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A pair of particles in inertial microfluidics: effect
of shape, softness, and position†

Kuntal Patel * and Holger Stark

Lab-on-a-chip devices based on inertial microfluidics have emerged as a promising technique to

manipulate particles in a precise way. Inertial microfluidics exploits internal hydrodynamic forces and the

mechanical structure of particles to achieve separation and focusing. The article focuses on the

hydrodynamic interaction of two particles. This will help to develop an understanding of the dynamics of

particle trains in inertial microfluidics, which are typical structures in multi-particle systems. We perform

three-dimensional lattice Boltzmann simulations combined with the immersed boundary method to

unravel the dynamics of various mono- and bi-dispersed pairs in inertial microfluidics. We study the

influence of different starting positions for mono- and bi-dispersed pairs. We also change their

deformability from relatively soft to rigid and choose spherical and biconcave particle shapes. The

observed two-particle motions in the present work can be categorized into four types: stable pair, stable

pair with damped oscillations, stable pair with bounded oscillations, and unstable pair. We show that

stable pairs become unstable when increasing the particle stiffness. Furthermore, a pair with both

capsules in the same channel half is more prone to become unstable than a pair with capsules in

opposite channel halves.

1 Introduction

Biomedical studies of biological cells play a crucial role in
diagnosing several fatal diseases1 such as malaria,2 cancer,3,4

and the human immunodeficiency virus (HIV) infection,5 to
name a few. In recent years, microfluidic6 lab-on-a-chip
devices7 have emerged as a promising technique to precisely
manipulate and control biological cells needed on a
commercial level.8 Lab-on-a-chip devices for separating particles
and biological cells rely on external force fields or internal
hydrodynamic forces.9 Lab-on-a-chip techniques using external
force fields include optical tweezers,10 dielectrophoresis,11

magnetophoresis,12 and acoustophoresis.13 On the other hand,
deterministic lateral displacements at low Reynolds number using
appropriately placed pillars14 and inertial microfluidics15–20

exploit internal hydrodynamic forces to achieve particle
separation. In contrast to common microfluidic lab-on-a-chip
devices in which fluid inertia is negligible, inertial microfluidics
operates in an intermediate range between Stokes and turbulent
regimes, where flow is still laminar. The possibility to attain high
throughput makes inertial microfluidics an attractive option
among other microfluidic particle-separation techniques. In this

article, we investigate how different factors such as shape, softness,
and position influence the motion of a pair of particles in a
microfluidic channel.

Inertial focussing was first reported by Segré and Silberberg
for solid particles with the well-known tubular pinch effect21,22 and
then spurred numerous theoretical,23–26 computational,19,27–30 and
experimental31–34 studies to gain a deeper understanding of
this phenomenon. Inertial migration of a neutrally buoyant
solid particle is essentially the result of a balance between
shear-gradient lift force, directed towards the channel wall,35

and a wall repulsion force, directed towards the channel
center.36 Applying an external force to the solid particle along
the channel axis, the resulting Saffman force37 also contributes
significantly to the force balance in the cross-stream direction.
For almost five decades from the observation of the Segré–
Silberberg effect, inertial migration was mainly a blue-skies-
research problem. In 2007 Di Carlo et al.38 demonstrated
ordering and separation of particles in a microchannel using
inertial focussing, which gave rise to the field of inertial
microfluidics. Subsequently, Hur and co-workers39 experimentally
showed inertia-driven separation and enrichment of deformable
capsules. Soft capsules experience an additional lift force induced
by the deformability of the cell, which drives them towards
the channel center and which thereby competes with the inertial
lift force.40

For biomedical applications of inertial microfluidics it is
crucial to strive for a deeper understanding of the inertial
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migration of deformable capsules. The dynamics of soft
capsules is widely studied at low Reynolds numbers in
canonical flows41–45 and cellular blood flow simulations.46–49

Only recently, inertial microfluidics of deformable cells has
caught attention.20,50–58 Using two-dimensional numerical
simulations, Shin and Sung51 showed that the final equilibrium
position for a given value of capsule elasticity varies with the
Reynolds number. In their following work54 they identified
different types of capsule dynamics such as tank-treading,
swinging, and tumbling. According to Kilimnik et al.50 the
steady-state position of a deformable capsule in the lateral
direction is independent of the flow rate and it only
depends on the softness. This was later verified by Schaaf and
Stark20 using 3D lattice Boltzmann simulations. They also
proposed that the inertial lift force in the vicinity of the
channel center scales as a cube of capsule radius. More
recently, Alghalibi and colleagues58 investigated cross-stream
inertial migration of a soft particle in pipe flow. Interestingly,
they found that irrespective of the particle’s softness and
the flow rate, the particle always ends up at the channel
center for an initial particle diameter of 0.2 times the pipe
diameter.

Practical applications require manipulation of several soft
particles at a time and, hence, it is important to study how
particles interact in flow. There are a few systematic studies in
literature to understand the interaction of solid and soft
particles in inertial microfluidics. Yan et al.59 investigated the
dynamics of two solid particles in linear shear flow generated
by two plates moving against each other. They observed that
particles either settle down on the centerline where flow
velocity is zero or exhibit oscillatory motion when released
from symmetric initial positions. Schaaf et al.60 reported that
for two closely placed solid particles in a channel flow, the
inertial lift forces acting on the leading and lagging particles
differ significantly. In their subsequent work61 they extended
the understanding of a particle pair to study the behavior of
particle trains62 in inertial microfluidics. At low Reynolds
numbers, Lac et al.63 and Aouane et al.64 investigated the
interaction of two soft capsules in shear and Poiseuille flows,
respectively. The inertial counterparts of these two problems
were also studied. Doddi and Bagchi65 observed a transition
from irregular self-diffusion66 to different types of spiraling
motions (outward, fixed orbit, and inward) with increasing
Reynolds number. Lan and Khismatullin67 reported that a pair
of deformable cells in a rectangular microchannel undergoes
either swapping or passing trajectories, while deformable cells
in a series experience damped oscillations. Like Lan and
Khismatullin,67 Schaaf et al.60 also observed these swapping and
passing trajectories for a pair of solid particles. Krüger et al.68

looked into the suspension of deformable capsules in Poiseuille
flow at finite Reynolds numbers. They discovered that particle–
particle interactions enhance the migration towards the channel
center for sufficiently large Reynolds and capillary numbers.

