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Data-driven approximations to the bridge function
yield improved closures for the Ornstein–Zernike
equation†

Rhys E. A. Goodall and Alpha A. Lee *

A key challenge for soft materials design and coarse-graining simulations is determining interaction

potentials between components that give rise to desired condensed-phase structures. In theory, the

Ornstein–Zernike equation provides an elegant framework for solving this inverse problem. Pioneering

work in liquid state theory derived analytical closures for the framework. However, these analytical closures are

approximations, valid only for specific classes of interaction potentials. In this work, we combine the physics of

liquid state theory with machine learning to infer a closure directly from simulation data. The resulting closure

is more accurate than commonly used closures across a broad range of interaction potentials.

1 Introduction

A central question in soft matter pertains to the inverse
problem of determining the interaction potentials between
building blocks, e.g. colloids or molecules, that give rise to
desired structures through self-assembly.1,2 Applications of this
inverse problem abound in disparate fields. For instance,
molecular interactions can be optimised to yield porous struc-
tures in liquids3 which in turn are crucial for chemical pro-
cesses such as gas separation and storage.4,5 Studying the
inverse problem for these porous structures, both on compu-
tationally designed systems6 and by back-tracking potentials
from experimental data, allows for greater understanding of
their physics. This knowledge can then be leveraged to further
optimise these systems and improve their properties. Similarly,
bottom-up coarse-graining,7–9 an approach for accelerating soft
matter simulations, can be viewed as an inverse problem.
Coarse-graining involves finding effective inter-particle interac-
tions between coarse-grained ‘‘beads’’ that reproduce the struc-
ture of the full system. A related but important class of inverse
problems looks at how external fields can be applied to induce
desired changes in the structures of fluids for example control-
ling the density profile at wall-fluid interfaces.10

The inverse problem we consider in this work is: given the pair
distribution function g(r) of an isotropic collection of particles
with density r, can we determine a pairwise interaction potential
f(r) that would result in the original pair distribution g(r) being

recovered from a forward simulation of particles with the same
density. Although the forward problem of predicting condensed
phase structure given a set of interactions can be tackled with
standard methods such as molecular dynamics or Monte Carlo
simulation, solving the inverse problem remains challenging.
Iterative Boltzmann Inversion (IBI)11 and its extensions12–14 are
perhaps the most common approaches. These methods involve
iterative optimisation loops where the trial potential is updated
based on the differences between the target g(r) and that obtained
from converged simulations of the trial potential. Model-free
predictor-correction methods15 solve a similar iterative problem
to IBI but do so using test-particle sampling to obtain estimates
for the g(r) resulting from a given trial potential. This approach
avoids the need for multiple sets of simulations to be carried out.
Other approaches include direct inversion schemes such as the
generalized Yvon–Born–Green method16,17 that approximates the
potential of mean-force from structural correlation functions and
methods based on applying the variational principle within the
context of free-energy functional theory.18

In theory, a rigorous framework in statistical physics known
as the Ornstein–Zernike equation19 provides a direct and
computationally efficient framework to solve this inverse pro-
blem without iterative approaches. In an isotropic fluid with
density r and pair distribution function g(r), the Ornstein–
Zernike equation defines the direct correlation function c(r) in
terms of total correlation function, h(r) = g(r) � 1, via

hðrÞ ¼ cðrÞ þ r
ð
c r� r0j jð Þhðr0Þdr0: (1)

The key insight is that the total correlation function is a
consequence of not only direct interactions between particles
but also indirect correlations mediated through interactions
with other particles.
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Given a closure relationship coupling h(r) and c(r) with the
interaction potential, f(r), the Ornstein–Zernike equation pro-
vides a path to solve the inverse problem. The generally
accepted form for the closure is

h(r) + 1 = exp(�bf(r) + g(r) + B(r)), (2)

where B(r) is the bridge function and g(r) = h(r) � c(r) is the
indirect correlation function. Whilst diagrammatic expansions
exist that define B(r), for practical applications no convenient
closed-form solution exists.20 As a result, B(r) has traditionally
been approximated with a functional in terms of g(r). The most
common are the Hyper-netted Chain approximation (HNC),21

