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Capillary force on an ‘inert’ colloid: a physical
analogy to dielectrophoresis†

Joseph M. Barakat and Todd M. Squires *

‘‘Inert’’ colloids are mm-scale particles that create no distortion when trapped at a planar fluid–fluid

interface. When placed in a curved interface, however, such colloids can create interfacial distortions of

quadrupolar symmetry – so-called ‘‘induced capillary quadrupoles.’’ The present work explores the

analogy between capillary quadrupoles and electric dipoles, and the forces exerted on them by a

symmetry-breaking gradient. In doing so, we weigh in on an outstanding debate as to whether a

curvature gradient can induce a capillary force on an inert colloid. We argue that this force exists, for

the opposite would imply that all dielectrophoretic forces vanish in two dimensions (2D). We justify our

claim by solving 2D Laplace problems of electrostatics and capillary statics involving a single particle

placed within a large circular shell with an imposed gradient. We show that the static boundary

condition on the outer shell must be considered when applying the principle of virtual work to compute

the force on the particle, as verified by a direct calculation of this force through integration of the

particle stresses. Our investigation highlights some of the subtleties that emerge in virtual work

calculations of capillary statics and electrostatics, thereby clarifying and extending previous results in the

field. The broader implication of our results is that inert particles – including particles with planar, pinned

contact lines and equilibrium contact angles – interact through interparticle capillary forces that scale

quadratically with the deviatoric curvature of the host interface, contrary to recent claims made in the

literature.

1 Introduction

Colloidal (mm-scale) particles readily adsorb to fluid–fluid inter-
faces and interact over large (mm-scale) distances via capillary
forces.1,2 These interactions can be exploited to drive colloidal
self-assembly at interfaces,3–9 which offers a promising route for
the design of advanced two-dimensional (2D) materials.2,10,11

Interparticle capillary forces generically result from interfacial
deformations due to the presence of the particles. Since colloidal
particles have negligible buoyant weight, they can deform an inter-
face only by virtue of their shape12–15 or wetting properties.3–5 Thus,
colloidal capillary interactions are distinct from buoyancy-driven
aggregation of mm-scale particles (i.e., the ‘‘Cheerios effect’’).16–18

The present work addresses ‘‘inert’’ colloids, i.e., colloidal
particles that produce no distortion in planar interfaces, but do
deform curved interfaces. The wetting condition at the particle
boundary interferes with the background curvature of the host
interface, inducing an interfacial distortion of quadrupolar
symmetry.19 Recently, there has been some disagreement19–28

as to whether such ‘‘induced capillary quadrupoles’’ experience
a force when embedded in a gradient of interfacial curvature.
Early theoretical work by Würger19 and others20–22,29 predicted
that inert colloids on a curved interface would attract due to
their induced quadrupoles, with a capillary force that scales
quadratically with the deviatoric curvature of the host interface.
However, later calculations by Sharifi-Mood et al.23,24 reported
that the same force vanishes up to quadratic order in the
curvature. Although both studies employed the principle of
virtual work to compute the capillary force, they differ in their
treatment of the outer boundary enclosing the particles. Con-
founding this issue is the practical challenge of measuring such
forces, which are typically obscured by interfacial deformations
due to particle roughness.23,24 The discrepancy between the two
theoretical results, combined with the relative dearth of experi-
mental evidence to support either view, has incited a spirited
debate25–28 with no clear consensus on the ‘‘correct’’ approach.

Further insight might be gained by exploiting the analogy
between capillary statics and 2D electrostatics. While this math-
ematical analogy is widely acknowledged in the literature,2,29–31

some of its important physical implications have received less
attention. We propose that the capillary force on a quadrupole
induced by a background curvature is akin to the dielectrophoretic
force on an induced dipole in an inhomogeneous electric field.
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Dielectrophoretic forces are well known and well established.32–39

They can be computed directly, by integrating the Maxwell stress
tensor over the particle boundary. Alternatively, they can be
derived using the principle of virtual work, so long as the
electrostatic condition on the outer enclosing boundary is taken
into account.40 It stands to reason that consideration of the outer
boundary is equally relevant to the calculation of capillary forces
by virtual work arguments. Indeed, this issue was discussed
explicitly by Domı́nguez et al.,29 who developed a useful stress
tensor formulation for capillary statics based on the analogy to
2D electrostatics.