In the present work we perform three-dimensional lattice-
Boltzmann simulations combined with the immersed boundary
method20,60,69 to investigate the dynamics of mono- and

bi-dispersed particle pairs. They flow through a square micro-
channel in the inertial regime. We systematically investigate the
effect of different starting positions for mono- and bi-dispersed
pairs. We also vary their deformability from relatively soft to
rigid and choose spherical and biconcave particle shapes.
Reynolds number, particle radius, and axial particle distance
are kept the same in all the cases. The observed dynamics of
the different mono- and bi-dispersed particle pairs can be
categorized into four types: stable pair, stable pair with damped
oscillations, stable pair with bounded oscillations, and
unstable pair.

The outline of the article is as follows. In Section 2 we
discuss the computational setup and simulation para-
meters of the problem and explain the lattice Boltzmann
simulations. Results from the numerical investigations are
presented in Section 3 and we close with concluding remarks
in Section 4.

2 Computational setup and
numerical methodology
2.1 Microfluidic setup for a flowing pair of particles

Fig. 1 shows the schematic of our microfluidic setup. We study
the hydrodynamic interaction and inertial migration of a
flowing pair of soft particles in a quadratic microchannel. We
start from a fully-developed Poiseuille flow and place two
particles in the midplane at y = 0. We apply periodic boundary
conditions in the z-direction along the channel axis and the no-
slip boundary condition at the channel walls in the remaining
directions. The length of the microchannel is large enough so
that particles do not interact with their periodic images unless
the axial separation becomes as large as the channel length.
The pressure gradient or force density a required to pump the
fluid through the channel is calculated from the analytical

Fig. 1 Computational setup for a pair of neutrally buoyant flowing parti-
cles in a microchannel. Two particles of non-dimensional radius a and
initial axial separation Dz are placed in a fully developed Poiseuille flow in
the midplane at y = 0.
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expression for the velocity field of a Poiseuille flow:70

Uzðx; yÞ ¼
16W2a
p3Z

X1
n;odd

1

n3
1�

cosh
npx
2W

� �
cosh

np
2

� �
2
64

3
75

� sin
npðyþWÞ

2W

� �
;

(1)

where Uz, W, and Z are the axial velocity, channel half-width and
dynamic viscosity of the fluid, respectively.

2.2 Coupled lattice Boltzmann finite element immersed
boundary method (LBFEIBM)

2.2.1 Lattice Boltzmann method. In the last two decades
the lattice Boltzmann method71,72 has emerged as an efficient
alternative to conventional techniques of computational
fluid dynamics. In particular, it was applied to multiphysics
problems involving soft matter and fluid flow.73 The lattice
Boltzmann method operates at the mesoscale and provides a
solution of the discretized Boltzmann equation. It is based on
the lattice Boltzmann equation that governs the advection and
collision of populations of particles. They are described by
distribution functions fi(x,t) for a discrete set of velocity vectors
ci. In time step Dt these distributions evolve according to

fi xþciDt;tþDtð Þ� fiðx;tÞ¼
1

t
f eqi ðx;tÞ� fiðx;tÞ½ �þFiDt; (2)

where

f eqi ðx;tÞ¼wir 1þu �ci
cs2
þ u �cið Þ2

2cs4
� u �u
2cs2

 !
(3)

stands for the local equilibrium distribution of velocity vectors ci

relative to flow velocity u. Here, we implement the D3Q19 lattice
with 19 discrete velocity vectors chosen from ci = {(0, 0, 0), cyc(�1,
0, 0), cyc(�1, �1, 0)} with weights wi = {1/3, 1/18, 1/36}.
Furthermore, cs in eqn (3) is the speed of sound and the relaxation
time t in eqn (2) is related to the kinematic viscosity n¼

cs
2Dt t�1

2

� �
, where cs

2¼1

3
in lattice units. The last term in eqn (2)

is due to the forcing scheme proposed by Guo et al.74 It takes into
account the force density driving the fluid and forces exerted by
particles. Based on this scheme, a body force density f is related to Fi as

Fi¼wi 1� 1

2t

� �
ci�u

cs2
þci �u

cs4
ci

� �
� f: (4)

In order to obtain the macroscopic picture of the flow field, fluid
density r and momentum density ru at each lattice node can be
calculated using the zeroth and first moments of the populations fi:

r ¼
X
i

fi; (5)

ru ¼
X
i

ci fi þ
Dt
2
f: (6)

We enforce the no-slip condition at channel walls using the
regularized method of Latt and Chopard.75,76 The numerical

accuracy of our simulations is maintained by setting the
relaxation time t r 1. Please refer to ref. 20 for further details.
The numerical solution of the lattice Boltzmann equation is
obtained using an open-source parallel lattice Boltzmann
solver from the Palabos project,77 while implementation of
the immersed boundary method and particle dynamics uses
in-house libraries.