BHNC(r) = 0, and the Percus–Yevick approximation (PY),22

BPY(r) = ln(1 + g(r)) � g(r). HNC is well suited for long-range
potentials, whilst PY provides an analytical solution for the hard-
sphere case23 and works well for short-range, purely repulsive
systems. A wide variety of other bridge function approximations
have been explored for different applications.24–29

Modern machine learning (ML) offers a suite of powerful tools
for function approximation30–33 that have attracted attention in
many areas within the physical sciences.34,35 In this work, we show
that closures to the Ornstein–Zernike framework can be learnt
directly from simulation data by approximating B(r) using an ML
model. The results indicate that when used to solve the inverse
problem such learnt closures yield better estimates of the bridge
function and consequently better estimates of the interaction
potential than either HNC or PY across a broad range of systems.

2 Methodology
2.1 Feature set design

Although the aim when solving the inverse problem is to
determine an interaction potential f(r) it is more convenient
to consider approximating the bridge function B(r) in eqn (2) as
opposed to the entire closure. Doing so allows our approach to
be viewed as learning a correction to the successful HNC
closure therefore building in a strong physical prior. This
approach also presents a numerically easier learning problem
because B(r) does not diverge in regions where f(r) diverges
(this can be seen for the Lennard-Jones 6-12 potential in36 and
for the Soft-Sphere potential in ref. 37).

In general, the performance of an ML model is circum-
scribed by whether the information captured in the model’s
inputs is sufficient to determine the system. Therefore, physi-
cally motivated input features are necessary to learn B(r)
effectively. B(r) can be expanded as an infinite series in g(r),38

BðrÞ ¼
�F3

2!
g2ðrÞ þ

�F4

3!
g3ðrÞ þ . . . ; (3)

where the average modification functions, %Fn, are dependent on
the density, r, and the temperature, T. By dimensional analysis,
the bridge function can only be expressed in terms of dimen-
sionless reduced quantities r* and T*. However, for compli-
cated pairwise potentials, where multiple length and energy
scales are required to define the system, comparable reduced
quantities are ill-defined. This prevents the formulation of a

truly general closure in terms of g(r) only. However, this also
suggests that there is scope to improve upon current closures
by including additional input features that allow us to recover
the degrees of freedom corresponding to r* and T*. This idea is
apparent in how the modified Verlet closure39 achieves signifi-
cant performance improvements over the standard Verlet clo-
sure (VM),40 BVM(r) = �g(r)2/2(1 + ag(r)), in systems where r* and
T* are well defined by expressing the a parameter of the Verlet
closure as a function of r* and T* directly. If r* and T* are not
well defined similar increases in accuracy can be achieved by
introducing additional parameters into the closure that can be
fitted for known systems to ensure the self-consistency of
thermodynamic properties. Examples of such closures are the
Rogers-Young and Zerah-Hansen closures41,42 which introduce
switching functions parameterised with characteristic length-
scales that must be fitted. However, for a closure to be generally
applicable any additional input features or parameters must be
determined without prior knowledge of the target system.

From eqn (1), we see that the density of the system can be
extracted if both h(r) and c(r) are given. This suggests that
taking h(r) and c(r) together as input features should be more
informative than g(r) alone.43 An additional feature w(r)
can be constructed from the fluctuations of the pair distribu-
tion,

wðrÞ ¼ hgðrÞ
2i � hgðrÞi2
hgðrÞi �

ffiffiffiffi
N
p

; (4)

where we scale by
ffiffiffiffi
N
p

to remove the dependence on the
number of particles under observation, N.

