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Structural transitions at electrodes, immersed in

simple ionic liquid models
Hongduo Lu,*® Samuel Stenberg, (2@ Clifford E. Woodward 2° and
Jan Forsman(2?

We used a recently developed classical Density Functional Theory (DFT) method to study the structures,
phase transitions, and electrochemical behaviours of two coarse-grained ionic fluid models, in the
presence of a perfectly conducting model electrode. Common to both is that the charge of the cationic
component is able to approach the electrode interface more closely than the anion charge. This means
that the cations are specifically attracted to the electrode, due to surface polarization effects. Hence, for
a positively charged electrode, there is competition at the surface between cations and anions, where
the latter are attracted by the positive electrode charge. This generates demixing, for a range of positive
voltages, where the two phases are structurally quite different. The surface charge density is also
different between the two phases, even at the same potential. The DFT formulation contains an
approximate treatment of ion correlations, and surface polarization, where the latter is modelled via
screened image interactions. Using a mean-field DFT, where ion correlations are neglected, causes the
phase transition to vanish for both models, but there is still a dramatic drop in the differential
capacitance as proximal cations are replaced by anions, for increasing surface potentials. While these
findings were obtained for relatively crude coarse-grained models, we argue that the findings can also
be relevant in “real” systems, where we note that many ionic liquids are composed of a spherically
symmetric anion, and a cation that is asymmetric both from a steric and a charge distribution point

rsc.li/soft-matter-journal of view.

1 Introduction

Research on ionic liquids (ILs) has increased dramatically in
recent years. ILs have many interesting properties, perhaps the
most obvious of which is the fact that they have remarkably low
melting points, considering their expected strong intermolecular
interactions. For most ILs, a contributing factor is a geometric
“mismatch” between the ions, which makes it sterically difficult
for them to arrange into a stable crystalline lattice.

ILs have high charge density, and their electrostatic coupling
strength is usually quite strong. This means that they have a high
electrostatic screening capacity, which is one of the reasons why
many of them are interesting candidates for electrochemical
applications, such as electric double layer capacitors."™ This has
meant that not all the experimental research in the field has
been applied in nature. There have also been many theoretical
studies, including detailed atomistic simulations,”” as well as
more coarse-grained modelling, focusing on the fundamental
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properties of these fascinating fluids.* ' Probably the simplest

coarse-grained model that has been utilized for this purpose is
the so-called restricted primitive model (RPM). While the RPM
has been a popular and useful model for aqueous electrolyte
solutions,'®'” it has also been used in studies of ILs.'® In this
model, any solvent (absent in the case of neat ILs) only enters
implicitly, via a relative dielectric constant. The ions are modelled
as hard spheres, with a common diameter d. A charge is
embedded at each hard-sphere centre, and for most models of
ILs this charge is usually monovalent. It should, however, be
noted that for realistic IL densities at room temperature, the
RPM will likely freeze, as its symmetrical nature generates a
strong propensity to form ordered structures.

We noted earlier that steric “mismatch” is one of the
reasons why many ILs have a low melting temperature. So, in
order to form a stable liquid under ambient conditions, the
RPM needs to be suitably modified to reflect this asymmetry in
structure. Spohr and Patey introduced a model wherein the
ions are described as charged Lennard-Jones particles. Those
authors focused on how bulk properties responded to changes
of charge and size asymmetry.'**° Patey and Lindenberg investigated
further extensions, where the cations carty two partial charges, one of
which is displaced from the centre of the Lennard-Jones particle.”*

This journal is © The Royal Society of Chemistry 2021
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Other modifications of the RPM have focused on fundamental
mechanisms at the electrode-fluid interface. Bazant utilized
a lattice model, ensuring a saturation limit, to investigate over-
screening and crowding effects of ILs at charged surfaces.'?
Kornyshev,”> Fedorov**** and Lamperski**?® have systemati-
cally considered size and shape asymmetries, for modifi-
cations of the RPM. Lu et al”° have investigated bulk and
electrochemical properties of the asymmetric RPM (ARPM), which
is identical to the RPM, except that the charges on anions and
cations are both displaced a certain (equal for both) distance from
the hard-sphere centre.

In this work, we shall use primarily classical density func-
tional theory (DFT) to explore the properties of a model, that
closely resembles the ARPM. However, instead of displacing the
originally centrally placed charge in all ions, we will retain an
RPM-like central charge for the anions, while the cationic
charge is displaced a distance b from the hard-sphere centre.
We shall denote this as the generalized Asymmetric RPM,
(GARPM). In common with the ARPM, the GARPM will only
introduce one additional parameter, to the original RPM.
Furthermore, a large displacement b will lower the melting
point of the bulk fluid - a general property shared with the
ARPM. However, we expect that the propensity of the GARPM to
form ion pairs is considerably lower than the ARPM. In other
words, an anion can in principle interact quite strongly with
two cations, whereas it will favour a single partner with ARPM
architecture. One could argue that the GARPM has the advantage
of a somewhat closer resemblance to typical ILs, since these
commonly are composed of a roughly spherical anion, and an
oligomeric cation, with an asymmetrically placed charge.