2.2.2 Modeling of soft capsules. We employ the finite
element method to discretize the surface of the particle with P1

elements,78 i.e., linear triangular elements. Tessellation of the
particle surface is achieved by dividing each triangle of an
icosahedron into four triangles (for more details refer to ref. 69)
and the newly created nodes are then radially shifted to the
circumsphere. The process is repeated until the distance
between two neighboring nodes approaches the lattice spacing.
This procedure of generating mesh from a highly symmetric
solid (icosahedron in the present case) enables us to achieve
superior mesh quality in terms of isotropy and homogeneity.69

The same procedure is used for the solid particles as well.
The capsule dynamics is determined by a combination

of strain, bending, and volume energies. For the strain energy
we rely on the Skalak model79 valid for an isotropic and
homogeneous capsule. It is formulated as a function of the
strain invariants of the Green strain tensor and given as

Es ¼
I

ks

12
I1
2 þ 2I1 � 2I2

� �
þ ka

12
I2
2

� 	
dA; (7)

where ks is the shear modulus and ka is the area dilation
modulus. The strain invariants I1 and I2 can be expressed in
terms of in-plane principal extension ratios l1 and l2:

I1 = l1
2 + l2

2 � 2, (8)

I2 = l1
2l2

2 � 1. (9)

The discretized version of the bending energy proposed by
Helfrich80,81 takes the form

Eb ¼
ffiffiffi
3
p

kb
X
ijh i

1� cos yij � y0ij
� �h i

; (10)

where kb is the bending modulus, yij is the angle between the
area normal vectors of two neighboring surface elements, and
y0

ij is the reference angle from the undeformed (initial) state.
Implementation of the bending energy prevents cusp formation
and buckling of soft capsules.

In this work, we consider soft particles with an impermeable
membrane. To implement the constraint of constant volume, at
least approximately, we choose a standard method and incor-
porate the volume energy82

Ev ¼
kv

2

V � V0
� �2

V0
; (11)

where kv, V and V0 are the volume modulus, actual capsule
volume, and reference volume, respectively. To keep the volume
changes below 1%, we choose kv = 75 000rn2/W2. Note, these
changes do not affect the dynamics of the particle.
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Following Krüger et al.68 and Schaaf and Stark,20 we set
ka/ks = 2 and kb/(ksa2) = 2.87 � 10�3. We can compare our
parameters with the ones for red blood cells. To mimic their
the mechanical behavior in blood flow simulations, the ratio
kb/(ksa2) is set to 2.36 � 10�3,47 which is very close to the value
in present simulations. However, the ratio ka/ks in current
simulations is significantly smaller than that used for a healthy
red blood cell, which allows our spherical capsules to deform
significantly.

The total force acting on node i can be obtained from the
principle of virtual work;83 given as Fi = q[Es + Eb + Ev]/qxi.
The derivatives of strain, bending, and volume energies were
derived analytically and then inserted directly into the solver to
save computational costs. The analytical form of the derivatives
can be found in ref. 84.

2.2.3 Modeling of solid particles. The motion of a neutrally
buoyant solid particle is governed by Newton’s law and its
equivalent for the angular momentum:

S(t + Dt) = S(t) + U(t), (12)

MU(t + Dt) = MU(t) + Ffluid + FFeng, (13)

Ix(t + Dt) = Ix(t) + Tfluid + TFeng, (14)

where, S, M, I, U, and x are the particle position, mass, moment
of inertia, linear velocity, and angular velocity, respectively.
Force Ffluid and torque Tfluid exerted by the fluid on the particle
are computed using the iterative procedure of Inamuro,85

which ensures the no-slip condition at the boundary of the
solid particle. Suzuki and Inamuro86 demonstrated that for
simulating the dynamics of solid particles at finite Reynolds
numbers correctly, the effect of a fictitious fluid inside the solid
particle must be taken into account when using the immersed
boundary method. Therefore, one needs to introduce Feng’s
rigid body approximation87 with the help of additional forces
and torques, FFeng and TFeng, respectively.

2.2.4 Immersed boundary method. The hydrodynamics of
soft and solid particles in inertial microfluidics is essentially a
fluid–structure interaction (FSI) problem on the micron scale.
In the present case, the motion of the bulk fluid in a micro-
channel is responsible for the movement of particles; in turn,
particles exert forces on the fluid via their surfaces. We imple-
ment this interaction between fluid and particles using the
immersed boundary method (IBM) of Peskin.88,89 The
immersed boundary method is one of the fluid–structure
interaction methods that belong to the mixed Eulerian-
Lagrangian framework. There also exist fully Eulerian and
Lagrangian FSI methods (see Fig. 1 of ref. 90 for more details).
The classical IBM treats vertices of the P1 elements of the
discretized particle surfaces as Lagrangian markers. The
advection velocity :

xi of Lagrangian markers is obtained using
an interpolation of the velocity values u from neighboring
Eulerian points, which in our case are the lattice nodes of the
lattice Boltzmann method:

_xiðtþ DtÞ ¼
X
X

uðX; tþ DtÞdðX� xiðtÞÞ; (15)

In contrast, the body force density f̃ exerted by Lagrangian
markers on neighboring Eulerian points is computed using the
spreading operation:

~f ðX; tÞ ¼ �
X
i

FiðtÞdðX� xiðtÞÞ: (16)

Following ref. 88 the discretized delta function d(X � xi(t)) in
eqn (15) and (16) are represented as d(X � xi(t)) = f(X � xi(t))f(Y
� yi(t))f(Z � zi(t)), where

jðrÞ ¼

1

8
3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p� �
0 � jrj � 1

1

8
5� 2jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� �
1 � jrj � 2

0 2 � jrj:

8>>>>>><
>>>>>>:

(17)

The interaction between soft capsules and the bulk fluid
is resolved using the classical IBM. However, for solid particles
we employ interpolation and spreading operations in an
iterative manner85,86 to obtain the force Ffluid and torque Tfluid

directly from the flow field. Then, advection velocity U is
obtained using eqn (13). This particular approach is known
as the multi-direct-forcing variation of the immersed boundary
method.91,92