The final extension to the feature set considered was to
include gradient information. This is done via g0(r) rather than
h0(r) and c0(r) as the latter contain sharp jumps around the first
co-ordination shell that cancel in h0(r). Such behaviour is
undesirable as it would provide artefacts to which the model
could over-fit on in the training data, leading to poor general-
isation performance in downstream applications. In general, a
desirable closure should be scale-invariant, however, the defi-
nition of a gradient requires a length-scale. To deal with this,
the radius of the first co-ordination shell is used as the
reference length-scale in all systems. This allows gradient
features to be defined in a consistent manner across systems.

2.2 Reliable calculation of the direct correlation function

Following from the Fourier transform of the Ornstein–Zernike
equation the direct correlation function, c(r), can be evaluated from
measurements of the static structure factor, S(q), based on the
relationship that:

cðrÞ ¼ iFT
1

r
1� 1

SðqÞ

� �� �
(5)

In simulation studies, the most common approach for calcu-
lating the S(q) is taking the Fourier transform of the total correla-
tion function.

sðqÞ ¼ 1þ rHðqÞ ¼ 1þ 4pr
q

ð1
0

hðrÞr sinðqrÞdr (6)
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where H(q) is the Fourier transform of h(r). However, the mini-
mum image convention means h(r) can only be measured up to
half the side length of the simulation box. This limit truncates the
domain of the Fourier transform leading to finite size effects. Of
the possible finite size effects incurred by truncation the most
significant is that the apparent S(q) is not guaranteed to be
non-negative in the limit q - 0.44 These artefacts result in
large-amplitude long-wavelength fluctuations in c(r) that are
inconsistent with the limiting behaviour lim

r!1
cðrÞ ’ �bjðrÞ.20

In previous work approximate extension schemes45 have been
used to extend h(r) to infinity to avoid such issues. However, such
extension schemes rely on the use of a pre-determined closure.
The other approach is to calculate S(q) directly from the Fourier
transform of the density. However, this approach is computation-
ally much more expensive and is subject to significant noise in the
expected value of S(q) for high wave vectors resulting in short-
wavelength fluctuations in c(r).

In this work to avoid both of these limitations, we opt for a
Poisson re-summation inspired approach where we evaluate
S(q) directly for small wave vectors and from the Fourier trans-
form of h(r) for large wave vectors. A smooth cosine switching
function is used to blend between the two regimes.

SðqÞ ¼ f ðqÞ 1

N

XN
i¼1

expð�iq � riÞ
�����

�����
2* +0

@
1
A

þ ð1� f ðqÞÞ 1þ 4pr
q

ðL=2
0

hðrÞr sinðqrÞdr
 ! (7)

where f (q) = (1 + cos(pq/qcut)
1/3)/2 is the switching function with

a cutoff wavevector of qcut, ri is the position of the ith particle
and L is the side length of the simulation box. To reduce
potential artefacts from the switching operation we set qcut

such that the transition point occurs in the region before the
principal peak where the best agreement is observed between
the two methods of calculating S(q).

This approach ensures we get the correct behaviour in the
q - 0 limit for high-density systems suppressing the non-
physical artefacts that would otherwise observed in c(r). How-
ever, for a small number of systems we observed deviations
between the direct and Fourier transform results around the
principal peak (see Fig. 1) which in turn can lead to compara-
tively small but still undesirable intermediate wavelength fluc-
tuations in c(r).

2.3 Model fitting and data generation

In this problem, data can be readily generated by solving the
forward problem for specified potentials. When f(r) is specified
eqn (2) can be inverted to calculate B(r) if h(r) and S(q) are
measured from a converged forward simulation such that we
can calculate g(r) leaving B(r) as the only unknown term in eqn (2).