In the spirit of this analogy, we reexamine the force on an
induced capillary quadrupole in an interface with an inhomo-
geneous, anisotropic curvature. Specifically, we show that par-
ticles with pinned contact lines or equilibrium contact angles
in a curvature gradient are analogous to conducting or insulating
particles in an electric field gradient. To resolve any ambiguities
with the outer boundary, we consider a freely floating particle
placed inside a large shell, and explicitly place sources on the
outer shell that establish a gradient. We then compute the force
on the particle using both the principle of virtual work and the
stress tensor approach. In the electric problem, we find that
neglecting the work done on the outer boundary leads to the
erroneous conclusion that the dielectrophoretic force vanishes
in 2D, whereas properly accounting for this work recovers the
expected scaling between the force and the gradient of the
squared electric field strength. Applying the same analysis to
the analogous capillary problem yields a similar relationship

between the force and the gradient of the squared deviatoric
curvature, in agreement with earlier studies.19–22,29 Our results
clarify and extend previous calculations in the field and suggest
that inert colloids interact on curved interfaces. More broadly,
our work highlights some of the issues that can arise when
applying the principle of virtual work to compute interparticle
forces in unbounded media.

2 Background

Previous studies of capillary interactions between particles at
fluid–fluid interfaces have largely focused on interfacial distortions
like the ones shown in Fig. 1. By far the most well studied16–18,41–47

interactions are due to capillary monopoles (Fig. 1a). These inter-
facial deformations are produced by the action of a transverse
force P, e.g., the force of gravity acting on a heavy or light particle
trapped at an interface. Two particles with overlapping capillary
monopoles of ‘‘like sign’’ will feel a lateral force of attraction, as in
the ‘‘Cheerios effect.’’16–18 Similarly, a lateral torque N that
rotates a particle out of the undeformed plane creates a capillary
dipole (Fig. 1b). Davies et al.9,48–51 showed that such torques can
be achieved, at least in theory, by magnetizing a paramagnetic
particle via an orthogonal magnetic field.

Colloidal particles embedded in a fluid–fluid interface are
typically too small to experience significant transverse forces or
lateral torques, so their monopole and dipole moments are
negligible.52 Thus, the lowest-order deformation mode produced

Fig. 1 ‘‘Permanent’’ capillary multipoles sourced by a particle embedded in an initially planar fluid–fluid interface. ‘‘Hot’’ and ‘‘cold’’ colors represent,
respectively, displacements of the interface above and below the undeformed plane. Gradient lines indicate the direction of the interface slope.
(a) Monopole produced by a vertical displacement out of the plane (e.g., due to the buoyant force P exerted on a light particle by a gravitational field).
(b) Dipole produced by a rotation about the horizontal (e.g., due to the magnetic torque N exerted on a paramagnetic particle by a magnetic field).
(c) Quadrupole produced by a saddle undulation of the contact line (e.g., due to particle shape, surface chemistry, or surface roughness).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Fe

br
ua

ry
 2

02
1.

 D
ow

nl
oa

de
d 

on
 8

/1
6/

20
24

 8
:1

2:
38

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm02143a


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 3417–3442 |  3419

by a colloid is a capillary quadrupole (Fig. 1c). Colloids may create
their own quadrupoles by virtue of their anisotropic shape,12–15,52,53

surface chemistry,3,4,54 or surface roughness.23,24,30,31,55–57 We
refer to such distortions as permanent quadrupoles, following
the terminology of Domı́nguez et al.,29 because they persist even
in the absence of a background curvature. In the presence of a
curvature gradient, an embedded particle with a permanent
quadrupole moment experiences a lateral force F and transverse
torque T.58 Hu and Bush59 famously showed that this coupling
enables the larva of the waterlily leaf beetle to climb water
menisci by simply adopting an arched body posture, which
creates a quadrupolar deformation. Importantly, the lateral
force due to a permanent quadrupole has been shown (both theore-
tically30 and experimentally23,24) to scale linearly with the deviatoric
curvature.

Capillary quadrupole moments can also be induced by the
mere presence of a colloidal particle in a background curvature
(Fig. 2). Unlike permanent quadrupoles, induced quadrupoles
vanish if the host interface is planar. To distinguish between
permanent and induced quadrupoles, we define an ‘‘inert’’
colloid as one having no permanent multipole moment. Such
colloids leave a planar interface undisturbed, yet produce
quadrupolar distortions within a curved interface. Würger19

was the first to predict that two inert colloids (specifically,
spherical colloids with equilibrium contact angles) would
attract if embedded in an interface with anisotropic curvature.
According to calculations by Würger19 and others,20–22 the
capillary energy and lateral force of attraction between induced
quadrupoles should scale quadratically with the deviatoric

curvature, a second-order effect compared to the linear scaling
predicted for permanent quadrupoles. Subsequent experiments
published, in the same year, by Ershov et al.8 and Blanc et al.21

seem to support Würger’s theory.
More recently, Sharifi-Mood et al.23,24 published experi-

ments and theoretical calculations on the motion of cylindrical
and spherical colloids in an externally imposed curvature
gradient. They concluded, based on their theoretical results,
that the force due to an induced capillary quadrupole should be
much weaker, possibly even nonexistent, compared to Würger’s
prediction, and that only a permanent quadrupole could drive
particle motion. The disparity between the findings of Würger
and Sharifi-Mood et al. can be traced to how the principle of
virtual work was applied to the region far from the particle.
Sharifi-Mood et al.24 claimed that the work done to deform the
interface in the far field exactly cancels the work done adjacent
to the particle. This conclusion has drawn criticism, most
notably in a series of comments by Galatola25,28 and Würger.26

