates,

eqn (91) finally leads to the expression (eqn 24) as given in
the main text.

Appendix C: Mathematical details
concerning collective diffusion

First consider the derivation of Fick’s diffusion equation for
large Peclet numbers. Substituting eqn (32) into the equation of
motion (eqn 30) gives

@

@t
fðr; û; tÞ ¼ D0r2 þDrR̂

2
� �

fðr; û; tÞ � r � fðr; û; tÞv0û½ �

þ 3
D0

a
r � fðr; û; tÞ

þ
dû
0fðr; û0; tÞ 1þ 1

3
lU

� �
U

U

� �

þ 3

4
D0r � fðr; û; tÞr

þ
dû
0fðr; û0; tÞ 16

3
þ lU

� �� �

þ 3

4
D0r � fðr; û; tÞr �

þ
dû
0fðr; û0; tÞlUU

U

� �
;

(95)

where the orientation-dependent volume fraction, j(r,û,t), has
been introduced in Section 6.

Next, j(r,û,t) is expanded in terms of orthonormal polyadic
products of û (which is equivalent to an expansion with respect
to spherical harmonics):

j(r,û,t) = F0(r,t)Q0 + F1(r,t)�Q1(û) + F2(r,t):Q2(û) + � � �. (96)

The first few orthonormal polyadic products read as follows:

Q0 ¼
ffiffiffiffiffiffi
1

4p

r
;

Q1;i ¼
ffiffiffiffiffiffi
3

4p

r
ûi;

Q2;ij ¼
ffiffiffiffiffiffi
15

8p

r
ûiûj �

1

3
dij

� �
:

For n Z 2, the orthonormal products are zero when contracted with
respect to any two of its indices, so that FnZ2 is to zero when
contracted with respect to any two of its indices without loss of
generality. The poyadic products are symmetric upon interchan-
ging any two of its indices, and therefore FnZ2 is similarly sym-
metric. These polyadic products are orthonormal in the sense that
(} stands for the contraction with respect to all adjacent indices)

þ
dû Fnðr; tÞ �QnðûÞ½ �QmðûÞ ¼ Fnðr; tÞ; for n ¼ m;

¼ 0; for nam;

(97)

where 0 is the matrix with zero entries. The term Q1(û) B û in
eqn (96) will contribute significantly to Fick’s diffusion equation in
case there is a preferred polar orientation induced by a concen-
tration gradient, especially for large velocities. The last term in
eqn (96) merely characterizes the degree of nematic ordering, which
contributes much less: for perfect nematic order, for example, the
two particles move along with each other, so that there is no effect
of activity on the pair-correlation function. From the above ortho-
normality relations, it is readily found that eqn (96) reduces to

fðr; û; tÞ ¼ 1

4p
fðr; tÞ þ 3

4p
Pðr; tÞ � ûþ � � � ; (98)

where

fðr; tÞ ¼
þ
dûfðr; û; tÞ;

Pðr; tÞ ¼
þ
dûûfðr; û; tÞ;

(99)

which reproduces eqn (36) in the main text.
In order to evaluate the integrals in eqn (95), the following

integral identities must be used:

þ
dû
0 1

jû� û
0j
¼ 4p ;

þ
dû0

û
0

jû� û
0j
¼ 4p

3
û ;

þ
dû
0 û

0
û
0

jû� û
0j
¼ 16p

15
Îþ 3

4
ûû

� �
;

þ
dû
0ûi
0
ûj
0
ûk
0

jû� û
0j
¼ 4p

7
ûiûj ûk þ

16p
105

dij ûk þ dikûj þ djkûi
� �

;

þ
dû
0 jû� û

0j ¼ 16p
3

;

þ
dû0 û0jû� û0j ¼ � 16p

15
û :

(100)

Together with the expansion (eqn 98), these identities lead to
the following results relating to each of the contributions in
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eqn (95):

J1 ¼
þ
dû
0 fðr; û0; tÞU

U
¼ 2

3
fðr; tÞû� 2

5
Pðr; tÞ � 2Î� ûû

� �
;

J2 ¼
þ
dû
0 fðr; û0; tÞU ¼ fðr; tÞû� Pðr; tÞ;

J3 ¼
þ
dû
0 fðr; û0; tÞ ¼ fðr; tÞ ;

J4 ¼
þ
dû
0 fðr; û0; tÞU ¼ 4

3
fðr; tÞ � 4

5
Pðr; tÞ � û;

J5 ¼
þ
dû
0 fðr; û0; tÞUU

U
¼ �24

35
Pðr; tÞûþ ûPðr; tÞ½ �

þ 4

15
fðr; tÞ þ 3

7
Pðr; tÞ � û

� �
Îþ 2ûû
� �

:

(101)

Substituting these results into eqn (95) and integrating with
respect to û leads, for each of the separate terms contributing to
the equation of motion for j(r,t), to (here it is understood, for
brevity, that in the right-hand sides, j � j(r,t) and P � P(r,t))

If;1 ¼ 3
D0

a
r �
þ
dû fðr; û; tÞ

þ
dû
0 fðr; û0; tÞU

U

� �
¼ 0;

If;2 ¼ l
D0

a
r �
þ
dû fðr; û; tÞ

þ
dû
0 fðr; û0; tÞU

� �
¼ 0;