Having obtained numerical estimates for B(r) when f(r) is
known our aim is to train a model using this data to approx-
imate B(r) in cases where f(r) is unknown but where the
structural correlation functions can be measured directly. An

accurate model for B(r) would then allow f(r) to be determined
via eqn (2). Using the physically motivated feature set described
previously we employ neural networks to learn approximations
for B(r) as a functional of the identified input features h(r), c(r),
w(r), g0(r). To do this we make use of a class of neural networks
called multi-layer perceptrons (MLP). A l-layer MLP approxi-
mates functions f (x) by l successive non-linear compositions,
i.e. f(x) C Wls(Wl�1. . .s(W1x))), where x is a vector of input
features, Wi A RMi�Mi�1 is a weight matrix inferred from data, Mi

is the number of units in layer i, and s(x) is a non-linear
activation function - here we use rectified linear unit (ReLU)
activations of the form ReLU(x) = max(x, 0). We use a 5-layer
MLP with M = [256, 128, 64, 32] units in the 4 hidden layers and
a single unit in the output layer (schematic shown in Fig. 2). In

Fig. 1 Hybrid scheme to calculate the structure factor. The upper section
shows S(q) as determined directly and from the Fourier transform and
shows how the two results are joined together using the switching
function W(q). The lower section is a detail of the difference between
the direct and Fourier methods for calculating S(q). The figure clearly
shows the large oscillations in the low q limit that our method helps to
tackle but example also shows the deviation around the principal peak in
S(q) which can occur in some cases.

Fig. 2 Schematic diagram of a Multi-Layer Perceptron. The schematic
shows a 5-layer multi-layer perceptron as used in this work. The input
units take in h(r), c(r), w(r) and g0(r) which are then transformed by a series of
successive non-linear compositions to return a prediction for B(r).
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neural networks the gradients of the loss with respect to the
model parameters W can be efficiently inferred via back-
propagation.33,46 In this work the first-order stochastic optimi-
ser Adam47 was used to train the model by adjusting its
parameters W to minimise a squared error loss function between
the model’s predictions and training labels for B(r) obtained from
the simulation data. The models were trained for 100 epochs
(cycles through the training data) in mini-batches of 128 samples
at a time. The Adam optimiser was configured with a learning
rate of 0.001, b1 of 0.9, b2 of 0.999, and e of 10�7.

We use an MLP in this work as they are a numerically
tractable way of representing complex functions that scale well
to large data sets. However, there are no specific inductive
biases built into the MLP. Thus alternative regression
models30–32 would likely achieve similar performance. An
example of a useful inductive bias is that the translational
invariance of features/objects within images is automatically
achieved in computer vision applications when using a con-
volutional neural network.

Despite remarkable successes, neural networks are essen-
tially powerful interpolation frameworks. Therefore, to learn a

generally applicable closure, a wide variety of possible inter-
action potentials need to be explored when fitting the model.
We investigate 13 different interaction potentials that we group
into four classes:

1. Fast-diverging – potentials containing strong divergences
that prevent particles from overlapping,

2. Step-diverging – fast-diverging models where a repulsive
plateau is added before the divergence to introduce complex
multi-lengthscale structure,

3. Slow-diverging – weakly divergent systems analogous to
fast-diverging systems, and

4. Core-overlapping – potentials that do not diverge and
allow particles to overlap.

We will refer to Fast-Diverging and Step-Diverging potentials
as hard potentials and Slow-Diverging and Core-Overlapping
potentials as soft potentials. In total, we consider 96 different
parameterisations of these 13 potentials by adjusting the length
and energy scales. For each of these parameterisations the
molecular dynamics package ESPResSo48,49 was used to deter-
mine h(r) and S(q) for systems of particles. We use a cubic
simulation box with a side length of 20s where numerically the
length scale Sigma is set to 1. For each potential we look at
reduced densities between 0.4 and 0.8 at increments of 0.1 giving
a total of 480 systems. A cut-off length of rcut = 3s was used for all
potentials. The temperature of the Langevin thermostat used was
set to 1/kb. Full details of the functional forms for the potentials
investigated and simulation setup are available in the ESI.†

The Ornstein–Zernike formalism is only valid for fluid
systems. Given that the high-throughput approach used to
generate training data can result in simulations of non-fluid
systems being carried out accidentally, it is necessary to identify
and exclude solid and two-phase samples that arise before the
data can be used. This is done using several physically