Both of these authors asserted, albeit by slightly different
rationale, that the work performed by a force acting on the
particle cannot depend on the deformation in the far field. In
particular, Galatola25 argued that no work is done far from the
particle due to the divergence of the interface slope in that
region, and that one must relax the assumption of small slopes
in order to evaluate the work done on the particle. On the other
hand, Würger26 avoided the problem of diverging interface
slopes by placing a definite boundary at a fixed distance from
the particle, wherein the small-slope approximation is valid.
By this construction, Würger then argued that his original

Fig. 2 ‘‘Induced’’ capillary quadrupole emanating from a planar particle trapped at a curved fluid–fluid interface. The colors and gradient lines have the
same meaning as in Fig. 1. (a) The presence of the particle distorts the surrounding interface. (b) In the particle’s absence, the interface locally adopts a
saddle shape, characteristic of a uniform deviatoric curvature. (c) Subtracting the particle-free interface from the distorted interface reveals the induced
quadrupole.
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prediction19 is recovered so long as the wetting condition on
the outer boundary is taken into account. Subsequent
responses27,28 indicate that Galatola, Würger, and Sharifi-
Mood et al. were unable to reach a clear consensus. To date,
it is not obvious which approach is ‘‘correct,’’ leaving open the
question of whether inert colloids will interact within a curved
interface.

Compounding this issue is the practical challenge of measuring
forces due to induced capillary quadrupoles. In large part, the
difficulty lies in synthesizing truly inert colloids. Even a small
amount of roughness on the surface of a colloid (say, 20 nm)
undulates its contact line and creates a permanent distortion of
the interface. Stamou et al.30 showed that such distortions drive
large capillary forces that can overwhelm those induced by a
background curvature. For instance, in the seminal experiments
of Sharifi-Mood et al.,23,24 the measured capillary distortion energy
due to an interface-trapped colloid (radius 5 mm) was of O(104 kT).
This energy is consistent with contact-line undulations due to
B20 nm of particle roughness, as measured using atomic force
microscopy.23,24 By comparison, Galatola25,28 estimated that the
induced quadrupole for the same colloid would contribute an
O(103 kT) correction to the energy, which is smaller by an order of
magnitude. Moreover, Sharifi-Mood et al.23,24 showed, by tracking
particle trajectories, that the capillary energy scales linearly with
the host interface curvature, further supporting their conclusion
that a permanent quadrupole due to surface roughness drives
particle motion. One potential way of suppressing these permanent
quadrupoles would be to use molecularly thin colloids, such as the
particles of graphene, molybdenum disulfide, and hexagonal boron
nitride recently studied by Goggin et al.11 Planar particles do not
possess undulated contact lines, yet do show evidence of inter-
particle interactions at interfaces.10,11,60,61

On the other hand, further theoretical insight might be
gained if we revisit the virtual work calculation for an inert
colloid. Domı́nguez et al.29 had previously raised concerns with
applying the principle of virtual work to capillary problems in
unbounded domains. They argued that the outer boundary
condition does impact the virtual work calculation if the
interfacial disturbance induced by a trapped particle does not
decay ‘‘sufficiently fast.’’29 Indeed, the effect of outer enclosing
boundaries was heavily scrutinized in a separate, but related,
debate in the literature regarding the possible origin of
‘‘monopolar-like’’ capillary attractions between charged colloi-
dal particles trapped at oil–water interfaces.62–75 In order to
avoid this outer boundary condition altogether, Domı́nguez
et al.29 adopted a stress tensor formulation of capillary statics
by analogy to the Maxwell stress tensor of electrostatics. By
directly integrating the stress tensor over the particle boundary,
they were able to reproduce the capillary force originally
calculated, using virtual work arguments, by Würger.19 Later,
Galatola and Fournier applied the stress tensor formalism to
generalize Würger’s result for arbitrary interface shapes.21,22

However, it is not yet clear, based solely on these calculations,
how to reconcile the stress tensor and virtual work approaches,
since the latter would appear to require information from the
outer boundary. In fact, virtually all theoretical studies of

particles in curved interfaces have, with few exceptions,68,69

focused on unbounded media, without explicitly considering
the outer boundary condition.