2.3 Simulation parameters

In our microfluidic setup we simulate two types of particle
pairs, mono- and bi-dispersed (see Fig. 2). Mono-dispersed
pairs consist of spherical particles of the same stiffness.
Bi-dispersed pairs are classified into two subtypes; first, a pair
with particles of different shapes but the same stiffness, and
second, a pair with particles of varying stiffness but the same
shape. We consider the combination of a spherical (leading)
and biconcave (lagging) particle for the first type, and for the
second type, two spherical particles. The initial orientation of a
biconcave particle in the flow field is shown in a magnified view
in Fig. 2. We apply the transformation

xbicon: ¼ 1:2xsphere;

ybicon: ¼ 1:2ysphere;
(18)

zbicon: ¼ 0:6 0:207þ 2
xsphere

2 þ ysphere
2

a2

� ��

� 1:123
xsphere

2 þ ysphere
2

a2

� �2
#
zsphere;

to the vertices of a spherical particle of radius a to model the
biconcave shape.93,94

In all the cases we set the non-dimensional particle radius a
and the initial axial separation Dz equal to 0.4 and 1, respectively.
For the biconcave particle the radius characterizes the spherical
particle from which it is generated using eqn (18). The value of
the Reynolds number Re = 2WUmax/n is fixed to 10 in all the
simulations. Here, Umax is the maximum fluid velocity in the
channel center and n is the kinematic viscosity. Note, in a
typical inertial microfluidics setup, the Reynolds number varies
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from 1 to 10017. Following Schaaf and Stark,20 we use the
Laplace number to define the softness of the particle; it is
given as

La = ksa/rn2. (19)

In our simulations we consider cases with relatively soft
(La = 10) and stiff (La = 100) particles (please refer to Fig. 2).
We also include a mono-dispersed pair of solid particles (case
with La = N in Fig. 2) to compare the dynamics of soft and solid
particles of spherical shape. For comparison we note that for a
red blood cell suspended in plasma, one has a = 4� 10�6 m and
ks = 5.3 � 10�6 N m�1,47 and the Laplace number turns out to
be 0.0212.

In practice, there might exist a viscosity contrast between the
fluid within soft particles (cytoplasm in biological cells) and the
bulk liquid (Zcyto/Zbulk 4 1). For example, the cytoplasmic
viscosity of the red blood cell is five times the plasma viscosity
Zplasma= 1 mPa s.47 Moreover, tumour cells such as A549 can
have cytoplasmic viscosity in the range of 144.8 to 1390.7 Pa s,95

which is several orders of magnitude higher than the plasma
viscosity. We shortly summarize what influence this will have.
An increase in the viscosity of the interior fluid or cytoplasm
attenuates the deformation of soft particles and biological
cells.50 Thus, while for a very soft particle a viscosity contrast
close to one should not significantly alter the migration
dynamics, a viscosity contrast significantly larger than one
makes particles less deformable and modifies their equilibrium

positions. In the case of relatively stiff particles, the viscosity
contrast will have a negligible influence on the particle
dynamics. Moreover, for biconcave soft particles in inertial
flows with Re B O(1), there exists a critical value of viscosity
contrast above which the transition from tank-treading to
tumbling motion takes place.52 Later, we will see that biconcave
particles in the present work already exhibit tumbling motion.
With this in mind, we set the density and viscosity of the soft
particle identical to the values of the bulk fluid.

In each simulation we fix the leading particle position in the
x-direction to 0.2 and vary the position of the lagging particle
from �0.4 to 0.4 in steps of 0.2. The leading particle’s starting
position is kept sufficiently far from the stable equilibrium
point of isolated particles (see Fig. 5 and 9) so that disturbances
from the lagging particle can have a significant effect on the
motion of the leading particle. The implemented LBFEIBM
solver has been employed in a series of works by our
group19,20,60,61 (see Appendix A for benchmarking). According
to our previous work we discretize the channel width with
90 lattice nodes for the case of soft particles and 75 lattice
nodes for solid particles. In our simulations, the necessity of a
high grid resolution arises to ensure the proper coupling
between particles and the bulk fluid. Moreover, relatively more
lattice nodes are required in the case of soft particles to capture
the particle deformation and lift force accurately. Lastly, the
surface of soft and solid particles is discretized using 20 480 P1

elements.

Fig. 2 Classification of different types of particle pairs with radius a. Each pair type is simulated for the same initial distance Dz, for different values of
softness Lalead, Lalag, and five sets of different initial positions xlead, xlag. Alphanumeric labels M1–M3 and B1–B4 are the identification tags given to each
case. Note that the mono-dispersed pair with La = N corresponds to the case of solid particles.
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3 Results and discussion

In this section, we first explain how the overall dynamics of a
particle pair is categorized in the present work for the different
types of particle pairs as illustrated in Fig. 2. A detailed
explanation of the hydrodynamic behavior is provided later in
Sections 3.1 and 3.2 for the different mono- and bi-dispersed
pairs, respectively.

In Poiseuille flow the inertial lift force migrates a particle
towards a specific position between channel center and wall,
where softer particles are located closer to the center. Depending
on the direction of migration, the particle either accelerates or
slows down. For two closely placed particles the lift force acting on
each particle is modified compared to the single-particle case60 and
the modified cross-streamline motion causes particles to approach
or move away from each other. Notably, the initial interaction and
positions of particles determine their dynamics at a later stage.

In Fig. 3 we use the time evolution of the axial particle
distance Dz to identify four different types in the dynamics of a
flowing particle pair: stable pair, stable pair with damped
oscillations, stable pair with bounded oscillations, and
unstable pair. In our notation the stable particle pair either
directly approaches a constant particle separation at long times
(see video M1) or the particle distance oscillates. In the second
case we find both, damped oscillations ( see video M2) and
ongoing bounded oscillations (see video B1). The source of
damped and bounded oscillations is different as we discuss
below in Sections 3.1 and 3.2. Finally, particles of an unstable
pair continuously drift apart until the particle distance
approaches the channel length ( see video B3).