Using isobaric bulk simulations, we will first establish a
value of b that generates a fluid phase with a density typical of
ILs, under ambient conditions. This GARPM will be used in
subsequent investigations, focusing on electrochemical properties,
where a conducting electrode is immersed in the IL fluid. We will
then utilize classical DFT that is able to (albeit approximately) deal
with both ion-ion correlations, and surface polarization using a
screened image charge approach.

As we shall demonstrate below, the DFT predicts a possible
structural phase separation at the electrode interface, in these
systems. This phase separation results from competition, at a
positively charged electrode, between cations and anions. The
cations are strongly attracted because of their ability to allow
their charge to be closer to the electrode surface, placing them
close to the dielectric interface. This leads to a strong self-image
interaction. On the other hand, the anions are attracted by the
overall positive electrode charge.

A significant advantage of the DFT is that, since we obtain
the appropriately minimized grand potentials, we have an
essentially complete description of the phase separation. An
interesting consequence of this phase separation is a divergent
differential capacitance in the potential range over which the
transition occurs.

Given the rather simple competition mechanism that underlies
the phase transition, we have also investigated this phenomenon
with an even simpler model. Specifically, we use the RPM at an
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elevated temperature (to prevent freezing) where we introduce
adsorption asymmetry (as described above), by allowing the
cations to “penetrate” the electrode surface by some distance 0.
This will generate a stronger attractive self-image interaction for
cations at the electrode surface, in a manner that is qualitatively
analogous to what we find for the GARPM. We shall denote
this simpler model the “wall penetrating cation” RPM, (or
RPM(wpc)). As expected the RPM(wpc) displays a similar behaviour
to the GARPM, according to our DFT predictions, i.e. a phase
transition occurs at some threshold applied voltage.

It should be noted that phase transitions at, or inside,
electrodes have been suggested for other models of similar
systems in the past.’*'>3%3! §zparaga et al.'?® investigated ionic
liquid + solvent systems, displaying a thin-thick (prewetting)
transition, whereby an IL-rich layer formed at the electrode
surface. This transition could, for temperatures above the
wetting temperature but below the surface critical point, be
regulated by the electrode potential. The transition was accom-
panied by a divergence of the differential capacitance at the
potential where coexistence of phases occurs. Ref. 30 describes a
somewhat related IL + solvent system, where dilute-concentrated
phase transitions could be generated inside (model) nanoporous
electrodes. While there are some apparent similarities with these
transitions, and those we find in this work, we emphasize that
we do not observe a prewetting, or capillary-condensing, transi-
tion in our systems. Instead, our systems display surface transi-
tions that emerge from a liquid bulk and are therefore structural
in nature. From the perspective of the mean-field theory used
here, this type of transition is indicated by a change in the layering
of the fluid, given that in-plane structure is not explicitly
accounted for. In our model it is largely driven by a difference
in the distance of closest approach of anions and cations to the
dielectric discontinuity of the electrode. This means cations are
able to polarize the conducting electrode more strongly, leading to
a much larger selfimage interaction. Our system bears a closer
resemblance to the one studied by Merlet et al.'® who simulated a
coarse-grained IL model (as opposed to our simplified model) in
the presence of metallic electrodes. They observed a capacitance
peak that grew with system size, indicating the possibility of a
phase transition in a macroscopic system. If so, the transition
would be of structural nature, and mechanistically similar to
those we observe here. In their systems they see a drastic change
in both the layering as well as in-plane structure. This notwith-
standing, we raise the caveat that the conjectured phase transition
is based on a system-size scaling argument and it is possible that
the indicative divergence in the capacitance will prove to be finite
upon approach to the thermodynamic limit. There is also some
suggestion in their observations that this transition may occur at
both positive and negative potentials, whereas the nature of the
transition in our system is clearly asymmetric. Finally, we note
that Lee and Perkin®' used a phenomenological theory to inves-
tigate potential-induced phase transitions at electrodes. They
noted some features that are generally true for phase transitions
in these kinds of systems, such as a diverging differential capa-
citance at the transition, but it is difficult to make specific
comparisons with the results found in the work described here.

Soft Matter, 2021,17, 3876-3885 | 3877
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2 Model and theory

All charges are embedded in a hard sphere, with a common
diameter d. In this work, as in our previous investigations of the
ARPM, we have set d = 5.0 A. For anions, this charge is centrally
located in the hard sphere, but for cations, it is displaced a
distance b from the centre. This means that our extension
amounts to one additional parameter, as compared with the
RPM. In our earlier work on the ARPM,*”*® where both ions
have a displaced charge, we used a b value of 1.0 A. This
generated a fluid at room temperature and pressure, with a
liquid-like density of about 2.9-3.0 M, which is typical for an IL.
This value for b in the ARPM gave a distance of closest approach
between anions and cations of 3.0 A. Guided by this, we have
used b = 2.0 A for the GARPM used in this work, which gives the
same distance of closest approach between ion pairs. Bulk NPT
simulations have verified that this also gives rise to a fluid, with
a density of about 3M, at room temperature, and a pressure of
1 bar. This was our target bulk density for all DFT calcula-
tions and simulations in this work. The bulk density of the
RPM(wpc) was set identical to that used for the GARPM, i.e. 3M,
although the temperature was set to 900 K, in order to prevent
crystallization.