Table 1 The coefficient of determination (R2), Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) for different closures on a randomly
held-out test set comprising 20% of the simulation data

Closure R2 RMSE MAE

HNC 0.000 0.097 0.028
PY 0.060 0.541 0.113
VM (a = 0.8) 0.081 0.415 0.090
G = B(g; r) �1.699 0.088 0.023
HC = B(h, c; r) 0.374 0.071 0.019
HCX = B(h,c,w;r) 0.556 0.067 0.020
LC = B(h, c, w, g0; r) 0.693 0.052 0.017

Fig. 3 Prediction-truth parity plots for learnt closures on held-out test sets. The plots show the bridge function prediction, Bpred, from a trained closure
model on the y-axis against the true value for the bridge function, Btrue, obtained from inverting (2), on the x-axis. The plots are constructed using the test
set data that was held-back during the model’s training. An ideal model would result in the data sitting on a diagonal line y = x as shown in grey. A blue-
dashed line indicates results using the HNC closure BHNC(r) = 0. The plots are shaded according to the log-density of points. (A) shows the performance
of closures trained using different feature sets. As the feature set is extended the closures get better at predicting the value of bridge function, B(r). The
dark spots at the origin correspond to having learnt the correct far-field behaviour. (B) shows the performance of closures trained on restricted classes of
potentials. Whilst the learnt closures are highly predictive when tested on potentials similar to those used to train them, they are less predictive in their
out-of-training-distribution regimes.
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motivated heuristics. The Hansen–Verlet criterion,50 S(qpeak) 4
2.8, is used to identify solid and two-phase solid–liquid sam-
ples. Two-phase liquid–gas systems are identified using the
heuristic criteria that S(0) 4 1. This criterion is derived by
noting that the compressibility of a system is given by:

S(q - 0) = rkbTkT (8)

As gases are typically characterised by their highly compres-
sible nature and noting that for an uncorrelated fluid S(0) C 1,
we propose that divergence of S(q) in the limit q - 0 is
indicative of two-phase liquid–gas behaviour. We also check
the consistency of the kinetic temperature across the simula-
tion. In total 450 out of 480 systems investigated passed these
heuristic criteria. There is potential that some examples outside
the region of stability of the fluid phase may escape these
heuristic criteria and consequently bias the training of our
learnt closures. For the potentials studied in this work, this did
not appear to be a problem. However, for other potential
systems additional heuristics, for example looking at the

residual multi-particle entropy,51,52 may be required to reliably
exclude undesired phases.

3 Results

To examine the performance of learnt closures, we consider
and fit MLP models for the following combinations of the
feature set: (1) G = B(g; r) – a closure just in terms of g(r) as
common for analytical closures in the field, (2) HC = B(h, c; r) –
a closure in terms of h(r) and c(r), (3) HCX =B(h, c, w; r) – a
closure including h(r), c(r), and w(r), and (4) LC = B(h, c, w, g0; r) –
a learnt closure taking the full feature set as input. To compare
these learnt closures to HNC, VM, and PY we look at how they
perform on a randomly sampled test set comprising 90/450
(20%) of the simulation systems that were withheld when
training the closures.

Table 1 shows that the learnt closure based on just the
indirect correlation function, G, has a negative coefficient of

Fig. 4 Comparisons of potentials derived from learnt and analytical bridge function approximations against the true potentials. The plots show the True
potential in blue alongside the potential calculated from the LC prediction for the bridge function in green as well as other common bridge functions.
(A) shows a Lennard-Jones system, (B) shows a Yukawa system, (C) a Hertzian system, and (D) an RSSAW system. In all cases, the learnt closure provides a
qualitatively closer approximation to the true measurement.
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determination, R2, implying that it is worse than predicting a
constant value (i.e. HNC). However, as the feature set is
extended to include additional physically motivated features
(Fig. 3A), the learnt closures offer rapidly improving perfor-
mance compared to HNC, PY, and VM. Using the full feature
set, LC, leads to a very strong correlation between the learnt
closure’s predictions and the ground truth with a R2 value of
0.693. Physically, this improved performance is due to the
learnt closures capacity to capture more of the strongly corre-
lated physics in the region around the first co-ordination shell
across a broad range of interactions.