The diagram in Fig. 4 summarizes the dynamics of the
particle pairs, which we observed in our simulations for different
mono- and bi-dispersed pairs when the initial position of the
lagging particle is varied. The mono-dispersed pair M1 with soft
capsules is always stable irrespective of the starting position xlag.
It is situated in the channel center as we will see below.
On increasing the particle stiffness from La = 10 to La = 100

(label M2), the pair is stable when the leading and lagging
particles initially occupy different channel halves and becomes
unstable when the particles start in the same channel half.
The transition between both cases occurs through damped
oscillations. For the mono-dispersed pair M3 composed of rigid
particles (La = N), we observe that only the symmetric pair with
(xlead, xlag) = (0.2, �0.2) is stable, reminiscent of the observations
in ref. 60.

The dynamics of the bi-dispersed pairs B1 and B2 is
qualitatively the same as that of pairs M1 and M2, however,
with the difference that now the B1 pair performs bounded
oscillations. Lastly, the symmetric placement of leading and
lagging particles in the B3 and B4 pairs gives a stable pair,
which we also observe for the B3 pair with xlag = 0. In summary,
irrespective of particle-pair type when the leading and lagging
particles start from the symmetric positions (xlead, xlag) = (0.2,
�0.2) the pair is stable. Also, stable pairs become unstable when
increasing the particle stiffness. Finally, a pair with both parti-
cles in the same channel half is more prone to become unstable
than a pair with particles starting in the opposite channel halves.

Before proceeding, we add a comment. Prohm and Stark19

demonstrated that a freely placed solid particle in Poiseuille
flow might either migrate to the main axis or the diagonal
depending on the particle size and cross section of a micro-
channel. Furthermore, these zero lift-force positions can either
be stable, saddle points, or unstable. Particles located on
unstable positions migrate to stable positions in response to
a small perturbation. In the work of Schaaf and Stark,20 it
was observed that the majority of implemented deformable
capsules migrated to the channel diagonal. In our case we
initialize all particles in the midplane at y = 0. We observe that in
all cases they essentially stay in the midplane during migration
since for symmetry reasons the lift force component normal to
the midplane is zero.

Fig. 3 Characterization of the dynamics of a particle pair based on the
temporal evolution of the particle distance Dz. For all stable pairs the axial
separation eventually equilibrates to a constant value or undergoes
bounded oscillations. In contrast, the leading and lagging particles of an
unstable pair drift apart until Dz approaches the channel length.

Fig. 4 Influence of the starting position xlag on the overall dynamics of different
mono- (M1–M3) and bi-dispersed (B1–B4) pairs with the leading particle starting
at xlead = 0.2 (see Fig. 2 for further details on labels M1–M3 and B1–B4).
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3.1 Mono-dispersed pairs

3.1.1 Single particles. To understand similarities and differences
in the dynamics of a mono-dispersed pair compared to a single
particle, we briefly look at single particles with the same softness
as in the pairs M1–M3. Fig. 5 shows the inertial migration of a
spherical particle for different values of softness. Particle radius
and Reynolds number are fixed to 0.4 and 10, respectively.
To make position x and time t non-dimensional in Fig. 5, the
channel half-width W and viscous time scale W2/n are used,
respectively. While rigid particles show the typical inertial
focusing, the particle size in the present case is large enough
so that the softness corresponding to La = 10 is sufficient for the
lift forces due to deformability to dominate over the inertial
lift forces. Hence, the particle settles at the channel center
independent of the starting position. Note that smaller particles
need smaller La or larger deformability to occupy the channel
center.20 We also show in the inset of Fig. 5 how the particle with
rigidity La = 10 transforms to a bullet-shaped particle in steady-
state, while the particle with rigidity La = 100 stays nearly
spherical.

3.1.2 Particle pairs. For the mono-dispersed pairs M1–M3
the lateral positions of the leading and lagging particles and
their axial distance are plotted versus time in Fig. 6. The softest
particles (pair M1) migrate to the channel center (see video M1),
however, the time needed by the leading and lagging particles
to reach the center varies with the initial position of the lagging
particle. For xlag = 0 and �0.2 the leading and lagging particles
in the M1 pair migrate with nearly constant axial distance in
time. Furthermore, when the leading and lagging particles
initially move on the same streamline, xlead = xlag = 0.2, the
leading particle experiences a very strong push towards the
channel center, which significantly enhances its axial migration
velocity. However, once it has come close to the channel center in a
very short time, it takes a longer time to fully reach the channel
center. Finally, we note that, initially, the axial particle distance

for the M1 pair with xlag = 0.4 and �0.4 grows at the same rate.
Nevertheless, the steady-state value of Dz for xlag = 0.4 is twice as
large as that for xlag = �0.4. To quantify the hydrodynamic
interaction of soft particles in the M1 pair, we compare the
migration time tm the leading and lagging particles need to reach
the channel centerline with the corresponding time of a single
particle. Such a comparison allows to demonstrate how strongly the
total lift force is influenced by the neighboring particle in a pair.
Thus, in Fig. 7, we plot the ratio tm

pair/t
m
single for different values of the

starting position xlag. We find that the presence of the lagging
particle with xlag = �0.4 slows down the migration of the leading
particle to the channel center, while for the remaining three
starting positions the migration of the leading particle is enhanced.
Moreover, the lagging particle migrates faster when both particles
are in different channel halves initially and vice versa.