The RPM(wpc) model was developed as an even simpler
alternative to the GARPM, sharing the latter’s tendency to
preferentially adsorb cations at a neutral conducting surface.
This is achieved by allowing the cations to approach the plane
of dielectric discontinuity more closely than the hard-sphere
radius, which is the case for anions. This facilitates a strong
cationic self-image interaction across the dielectric interface, in
a manner that is qualitatively similar to what we expect in a
GARPM fluid. In all other respects the RPM(wpc) is identical to
the RPM.

The GARPM and RPM(wpc) are both very coarse-grained
representations of ILs. Nevertheless, there are some aspects of
typical imidazolium-based ILs that provide a qualitative ratio-
nale of how these models are constructed. We expect that the
ring-like shape of the aromatic part where the net cation charge
is mainly located, will admit close proximity of the cationic
charge to a polarizing (conducting) surface, as obtained via
simple orientational optimization. Typical anions, however, tend
to have a roughly spherical shape, with less (or no) option for
orientational optimization.

Electrochemical and structural properties were investigated
in a slit geometry, with the ionic fluid confined between two
parallel and perfectly conducting, flat electrodes. The surfaces
have an infinite extension in the (x, y) plane, and distances
along the z direction are measured from the plane of dielectric
discontinuity (z = 0) at the left wall. The right wall is placed with
its plane of dielectric discontinuity at z = h. This separation is
chosen to be large enough to ensure close to bulk-like condi-
tions midway between the surfaces. The confined fluid is assumed
to be in equilibrium with a bulk solution, with a density of
about 3.0M.

The GARPM and RPM(wpc) models are illustrated, in the
proximity of a (model) electrode surface, in Fig. 1.
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Fig. 1 An illustration of our model ions, near the surface of a perfectly
conducting electrode. Image charges are also indicated. Left graph: the
GARPM model. Right graph: the RPM(wpc) model.

The Coulomb interaction, u{(r), between two charges of
valency Z, and Z;, located a distance r from each other, is:

QZZVZ(S Z},Zg
=f——=1I

drege,r r

)6
Bug (r) (1)
where f is the inverse thermal energy, ¢, is the permittivity of
vacuum and ¢, is the relative dielectric constant, accounting for
screening from degrees of freedom that are not explicitly
accounted for in the model. The Bjerrum length, i, is defined as:
pe*
Iy = (2)

T Amege,

Since our model lacks explicit treatment of electron polarization,
we shall model that contribution implicitly, by setting &, = 2. We
will utilize image charges to capture electrode polarization effects,
with the electrode being regarded as a perfect conductor. The hard
wall potential will normally prevent the ion hard-sphere centres
from approaching the plane of dielectric discontinuity closer than
0 = 0.5d. However, as described above for the cations in the
RPM(wpc) model, this distance is smaller and we set it to ¢ = 0.1d.

2.1 Bulk isobaric simulations

We calculated the density of the GARPM model using Monte
Carlo simulations in the isobaric (NPT) ensemble at 1 bar and
298 K. The system consisted of 400 ion pairs and was equili-
brated for 10” steps, 10° configurations were used to determine
the volume average. The electrostatic interactions were calcu-
lated using Ewald summation, with a real space cutoff of 25 A
and 512 reciprocal space vectors. The splitting parameter was set
to %, where L; = 61 A denotes the side of the initial (cubic)
1
simulation box. Tinfoil boundary conditions were used, corres-
ponding to a surrounding medium with infinite relative permit-
tivity. The volume of the simulation box was found to oscillate
around a value corresponding to a bulk density of around 3M.
The outcome of the simulation was a bulk density of about 3M.

2.2 Density functional theory, DFT

We shall recapitulate the density functional theory, which is a
slightly modified version of the formulation introduced in an
earlier work, on the ARPM.* In the same work, predictions of

This journal is © The Royal Society of Chemistry 2021
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the DFT were validated, by comparisons with simulation data
on identical systems.

2.2.1 The iPB approximation of image interactions. We
emphasize that our treatment is limited to monovalent ions,
although a generalization is straightforward. The self-interaction,
Veelr, Of @ monovalent ion, with its own image charges, can be
written as:

[ Imax

Pran(zm =33 {2(/:(/ “h+7) 2w—a w O

where [« is a chosen upper limit of a sum with, strictly
speaking, an infinite number of terms. The attractive potential
from Vg is counteracted by a screening effect, since our
“tagged” ion will (on average) be preferentially surrounded by
an opposite charge, the image of which generates a repulsion.
The range of the ionic atmosphere is expected to be of order
~x~", where « is the inverse Debye-Hiickel screening length in
the bulk:

;e 2
K= {Zﬁg—ao} : (@)

where n; is the density of species i. Hence, the attractive self-
image term for each ion is accompanied by a repulsive contribu-
tion, stemming from the oppositely charged atmosphere.

In our previous work,** we suggested a simple approach to
estimate the counterion screening. With the conducting surface
being located at z = 0, a positive charge at z will be attracted by its
negative self-image, at —z, with the same (x, y) coordinates as the
real charge. We assume that this image charge is neutralized by a
uniformly charged circular disc of radius R4, centred at the
position of the image charge and oriented parallel with the
surface. This can be viewed as a projection of the cylindrically
symmetric ion atmosphere onto the plane containing the self-
image charge, generating a charged circular disc, at —z.