If;3 ¼ 4D0r �
þ
dû fðr; û; tÞr

þ
dû
0fðr; û0; tÞ

� �

¼ 4D0r � frf½ � ;

If;4 ¼
3

4
lD0r �

þ
dû fðr; û; tÞr

þ
dû
0fðr; û0; tÞU

� �

¼ lD0r � frf½ � � 3

10
lD0r2P2;

If;5 ¼
3

4
lD0r �

þ
dû fðr; û; tÞr �

þ
dû
0fðr; û0; tÞUU

U

� �

¼ 1

3
lD0r � frf½ �

þ 3

50
lD0r � rV2 � 8r � PP

� �
:

(102)

Hence, from

@

@t
fðr; tÞ ¼ D0r2fðr; tÞ þ

X5
n¼1

If;n; (103)

keeping only the leading order terms for large swimming
velocities leads to eqn (37).

The equation of motion for P is obtained by multiplying
both sides of eqn (95) with û and then integrate with respect to
û. The separate terms that contribute to the equation of motion

for P are similarly found to be equal to

IP;1 ¼
D0

a
r 2

3
f2 þ 6

25
V2

� �
�D0

a

48

25
r � PP;

IP;2 ¼ l
D0

a

1

3
rf2 � l

D0

a
ðr � PPÞ;

IP;3 ¼ 4D0 ½rf� � ½rP� þ Pr2f
� �

;

IP;4 ¼ � lD0
1

5
r � frP½ � þ lD0 ½rf� � ½rP� þ Pr2f

� �
;

IP;5 ¼ lD0
1

25
�4½rP� � ½rf� � 4rðfr � PÞ½

� 4frðr � PÞ þ 7Pr2fþ 7½rf� � ½rP�

þ2rðP � rfÞ þ 2r � ðPrfÞ þ r � ðfrPÞ� :
(104)

Furthermore, using

R̂2QnðûÞ ¼ �nðnþ 1ÞQnðûÞ; (105)

for n = 1 for the evaluation of the second term in eqn (95),
including the third contribution, and adding all these integrals
(similar to eqn (103)), keeping only the leading contributions
for large l, leads to the equation of motion (eqn 38) for P.

The derivation of the diffusion equation for small Peclet
numbers requires relatively little effort, due to the much
simpler expressions:

I1ðû; û0Þ ¼
1þ

ffiffiffi
3
p

5þ 2
ffiffiffi
3
p 32p

3
a3lU;

I2ðû; û0Þ ¼
64p
3

a4 Î; for l� 1; (106)

as obtained from the contact value of the pair-correlation
function in eqn (21). From these expressions, the equation of
motion,

@

@t
fðr; tÞ ¼ D0r � 1þ 8fðr; tÞf grfðr; tÞ½ � � v0r � Pðr; tÞ;

(107)

is obtained (without having to resort to the expansion in eqn (98)).

It is similarly found that (with C ¼ ð1þ
ffiffiffi
3
p
Þ=ð5þ 2

ffiffiffi
3
p
Þ)

@

@t
Pðr; tÞ ¼ � 2DrPþD0r2Pðr; tÞ � 1

3
v0rfðr; tÞ

þ C
4

3

D0

a
lrf2ðr; tÞ � 4C

D0

a
lr � Pðr; tÞPðr; tÞð Þ

þ 8D0Pðr; tÞr2fðr; tÞ þ 8D0 rfðr; tÞ½ � � rPðr; tÞ½ �:
(108)

Keeping only the leading order terms in spatial gradients, noting
that P is at least first order in such gradients, similar to what has
been done for the large Peclet numbers above, this equation of
motion reduces to

@

@t
Pðr; tÞ ¼ �2DrP�

1

3
v0rfðr; tÞ þ C

4

3

D0

a
lrf2ðr; tÞ (109)
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As before, P is enslaved by j, and hence,

Pðr; tÞ ¼ �2
9
la 1� 8Cfðr; tÞf grfðr; tÞ: (110)

Substituting this result into eqn (107) leads to Fick’s diffusion
eqn (42), where

Deff
c ðr; tjlÞ ¼ D0 1þ 8fðr; tÞf g

þ 2

9
D0l2 1þ 8

1þ
ffiffiffi
3
p

5þ 2
ffiffiffi
3
p fðr; tÞ

( )
; for l� 1:

(111)

The above expression reduces for l = 0 to the well-known diffusion
coefficient for passive systems, where hydrodynamic interactions
change the prefactor +8 in eqn (111) to +1.45. Contributions from
hydrodynamic interactions are therefore important for passive
systems. The contributions to Fick’s diffusion coefficient due to
hydrodynamic interactions originating from activity might be less
important, as these interactions are short-ranged.
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37 J. Bickmann, S. Bröker, J. Jeggle and R. Wittkowski, 2020,

arXiv:2010.05262v1.
38 J. Jeggle, J. Stenhammar and R. Wittkowski, J. Chem. Phys.,

2020, 152, 194903.
39 M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,

J. Prost, M. Rao and R. A. Simha, Rev. Mod. Phys., 2013,
85, 1143.

40 U. Marini Bettolo Marconi and C. Maggi, Soft Matter, 2015,
11, 8768.

41 A. Poncet, O. Bénichou, V. Deméry and D. Nishiguchi, Phys.
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