We now focus our attention on the dynamics of particles in
the M2 pair. For xlag = 0.2, similar to the M1 pair, the lagging
particle initially pushes the leading particle towards the
channel center. Thus, leading and lagging particles drift at a
different axial velocity, which continuously increases the axial
distance and makes the pair unstable. Note that we stop the
simulations once the axial particle distance Dz is beyond 10 and
therefore close to the channel length, where a particle interacts
with the image of the other particle. Continuing the
simulations of the leading particle from the momentary
position at x = 0.055 without the other particle present shows
that it migrates towards the center instead of drifting back to
the known equilibrium position at x E 0.3. Thus, we identify a
second type of stable position at x = 0, which we attribute to the
strong wall repulsion for the large particles, we use in our
simulations, and the fact that the inertial lift force is small
close to the center. The M2 pair with xlag = 0.4 also turns out to
be unstable since already initially, they drift with very different
axial velocities. Interestingly, for xlag = �0.4 the particle pair is
stable although with a larger axial distance compared to the
corresponding M1 pair with La = 10, while for the symmetric
initial positions with xlag = �0.2 the axial distance stays close to
the starting value similar to the case La = 10.

A new feature is observed for the initial position xlag = 0.
The M2 pair is stable but reaches a constant axial distance close
to the initial value only after extended damped oscillations in
both the lateral positions and Dz (see video M2), as the insets in
Fig. 6 show. Similar oscillations in the axial distance were
reported earlier in numerical simulations of a pair of solid
particles60 and a train of soft particles67 in a rectangular
microchannel. Experimental evidence on damped oscillations
of solid particles in a microchannel can be found in Lee et al.96

Recently, based on theoretical calculations, Hood and Roper97

suggested that in such oscillations, inertia and viscosity switch
their roles, i.e., viscous interactions of a particle with the
channel wall and other particles initiate oscillations while
inertial forces dampen them.

We further investigated the nature of these damped oscillations
for xlag = �0.05, �0.1, and �0.15. We find that as the
initial position of the lagging particle moves away from the
channel center, the maximum amplitude of oscillations decreases

Fig. 5 Lateral position plotted versus time of a spherical particle moving
in the midplane of the channel at y = 0 for different rigidities La and starting
positions. Inset: The equilibrium shape of soft particles for different La is
shown.
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[see Fig. 8(a)]. We assign this to the reduced viscous coupling,
when the particles are further away from each other and an
increased damping due to the (inertial) lift forces, which force
the particle to a specific lateral position.60 In all cases, particles
equilibrate with an axial separation very close to its initial value.
In the inset of Fig. 8(b) we visualize the trajectories of the leading
and lagging particles in the center-of-mass frame for xlag = 0.
They reveal the inward spiraling motion of the leading and lagging
particles. For decreasing xlag the extent of the spirals shrink
because of the reduction in the value of max(Dz). As the main
plot in Fig. 8(b) shows, the damping rate of the oscillations in Dz
first does not vary significantly for decreasing xlag but then
increases sharply.

Finally, we discuss the case of a pair of solid particles (M3) in
Fig. 6. Only the symmetric placement with xlag = �0.2 and
xlead = 0.2 provides a stable flowing pair, reminiscent of the

findings in ref. 60. Unlike soft particles with xlag = �0.2, the
initial distance between two solid particles no longer remains
constant over time. It grows until the particles have reached
their final lateral positions. Earlier, we saw that in mono-
dispersed pairs M1 and M2 with xlag =�0.4, the axial separation
grows at the same rate only at early times. Now, the temporal
increase of the axial distance Dz is the same for the whole time
interval for these two cases since the lagging particles already
start close to their equilibrium positions (see Fig. 5) and only
the leading particle has to relax.

3.2 Bi-dispersed pairs

In this subsection we concentrate on the dynamics of different
bi-dispersed pairs. We employ an approach similar to that in
the previous discussion on mono-dispersed pairs. We first look

Fig. 6 Lateral positions of the leading and lagging particles and their axial distances Dz plotted versus time for different initial positions xlag and for fixed
xlead = 0.2. The mono-dispersed pairs M1–M3 with different rigidity La moving in the channel midplane at y = 0 are considered. Once the axial particle
distance Dz is beyond 10 and close to the channel length, the simulations are stopped. Insets in the middle column show the behavior of xlead, xlag, and Dz
at later times.
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at the migration of a biconcave particle so that later it can be
compared with bi-dispersed pairs.

3.2.1 Single particles. Fig. 9 shows the temporal evolution
of the lateral position of a biconcave particle with rigidities La =
10 and 100. It migrates to a stable equilibrium point very close
to that shown in Fig. 5 for a spherical particle of the same
rigidity. However, for La = 10 the inertial migration is
significantly slower compared to the spherical particle of
identical La value.

At low Reynolds numbers a biconcave particle in shear flow
undergoes either tank-treading, tumbling, or swinging motion
depending on the shear rate, softness, and viscosity ratio.98

Here, for more rigid particles at La = 100 we observe a solid-
body like tumbling motion in the y = 0 plane, while for the
softer biconcave particle at La = 10 a deformation-driven
tumbling motion is observed as illustrated in Fig. 10. Initially
[Fig. 10(b and c)], the particle rotates because the lower part
being closer to the center moves faster. Later, when the particle
aligns itself with the flow direction [Fig. 10(d)], it transforms
into a parachute-like shape [Fig. 10(f)]. Eventually, the transition
to a convex disc-like shape [Fig. 10(h)] completes one tumbling
cycle, during which the particle has moved closer to the channel
center. This also increases the period of the tumbling motion.

Note that the biconcave particle with La = 10 does not fully
reach the channel center at x = 0 and also leaves the midplane
at y = 0 [inset of Fig. 9]. Therefore, it does not have a symmetric
shape and performs a tumbling motion. We call it wobbling
since the tumble axis varies in time, as we explain further below
in Fig. 12. This is qualitatively similar to the observation of
Fedosov et al.99 for the tumbling-to-slipper transition of a red
blood cell in cylindrical microchannels. A slipperlike form of
the biconcave particle occurs in Poiseuille flow at low Reynolds

numbers,100 which in steady state undergoes tank-treading
motion. Thus, we observe a transition from deformation-
driven tumbling to wobbling when the particle approaches
the center. It also occurs in the bi-dispersed pair B1 as
discussed below.