We let P,aw(0) denote the zero frequency van der Waals
(vdW) pressure between two flat conducting surfaces. In the
presence of a dielectric medium, that separates two semi-

infinite conducting slabs, this can be written as:***
{3)
BPuaw(0) = = (5)

where ((n) is the Riemann zeta function. The effect of intervening
salt in these systems is to screen P,qw(0), resulting in a non-
algebraic decay.*® Dielectric fluctuations are ignored in the Pri-
mitive Model, so the ionic contribution to the surface pressure
neglects Pyqw(0), which means that the electrostatic surface
pressure must be corrected by a long-ranged term, which is equal
to —Poaw(0).>*%*

We shall utilize this fact to determine the size, Ry of our
counterion disc. This radius will thus be quantified by requiring
perfect cancellation of the van der Waals (vdW(0)) interaction.
This will have three relevant consequences:

e The sum {self-image charge + disc charge} is zero, ensuring
that the total image potential drops to zero when the original
charge is far away from the surface.

This journal is © The Royal Society of Chemistry 2021
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e The potential contribution from {the self-image charge +
disc charge} is analytic.

e The correct zero frequency vdW interaction between
neutral conducting surfaces is reproduced (by construction).

The interaction (in units of thermal energy) between a
tagged ion at z, and the disc image, at a single surface, can
be written as: 2nlg[(Rq> + 42%)"* — 2z]. Hence the total image
potential, Vimage, with two conducting surfaces separated by 7,
becomes:

B Vimage (27 h; Rd) ~PVelr (27 h)

ZB & 2 2y\1/2
+ R_dzkzlzl,, (R + ((k+ 1) = 22)%)

+ (RE + ((k = 1)h+22)1)1/2 = 2kh]

2[ Mmax
- R—dz( S (RE + (mh)) 2 — mh)

m=24...
(6)

This potential can then be directly imported to a density
functional formulation of the Poisson-Boltzmann theory, to
give an image-corrected version, which we denote, iPB. Given
that we only need to calculate the total image potential once,
for each DFT calculation, we can use a very large number of
reflections, at a modest computational expense. In this work we
have used one thousand reflections, ensuring fully converged sums.

It is straightforward to demonstrate that this approach will
generate an interaction pressure between two conducting sur-
faces that decays as >, in agreement with the expected zero
frequency van der Waals attraction.> Previous work®*** have
demonstrated the following quantitative relationship: Ry =~
2.85/x, which is tantalizingly close to v/8/x. This is an empiri-
cally based relation, that still awaits formal confirmation.
Nevertheless, repeated tests, for a wide range of different
conditions, have verified that this choice will indeed perfectly
oppose P,aw(0), at a long range.

Note that our polarization approximations are limited to a
mean-field level, i.e. fluctuation modes generated by the non-
uniform structuring of ions at the surfaces, are neglected. Other
approximate treatments of image interactions have been
proposed. For instance, Kandtc et al.*® introduced a “dressed
ion” approach, where monovalent ions, in highly asymmetric
z:1 salt solutions, were effectively integrated out. However, this
approach seems less well suited to the 1:1 salt systems
considered in this work.

2.2.2 Mean-field DFT. Our final theory will include an
approximate treatment of ion correlations, but let us at this
stage start with a simpler DFT formulation, where electrostatics
is handled at the mean-field level. However, even our ‘“mean-
field” DFT (approximately) includes excluded volume effects, so
it is not analogous to a Poisson-Boltzmann (PB) formulation. An
important consequence is that the mean-field DFT will display
surface saturation, in contrast to PB based predictions.

Soft Matter, 2021,17, 3876-3885 | 3879
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A mean-field treatment of all Coulomb interactions means that
electrostatics are handled at the non-linear level.>***” The cations
of our GARPM will be handled by polymer DFT,***° at the dimer
level. In other words, a cation is treated as a heterogeneous
dimer, where a neutral hard core centre is bonded to a point-like
charge. We approximate excluded volume effects using a
weighted density functional,*" based of the “Generalized Flory-
Dimer” (GFD) approach.®”*> We limit ourselves to systems where
b = 2.0 A (cations only).

2.2.3 A brief recapitulation of polymer DFT. The anions of
our GARPM are simply spherical, and the cations only have
dimer character. We shall nevertheless first provide a rather
general description of a polymer mixture, which in principle
permits a broader range of systems to be treated. This will then
be specialized to our systems, and we will provide explicit
iterative formulas for the cations.

We let o identify be an oligomeric species. The configuration
of an r-mer & molecule can be compactly written as R* =, 15,. . .., 1.
The Helmholtz free energy functional (Ayp) is, at this mean-field
stage, given by a sum of ideal (4;4), hard-sphere (4;,5) and mean-
field electrostatic (AN") terms:

AmMF = ZAld

The ideal free energy is just a direct sum of the separate
contributions from each of the constituent species,

+ Ahs + A (7)

m[(ﬂ—mﬂmwmwm<>rn
+ JdR“Na(R“)cP(” (R%) (8)

JdR“N (R*) ZVe;‘; r)

where @ﬁ(R“) describes the bonding within the « species,
whereas V%J(r;) is an applied external potential from the
electrode surfaces.