3.1 Generalisation performance and universality

Our results show that learnt closures can exhibit greater uni-
versality than common analytical closures such as HNC, PY or
VM when trained and tested on a diverse selection of potential
systems. However, an interesting question is whether this is
true generalisation performance that would extend to out-of-
training-distribution regimes. This can be probed by examining
the generalisation performance of learnt closures trained on
restricted classes of potential. Two LC closure models were
trained using the full feature set for this purpose, one on only
hard potentials and a second on only soft potentials (Fig. 3B).
When tested in this manner, the learnt closures are seen to be
less accurate in their out-of-training-distribution regimes. The
learnt closures can only generalise across a wider range of
systems than typical analytical closures when they have been
exposed to systems exhibiting similar physics during training.
Consequently we suggest that it would not be reasonable to
apply learnt closures in applications involving qualitatively
different potentials (e.g. charged liquids, where the correlation
length-scales are much longer) without first extending the
training data to also include such systems. Accordingly, to
allow the learnt closures to be used with greater confidence,
it may be beneficial to investigate the use of a Bayesian neural
network where the weights of the MLP are given as distribu-
tions rather than point estimates.53 In contrast to the standard
MLP used here the Bayesian equivalent provides uncertainty
estimates that could be used to highlight when the model may
not behave as expected.

We can also look at how well the model performs on
individual systems. For an LC model trained on all the training
data Fig. 4 shows the true potential function and potential
functions derived from common approximations for the bridge
function plotted alongside a potential using the LC model’s
predictions for example Lennard-Jones, Yukawa, Hertzian, and
RSSAW systems across a range of reduced densities. The LC
model matches or offers qualitatively improved performance
for all of these different interactions, despite not having been
exposed to training data at the state points being examined. For
the Yukawa and Hertzian potentials, our results show that HNC
performs remarkably well, in agreement with previous
literature.54,55 Looking closely we observe small spurious fluc-
tuations in the potential inferred by machine learning at radii
corresponding to the principal peak in g(r). The presence of
these fluctuations suggests that the feature set proposed in this

work is insufficient to build a truly universal closure that can
completely capture all the possible behaviour seen in this
region. Development of additional meta-features is therefore
a promising area of exploration for improving the predictability
of learnt closures in this strongly correlated region. One
potential class of meta-feature are features based on cumulative
integrals of correlation functions i.e. the Kirkwood–Buff
integral.56

4 Conclusions

In this work, we demonstrate that machine learning is an
effective tool for tackling inverse problems in soft matter. We
use the physics-derived framework of Ornstein–Zernike theory
but employ machine learning to parameterise its closure rela-
tionship using physically relevant correlation functions. Our
approach can be used to construct closures that are accurate in
regions where traditional analytical approximations tend to
fail. We observe that when trained on restricted classes of
potentials learnt closures have restricted domains of applic-
ability. However, extending the training set to include more
diverse interaction potentials extends the domain of applic-
ability without harming model performance for the initial
classes of potential. This suggests that it should be feasible to
construct a generally applicable data-driven closure. We envi-
sage that future work will be able to generalise and extend upon
the approach adopted here to obtain increased efficacy closures
in a wide variety of systems to which the Ornstein–Zernike
framework has been applied such as the RISM and Molecular
Ornstein-Zernike approaches57–59 where HNC is often still the
closure relationship of choice.60

More broadly, whilst many theoretical frameworks in physi-
cal sciences are elegant and exact, the implementation of those
frameworks typically requires approximations and fitted func-
tions. This is particularly true in soft matter where timescale
and lengthscale challenges necessitate the use of creative
approximations. We believe advances abound in approaches
that leverage the overall physics framework but employ
machine learning to determine those fitting functions directly
from data.
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