3.2.2 Particle pairs. In Fig. 11 for the bi-dispersed pairs B1
and B2 we plot the lateral positions of the leading and lagging
particles and their axial distance versus time. Similar to the M1
pair with La = 10 also the B1 pair with the same softness moves
to the channel center. The axial distance in steady state is larger
compared to the M1 pair. This is mainly because the biconcave
particle migrates slower than spherical particles (compare
Fig. 5 and 9). Due to the tumbling of the lagging biconcave
particle, bounded oscillations in the axial distance and xlead

occur. Except for xlag = � 0.2, all the other biconcave particles in

Fig. 7 Migration time tm of particles in the mono-dispersed pair M1
relative to a single particle plotted versus the initial position xlag for fixed
xlead. tm is the time needed to reach the channel centerline with a distance
smaller than 10�3. Note that it is not possible to include the point xlag = 0
for the lagging particle since it is already at the equilibrium position for La = 10.

Fig. 8 Damped oscillations in the M2 pair. Plotted as a function of xlag, the
graphs show in (a) the maximum amplitude max(Dz) and the steady-state
value of the axial separation Dzeq and in (b) the damping rate z of the
oscillations. Inset in (b): trajectories of the leading and lagging particles in
the center-of-mass frame for xlag = 0.
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the B1 pairs exhibit the transition from deformation-driven
tumbling to wobbling close to the channel center as described
earlier. We illustrate this transition for xlag = 0.2 in Fig. 12 using
the trajectory of a Lagrangian marker initialized on the periph-
ery of the biconcave particle in the midplane at y = 0. Initially,
the deformation-driven tumbling is indicated by the zig-zag
trajectory, which then transitions to a helical trajectory due to
wobbling (see also video B1). The different tumbling motions
are highlighted using blue and red planes in Fig. 12. An
exception is observed for the biconcave particle with initial
position at xlag = �0.2. It migrates very quickly towards the
channel center in contrast to the single particle in Fig. 9 and
performs directly the wobbling motion.

At stiffness La = 100 stable particle pairs only occur for xlag=
�0.2 and �0.4. The pronounced bounded oscillations have
vanished although modulations with small amplitudes are
visible. All other B2 pairs are unstable and axially move away
from each other while reaching their equilibrium positions
with finite distance from the center. An exception is the case

with xlag = 0. The leading particle is strongly dragged to the
center by the biconcave particle and ultimately reaches
the center, which we already identified as an additional
stable lateral position when discussing the dynamics of the
M2 pairs.

We now discuss the bi-dispersed pairs B3 and B4 where
leading and lagging particles are spherical and have different
stiffnesses. In Fig. 11 we plot lateral positions and axial
distances versus time. When the leading particle is softer
(La = 10) than the lagging particle (La = 100), the B3 pairs with
xlag = 0 and �0.2 form stable pairs. The leading soft particle
succeeds to drag the stiffer particle to the channel center, where
it occupies the additional stable position so that the pair can
stay bounded. In the remaining cases the lagging particle
migrates towards the off-center stable position, which
ultimately makes the B3 pairs unstable.

In the B4 pairs the rigidity values are switched between the
particles. As a result both leading and lagging particles move
towards the channel center. A special case occurs when
both particles start from the symmetric lateral positions xlead =
�xlag = 0.2. They obstruct each other from aligning at the
channel center, which results in oscillations in the lateral
positions. However, the axial distance between the particles
only fluctuates little about its initial value and the pair is stable.
In the rest of the cases the leading and lagging particles
successfully align at the channel center. They drift apart at
different axial velocities due to their different equilibrium
shapes (see Fig. 5), which directly affect the drag acting on
each particle in the axial direction. Hence, even if the leading
and lagging particles have the same lateral position, their axial
distance does not remain bounded. As shown in Fig. 11, for the
unstable pairs the axial distance increases at the same rate once
both particles are at the channel center. We did not simulate the
unstable pairs for longer times because it is computationally
expensive as the axial distance grows very slowly. On extrapolating
the trend of the curve for xlag = 0.2, one would need E400 time
units for Dz to reach Dz = 10. We also simulated the B4 pairs with
the starting position of the leading particle xlead = 0. However, we
did not find any stable configurations in these cases.

4 Concluding remarks

Inertia driven separation and focusing of soft particles in
microfluidics has direct relevance for biomedical applications.
Inertial microfluidics has recently emerged as a robust and
precise technique for particle manipulation since it relies
entirely on internal hydrodynamic forces. Moreover, inertial
microfluidics functions at finite Reynolds numbers, which
allows faster processing of samples. In the present article we
investigated the hydrodynamics of a particle pair in inertial
microfluidics using 3D numerical simulations. We combined
the lattice Boltzmann method to compute the fluid flow
with the finite element method to model particle dynamics.
To couple fluid flow and particle motion, the immersed
boundary method was used.

Fig. 10 Deformation-driven tumbling motion of a biconcave particle of
rigidity La = 10 starting at x0 = 0.2 in the midplane of the microchannel
when looked from the top. Flow direction is from left to right and the cell
tumbles counterclockwise. The snapshots are taken from the trajectory in
Fig. 9.

Fig. 9 Lateral position of a biconcave particle (left inset) plotted versus
time when moving in the midplane of the channel at y = 0 for two values of
rigidity and starting position. Right inset: Lift-off in the y-direction plotted
versus time for La = 10.
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In this work we considered mono- (M1–M3) and bi-dispersed
(B1–B4) particle pairs of different softness and particle shape

(see Fig. 2). For each pair we investigated the influence of
different starting positions of the lagging particle and
identified four types: stable pair, stable pair with damped
oscillations, stable pair with bounded oscillations, and
unstable pair.