By integrating interactions between charge densities, we
arrive at the electrostatic contribution to the free energy, AM®
Note that we thereby also neglect any short-range constraints on
these energy integrals due to the hard spheres in which the
charges are embedded. The lack of ion correlations (at this level
of theory) effectively leads to an overestimated repulsion
between ions of like charge, although this is, to some degree,
balanced by an overestimated attraction between unlike charges
(due to the lack of a hard-core truncation). We will address this
issue by adding a separate correlation term, as well as by
including a steric adjustment to the short-range part of the
Coulomb interaction between opposite charges.

The mean-field free energy term can be written as:

AL =330 [t e earae St

1mage (l‘)

©)

where Va0 denotes a contribution from image charges within
the (perfectly conducting) electrodes.
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Our fluids are in chemical equilibrium with a surrounding
bulk solution, which is accounted for by a transformation to the
grand potential, Qg

Qur = Avr — > _ {1 — ZieypIN; (10)

i
where N; is the number of particles of type i between the
electrodes, yu; is the chemical potential of i, and Y is the
Donnan potential,*® which is adjusted so as to ensure electro-
neutrality. The grand potential, Qyr, is then minimized with
respect to the densities.

2.2.4 Explicit iterative formulas, in the slit geometry. We
will now specialize the treatment, since the ions of this study
have a simple molecular architecture. In fact, only the cations
of the GARPM have a dimer character, with other ions being
spherically symmetric. We will therefore focus on iteration
formulas for the cations.

We use indices “1” and “+” for the cation hard-sphere
centre, and cation charge centre, respectively. The connection
between the centre and the charge is modelled by an internal
bond that is rotationally flexible, but with a fixed length b. For a
cation, this means that e~®"(1::)/ksT o 5(|r, — r(| — b) where
d(x) is the Dirac delta function.

The two conducting electrode surfaces are placed at z = 0,
and z = h, forming a slit. These walls are separated widely
enough (k = 60 A) to ensure that they can be regarded as two
isolated electrodes, immersed in a bulk solution. A mean-field
integration along the (x, y) dimensions parallel with the surfaces,
leaves only z-dependent quantities. Denoting the bulk salt
concentration by ny,, we obtain the equilibrium distribution of
cations, N&4(zy, z,), by minimizing the free energy:*®

—hs (2 Ob—lz1 -z
Nc?t(ZbZJr) = npe s (21) ( |2[; +|)
x e G FID[Q(2) — §) — Oz + 0 — h)]
(11)

where O(x) is the Heaviside step function, and e *©) is a
Boltzmann weight at z, originating from electrostatic interactions:

ﬁ(SAcl
6n+

h+-b—0
= ZKIBJ (ny(2)

o—b

Ap(2) =

—n_(2))|z = Z|dz" + BVimage (1, z)

(12)

while /s is the excess hard-sphere (excluded volume) contribution:

6Ahs
51’11

mw:4

-]

61’113

(13)

The equilibrium density of positive charge at z,, n.(z,), is then
obtained from:

ne(4) = [N a1,z (14)

This journal is © The Royal Society of Chemistry 2021
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Similarly, the equilibrium density of hard sphere centers at zj,
n1(zl):

ni(z1) = JNg:ft(zl,z_,_)dz_,. (15)
The analogous, but simpler, treatment of spherically symmetric
ions should be obvious.

2.2.5 Correlation-corrected DFT. As we will demonstrate
below, the ordering transitions that are the focus of this work,
will not be predicted at the mean-field level of our theory, i.e. by
the level of theory presented thus far. We will now introduce
approximate correlations between charges, starting with those
that carry the same sign. Like-charged correlations generate a
region of depleted density, surrounding some “tagged’” ions.
This effectively creates ‘“Coulomb holes”, and we will borrow
relations obtained within the so-called ‘“Debye-Hiickel hole”
theory, DHH, proposed by Nordholm and co-workers.**™*® we
add a correlation term to Qu, arriving at Qppyy, which is a
grand potential that (approximately) includes effects from
correlations between ions of like charge:

Qpuu = QmF + Z Jydl'”a(l‘) (fonn [ (v)] — phyn),  (16)

Here, upun is obtained by differentiating fruy at the bulk
density of component a. According to the DHH theory, the
correlation free energy per particle, i.e. foun[7i,(r)] is given by

A fornli(r)] = 1 +32\—“E— In[3] + In[E + & + 1] — &2
(17)
- itan’1 {—26 + 1}
V3 V3

—1/2]1/3 and c=

where & =[1 +cfi

3 4
(31)%2 ?TE Here, 7 denotes

a coarse-grained density, where the range of integration H is
approximated by the DHH hole in the bulk:

_ 3
nx(r) = mj“rir,‘ B Hdr’na (r').

9y
e

(18)

with

H=1x"[(1+@BN*)" -1]. (19)

where we have introduced a dimensionless coupling strength,
I:

&2

= 20
drepekgTa (20)

where a = (4nn/3)"".

2.2.6 Correlations between opposite charges. So far, we
have only included correlations between ions of like charge.
They are indeed the main cause of typical ion correlation
phenomena, such as overcharging, or the attraction between
like-charged surfaces. In fact, in dilute and less strongly
coupled systems, such as most aqueous solutions, the inclusion
of like-charge correlations may well prove sufficient. However,
in the dense systems studied here, such an ‘“unbalanced”
account often generates predictions of a too cohesive fluid,
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where the bulk pressure is negative. This is related to the fact
that the mean-field theory allows complete penetration by
opposite charge densities, i.e. their mutual steric repulsion is
neglected. We shall here utilize the same approximation as in
our previous work on the ARPM, and include an effective hard
sphere exclusion correlation, so that the interaction between
opposite charges, Az now reads:

A5 = %JJZ ny(Mn_()O(r — | — di)ui(Ir — ¥'|)drdr’ (21)
a#f

The diameter, d., of the effective exclusion hole, is adjusted
to a value for which the bulk pressure becomes positive, and of
the order of 1-10 bar. The full correlation functional, Q, is
obtained from Qpyy by replacing the mean-field expression for
interactions between opposite charges by A,~, as given in
eqn (21). Finally, we let w denote the grand potential per unit area.

3 Results

We will start by highlighting DFT predictions for our GARPM
systems, subsequently proceeding to the even simpler RPM(wpc).
Obvious advantages of our DFT approach over computer simula-
tions include computational speed, noise-free data, and the direct
calculation of the free energy.

3.1 GARPM

Let us start by presenting predictions of how the surface
potential, Vs, varies with the surface charge density, os. Note
that in the DFT calculations, o is minimized at a fixed value of
gs. We can then establish ¥ in two independent ways. The
most straightforward route is an extrapolation of ¥(z) to
the z = 0 plane, where Y(2) itself is obtained by integrating
the charge density profile.*” The surface potential can also be
found via the Legendre transformation relation: ¥s = 0w/0as.
Such independent relations are quite useful, since they serve as
a, usually sensitive, test of the numerical calculations. Data
obtained for the two approaches are presented in Fig. 2, where
it is obvious that they agree. We can also identify two separate
phases, labelled “A” and “B”, the regimes of which are sepa-
rated by an unstable region, where ¥ decreases as og increases.
This is analogous to the unstable portion of the classic van der
Waals pressure versus density of a single-component fluid
below the critical point. In that case a uniform and constant
density plays the role of the order parameter. In the case
considered here, the surface charge density is the order para-
meter. If it is assumed to be constant over the electrode, an
unstable portion of the corresponding free energy functional
can eventuate. The horizontal red dashed line indicates the
potential, ‘I’gc), which is the value where A and B phases coexist.
Above P, A is the stable phase, whereas B is stable below this
value. As in the van der Waals fluid, the line satisfies an equal
area constraint for the enclosed regions of the potential curve
above and below the line. If the potential ¥¥) ~ 0.36 V, was
applied in an experimental realization of our model, the stable
system would consist of two surface phase regions on the
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Fig. 2 DFT predictions for how the electrode surface potential varies with
the surface charge density, in the presence of the GARPM fluid. The
surface potential is evaluated in two equivalent, but independent ways:
from integrations of the charge density profiles (solid curves with plus
signs), or from discrete derivatives of the grand potential per unit area with
respect to the surface charge density (dashed curves with crosses). Results
from both methods are provided, as indicated in the legend. One can
identify two different phases, “A” and "B”, with the latter being stable for
surface potentials below P ~ 0.36 V. Phase A is stable above ¥, which
thus identifies the value at which the two phases coexist. The value of P¥
can be obtained from the Legendre-transformed grand potential, see
Fig. 3, and is provided as a dashed horizontal (red) line. There are also
regions where phases A and B are metastable. In the region where the
curve has a negative slope, i.e. where ¥ drops as os increases, the system
is unstable. The spinodal can thus be found from the points at which the
tangent is horizontal.

)

electrode. In the A-region, the surface charge density would
have the value og = o(4) ~ 0.0028 e A~2, with the corres-
ponding A structure of the adjacent liquid. It would coexist with
a B-region, where o5 = 6$)(B) ~ —0.012 e A2, Separating the
two regions would be a 1-dimensional interface which would
contribute a line energy which grows proportionally with the
square root of the electrode surface. This line energy is infinite
in the thermodynamic limit, which means the transition is
first-order.

Another observation worth pointing out is that, while the
ARPM and GARPM are rather closely related, the reduced
symmetry of the latter has a substantial impact on electric
double layer behaviours. We recall that all double layer properties
of the ARPM are symmetrical with respect to zero surface charge
density, i.e. a neutral surface.

In a typical experimental situation, a voltage is applied,
which results in some average surface charge density. Hence,
it is instructive to make a Legendre transformation of our grand
potential per unit area, w, to arrive at another grand potential,
o — Ysos, for which the surface potential is the natural
variable. In Fig. 3, we have plotted how this grand potential
varies with Vs, for our GARPM system.