We found that the starting position of the lagging particle
does not affect the stability of the mono-dispersed pairs with
stiffness La = 10 (M1). On increasing the stiffness to La = 100
(M2), the mono-dispersed pairs become unstable when the
leading and lagging particles start in the same channel half.
Moreover, when the lagging particle starts at xlag = 0, the pair
undergoes damped oscillations. The oscillations arise due to
hydrodynamic interactions between particles, while inertial
forces damp them. The maximum amplitude of the damped
oscillations decreases as we shift the starting position of the
lagging particle away from the leading particle. Finally, from
mono-dispersed pairs of perfectly solid particles (M3) only
the pair with initially symmetric lateral positions about the
centerline retains its stability.

When we change the shape of the lagging particle from
spherical to biconcave, bi-dispersed pairs with particle stiffness

Fig. 11 Lateral positions of the leading and lagging particles and their axial distances Dz plotted versus time for different initial positions xlag and for fixed
xlead = 0.2. The bi-dispersed pairs B1 and B2 with different rigidity as well as B3 and B4 consisting of leading and lagging particles with different rigidity La
moving in the channel midplane at y = 0 are considered. Inset: The lift-off in the y-direction for the biconcave particle in the B1 pair is shown.

Fig. 12 A transition from the deformation-driven tumbling (blue plane) to
wobbling (red plane) motion occurs when a biconcave particle approaches
the channel center. The particle has rigidity La = 10 and moves in the B1
pair with xlag = 0.2. The distance from the midplane is shown.
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La = 10 are always stable. They show bounded oscillations in
the axial distance due to the tumbling motion of the biconcave
particle. For La = 100 (B2) the biconcave shape does not change
the qualitative behavior when compared to the mono-dispersed
pairs (M2) of the same particle stiffness.

Finally, the soft leading (La = 10) and stiff lagging (La = 100)
particles in the bi-dispersed pair B3 assemble at the channel
center. The pair is stable when the lagging particle starts at
xlag = 0 or �0.2, while the remaining starting positions result in
unstable pairs. When the stiffness of the leading and lagging
particles are interchanged (pair B4), both particles migrate
towards the channel center irrespective of the starting position
and they ultimately drift apart due to their different shapes.
Only for symmetric starting positions about the channel center
a stable pair with lateral oscillations occur.

Our work explores and classifies different two-particle
motions, which should be observable in the flow of mono-
and bi-dispersed particle suspensions in the regime of inertial
microfluidic. To explicitly test the different types of pair
dynamics, one could use microchannels with inlets, which
place both particles at specific lateral positions.

Finally, in inertial microfluidics the multi-particle states con-
sist of linear trains either moving on the same streamline or in a
staggered configuration as observed in experiments.96,101 As we
demonstrated in ref. 61 for rigid particles, knowing the bounded
two-particle states one can directly infer the lattice constant of the
staggered trains, while the lattice constant of linear trains on the
same streamline typically have a value determined by the range of
the two-particle interaction. In this context, the steady-state value
of the axial distance between the leading and lagging particles is
summarized in Fig. 13 for mono- and bi-dispersed pairs, when

they are stable. Thus, the present study will help to understand
the multi-particle train configurations occurring in inertial micro-
fluidics for soft particles and their mixtures, which will be more
involved compared to the case of ref. 61, where only rigid particles
of the same size were studied.
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Appendix A: benchmarking of the
present LBFEIBM solver

We briefly present the validation of the present coupled lattice
Boltzmann finite element immersed boundary method
(LBFEIBM) for soft and solid particles. To benchmark the
modeling of soft particles, we look at the inertial migration of
a deformable capsule of radius a = 0.2 and softness La = 10 in a
quadratic microchannel at Reynolds number Re = 100. In the
present case, the deformable capsule is initialized on
the channel diagonal. We use 120 lattice nodes to discretize
the channel width, while the surface of the capsule is
discretized using 5120 P1 elements. Time-wise variation of the
capsule position along the channel diagonal is shown in Fig. 14.
The dashed black line in Fig. 14 indicates the equilibrium
position reported by Schaaf and Stark.20

Lastly, to validate the implementation of solid particles, we
demonstrate damped oscillations of the axial distance in a pair
of solid particles. For this, we consider a pair of solid particles
in the midplane of a rectangular microchannel with an aspect
ratio 0.5. We fix the particle radius a, initial position (xlead, xlag),
initial axial distance Dz, and Reynolds number Re to 0.4, (0.24,
�0.2), 2, and 10, respectively. We use 75 lattice nodes to

Fig. 13 The equilibrium axial distance Dzeq between the leading and
lagging particle is plotted versus xlag for stable particle pairs.

Fig. 14 Inertial migration of a deformable capsule with La = 10 along the
diagonal of a square microchannel at Reynolds number Re = 100. The
dashed line shows the equilibrium position reported in ref. 20. The inset
shows the equilibrium shape of the capsule.
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discretize the channel width. The surface of the solid particles
is approximated using 20480 P1 elements. The temporal
evolution of the ratio Dz/a is plotted in Fig. 15, along with its
steady-state value reported by Schaaf et al.60
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ACS Nano, 2020, 14, 10784–10795.

15 D. D. Carlo, Lab Chip, 2009, 9, 3038.

16 J. M. Martel and M. Toner, Annu. Rev. Biomed. Eng., 2014,
16, 371–396.

17 J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen,
M. E. Warkiani and W. Li, Lab Chip, 2016, 16, 10–34.

18 S. Razavi Bazaz, A. Mashhadian, A. Ehsani, S. C. Saha,
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