The region where the phase transition occurs is more appar-
ent in this case, and we can easily identify the crossing of the two
branches, at about 0.36 V, where the two phases, i.e. A and B,
coexist. This is the way in which we established the dashed
horizontal red line that marks ¥, in Fig. 2. The crossing is
marked by a red arrow, in Fig. 3. In passing, we note that the DFT
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Fig. 3 The variation of the Legendre-transformed grand potential, ® — ¥sos,
with applied voltage, for the GARPM system. The system displays a phase
separation, and the red arrow marks the point at which the two phases (A and
B) coexist. This identifies the value of P, which was indicated by a dashed
red line in Fig. 2.

predicts that phase separation may occur also in a system with
reduced electrostatic coupling, as achieved by doubling the
dielectric constant, to ¢ = 4. However, the demixing regime is
then substantially diminished, i.e. they are then rather close to a
“critical value” of . This is explicitly illustrated in the Appendix.

In Fig. 4, we present density profiles for the coexisting A and
B phases (at about ¥ = 0.36V).

The structural differences are quite large, and from a mere
visual inspection, it is far from obvious that the surface
potential is the same for both phases. In a “real” system, one
might end up with macroscopic regions of each phase, separated
by interfacial boundaries. Note that the surface charge density
differs between the two phases, which underlines the impor-
tance to consider the experimental “boundary condition” of a
constant applied voltage. It is also worth noting how the cations
in phase B are able to utilize their strong self-image attraction
(i.e. surface polarization) to generate a very strong density peak
at the surface. This leads to overcharging, and the primary
anionic density peak is actually higher for phase B than for
phase 4, despite the fact that the bare surface charge density of
the former is negative. As we progress further away from the

GARPM
04 0.02
— n+(A)
— n+(B)
0.3 n—(A)
- n-(8)
B 0
<<, 02 0 2 4 6 810
c
o4(A) = 0.0028e/A’
0.1
64(B) = -0.012e/A”
0 WAl
0 2 4 6 8 10

zIA

Fig. 4 Charge density profiles (n, and n_) for coexisting A and B phases,
at ¥s ~ 0.36 V.
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Fig. 5 Differential capacitance of the GARPM. The vertical line marks the
surface potential, P, at which the A and B phases coexist, i.e. parts of the
metastable regions are also included in the graph. Note that B is the stable
phase below V¥, whereas A is the equilibrium phase for higher potentials.

electrode, the strong screening from near-surface ion layers
ensures a rapid approach to bulk-like properties.

As mentioned earlier, the differential capacitance, Cp will
diverge for a system that undergoes a phase transition, at the
electrode surface. This is obvious from its definition, Cp, = 0o/
0¥s, combined with the fact that the phases (A4 and B) coexist at
a common voltage, but with a different surface charge density.
Hence, a transition from one phase to the other effectively
amounts to a sudden change of o5 without any change of Psig,
resulting in a diverging Cp. This was discussed in some detail
in ref. 13 and 30, and also mentioned in ref. 15.

The transition is illustrated in Fig. 5, where the vertical line
marks the equilibrium crossover between the phases. Note how
an increased voltage along the B branch will see a dramatic
increase of the capacitance, upon entering the metastable
regime. In practice, one will likely encounter hysteresis effects
in such a system. Another interesting observation, in Fig. 5, is
how the overall Cp, level of the B branch, which is cation-rich at
the electrode surface, is about 5 times higher than the capaci-
tance of the A branch. This obviously results from the strong
proximity of the cationic charge to the electrode interface.

RPM(wpc)

0.8 — from profile

-=== d0/d0g
0.7 /s‘\

0.5
-0.01

w IV

-0.005 , 0
o elA

0.005

Fig. 6 Variation of the electrode surface potential with surface charge
density, in the presence of the RPM(wpc) fluid. The notation is analogous
to the one used in Fig. 2, with the exception that we here refrain from
explicit identifications of the full A-phase, B-phase, and unstable regimes.

This journal is © The Royal Society of Chemistry 2021

View Article Online

Soft Matter

RPM(wpc)
0
=
<
3 T
= A
-0.02
0.5 0.6 0.7 0.8
YV

Fig. 7 The variation of the Legendre-transformed grand potential, w — Ysos,
with applied voltage, for the RPM(wpc) system.

3.2 RPM(wpc)

Encouraged by the interesting structural response found for a
fluid as simple as the GARPM, we decided to scrutinize an even
simpler model - the RPM(wpc).

The variation of the surface potential with surface charge
density is given in Fig. 6. Similarly to the GARPM system, we
observe an unstable regime, with a negative slope, which clearly
indicates a demixing regime. However, in contrast to the
GARPM, the curve is continuous. This signifies the fact that,
contrary to the GARPM, DFT calculations of the RPM(wpc) under
these conditions, will never produce two different solutions (of
which only one is stable) for a given surface charge density.

The corresponding Legendre-transformed grand potential,
o — Ysos, is shown in Fig. 7. Again, the analogy with the GARPM is
clear, ie. the inherent ability of the electrode surface to specifically
attract cations leads to an anion—cation competition at the surface
for positive potentials. This ultimately leads to the formation of two
structurally different phases. The point where the curve crosses
itself identifies the condition at which these two phases coexist.

The differential capacitance of the RPM(wpc) system is given
in Fig. 8. The overall appearance of the Cp, curve is quite similar

RPM(wpc)
¥ (©)

100 H /
80 e
e
60

o
2
£
K2

~ 40
o
o

20

phase A
0
0.6 0.7 0.8
PNV

Fig. 8 Differential capacitance of the RPM(wpc). The notation is analogous
to that used in Fig. 5. We emphasize that B is the stable phase below 143
whereas A is the equilibrium phase for higher potentials. This means that the
part of the B-curve that is above P¥ indicates metastable conditions
(analogous for the A-curve below P¥).
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Fig. 9 Phase diagram of the RPM(wpc) system.

to the one for the GARPM, albeit displaced to higher voltages.
In this system, the ratio between the Cp, levels of the (stable)
B and A branches is about 6-7, which again highlights the
important role that the proximity between fluid charge and
electrolyte surface (plane of dielectric discontinuity) has. In an
experimental system, or a theoretical model with atomistic
resolution, this might correspond to the charge of a spherical
anion (BF, , say) being “buried”, whereas the charge of an
asymmetric cation (BMIM', say) is more “exposed” (by an
optimized molecular orientation) to the electrode surface.

3.2.1 Phase diagram. It is of interest to work out how the
coexisting phases merge, as the temperature is increased
towards a critical value. In Fig. 9, we plot the phase diagram,
above 900 K, for the RPM(wpc) model. The surface charge
density for coexisting A and B phases clearly merge to a critical
point, at a temperature slightly above 1400 K. Since our DFT
neglects fluctuations, we anticipate d — 1 mean-field critical
behaviours, similar to mean-field treatments of other kinds of
surface transitions, such as prewetting. In passing, we note that
our RPM(wpc) system was obviously located ‘“deep” into the
demixing regime, with a critical temperature being more than
50% higher than the investigated value.

3.2.2 Mean-field results. Let us finally explore the DFT pre-
dictions that result if electrostatics is treated at the mean-field level.
The option to “remove” ion correlations is an attractive feature of

0F 7T ™
--—- GARPM
— — RPM(wpc)
g 20
fr
2
\D
© 10
0
-1 0 1 2 3
YV

Fig. 10 Differential capacitance of the GARPM and RPM(wpc), according
to a version of DFT, where electrostatics is handled at the mean-field level,
i.e. where all accounts of ion correlations have been removed from the
original formulation.
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Fig. 11 The variation of the Legendre-transformed grand potential, w — ¥sos,
with applied voltage, for the GARPM system. Results are shown for systems with
dielectric constants of ¢ = 2 (same as in Fig. 3), ¢ =4, and ¢ = 6.

the density functional approach, as it allows scrutiny on the specific
role of these correlations, but also an insight on how an otherwise
similar, but less strongly coupled system might behave.

Differential capacitance curves for the GARPM and RPM(wpc)
systems, as predicted by mean-field DFT, are given in Fig. 10.

As expected, the phase transition is lost, but the impact of the
model asymmetries, compared to an RPM reference, is still quite
pronounced. In fact, one observes a “trace” of the transition
found in a more strongly coupled system, as manifested by a
dramatic drop of Cp for an increased potential, in a narrow
regime where the cation-dominated electric double layer is
replaced by an anion-dominated layer. For the GARPM system,
the capacitance of the cation-rich double-layer is nearly 5 times
higher than that afforded by an anion-rich layer. For the
RPM(wpc), the corresponding ratio is about 4. These differences
are naturally caused by the ability of the cations to approach the
electrode interface more closely than the anions.

4 Conclusions

We have explored some electrochemical and structural behaviours
of two very simple and coarse-grained IL models: the GARPM and
the RPM(wpc). In fact, the RPM(wpc) is perhaps more appropri-
ately viewed as a model of a molten salt. An important aspect,
from an electric double layer point of view, that is shared by both
models, is the ability of the cationic charge to approach the
electrode interface more closely than its anionic analogue.
Remarkably enough, this is, according to our DFT, enough to
generate a phase transition. This transition originates from a
competition, at positive applied voltages between surface-
polarization attracted cations, and surface charge attracted
anions, at the interface. We invoke an approximate treatment of
ion correlations in our DFT formulation, and an earlier study
demonstrated that this generates a reasonably accurate account of
these effect.”® The electrode is modelled as a perfect conductor,
and surface polarization is handled by an approximate image
charge treatment, that has been tested and validated in earlier
work.?” The phase transition vanishes with a mean-field treatment
of electrostatics, but the competition will then still generate a
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dramatic drop of the differential capacitance, as an increased
voltage transforms a cation-dominated electric double layer to one
where the electrode surface is enriched by anions. We hope to
corroborate these transitions by simulations, in future work.
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Appendix: less strongly coupled
GARPM

Here, we demonstrate that phase separation also may occur in
systems in which the electrostatic coupling is weaker. In Fig. 11,
we compare grand potential predictions, for the GARPM with a
dielectric constant of 2 (our reference value), 4, and 6.

The possibility for phase separation at a higher dielectric con-
stant is evident, but it is also clear that a weaker coupling leads to a
smaller demixing regime. In fact, the tiny demixing regime for ¢ = 6
indicates that this is close to the critical value. This prediction may
prove useful for future simulation studies, where a strong electro-
static coupling usually leads to sluggish behaviours, and slow
convergence. The DFT predictions suggest that one might be able
to establish phase separation, also in systems with weaker coupling.
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