By contrast, several relevant studies in the electrostatics
literature have examined bounded domains.40,76 Liu et al.40

considered a dielectric particle (in 2D and 3D) bounded externally
by a large shell with a prescribed potential distribution. They
showed that the stress tensor method and the virtual work
method yield the same expression for the dielectrophoretic force,
for which there is substantial literature precedent.32–38 We pro-
pose that the dielectrophoretic force can be used as an analogy for
the capillary force on an inert colloid, by exploiting the widely-
acknowledged2,29–31 mathematical similarities between capillary
statics and 2D electrostatics.

In this paper, we revisit the calculation of capillary forces on
induced quadrupoles by way of analogy to dielectrophoretic
forces on induced dipoles. We argue that the same subtleties
appear in both the capillary and electric problems with regards
to applying the principle of virtual work in an unbounded
domain. To avoid such subtleties, we consider a bounded
domain comprising a circular particle of radius a enclosed by
a circular shell of radius R (Fig. 3). Sources placed on the
external boundary set up a gradient in either an electric field or
an interface curvature. The gradient interacts with the induced
multipole moment on the particle (dipole in the electric pro-
blem, quadrupole in the capillary problem). No torque is
exerted (T = 0), but the force F acting on the particle can be
determined in one of two ways. In the first approach, the stress
tensor r is evaluated and integrated over the particle boundary,

F ¼
I
r0¼a

n̂ � r ds; (2.1)

where n̂ is the (outward pointing) unit normal and r0 is the
distance measured from the particle’s center. In the second
approach, we first compute the energy W required to place the

Fig. 3 Schematic of a circular particle of radius a placed inside a circular
shell of radius R, where n = r � r0 is the particle position relative to the shell
center. Note that the unit normal n̂ always points into the domain, such
that n̂ =�r/r and r0/r0 at r = R and r0 = a, respectively. The geometry applies
to both the electric and capillary problems.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Fe

br
ua

ry
 2

02
1.

 D
ow

nl
oa

de
d 

on
 8

/1
6/

20
24

 8
:1

2:
38

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm02143a


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 3417–3442 |  3421

particle in the domain. Then, according to the principle of
virtual work, an incremental displacement dn of the particle
position is accompanied by a change dW in the total energy:

dW = �F�dn + dWext. (2.2)

The basic laws of mechanics dictate that the force F appearing
in eqn (2.2) must be given by (2.1). The last term dWext in
eqn (2.2) accounts for any external energy supplied to the
system that is not associated with the change in the potential
energy of the particle. This term is included to allow for the
possibility that a virtual displacement dn of the particle can
result in a shift of other parts of the system in order to maintain
the boundary conditions. In such a case, some of the work is
performed by the forces acting on those parts, in addition to
the force F acting on the particle.

We show that if the boundary condition on the outer shell is
neglected, then the force predicted by the virtual work method,
eqn (2.2), identically vanishes in both the capillary and electric
problems, as predicted by Sharifi-Mood and coworkers.2,23,24,27

However, this result disagrees with the force obtained by the
stress tensor method, eqn (2.1). Accounting for the outer
boundary condition, as originally suggested by Würger,26 rectifies
the discrepancy between the two methods and gives a non-
vanishing force. In the electric problem, we recover the well-
established32–36 scaling of the dielectrophoretic force with the
gradient of the squared electric field strength. In the capillary
problem, we find that the capillary force scales with the gradient
of the squared deviatoric curvature, in agreement with the
findings of Würger, Galatola and coworkers.19–22,25,26,28 The
direction of the force (up or down the gradient) depends upon
the particle wetting condition.

Our work is impactful in several respects. For one, our
results suggest that particles need not have undulated contact
lines in order to interact on curved interfaces. To be clear, this
does not imply that a permanent multipole due to contact-line
undulation cannot lead to particle motion. Indeed, Sharifi-
Mood et al.23,24 provide strong evidence that permanent quad-
rupoles drive colloidal capillary migration under the conditions
of their experiments. Hence, their work remains an important and
robust validation of the theory originally put forth by Stamou
et al.30 However, our findings also suggest that induced multi-
poles can act in addition to permanent multipoles to drive particle
motion – which of these two effects is dominant depends upon
the properties of the particles and the host interface. For instance,
molecularly thin, planar particles (e.g., sheets of graphene) could
interact within a curved fluid–fluid interface via induced capillary
multipoles, whereas their permanent multipole moments would
be, presumably, too weak to generate an appreciable force of
attraction.

Moreover, our study is the first, to the best of our knowledge,
to rigorously consider the capillary force on a particle in a
bounded domain. We apply the method of reflections to
approximate the particle–shell interaction, and validate this
approximation using an exact solution in bipolar coordinates.
Thus, we are able to show explicitly that the wetting condition
on the outer boundary is a necessary ingredient in the principle

of virtual work, as previously suggested by Domı́nguez et al.29

Handling this boundary condition can become a subtle task,
with a close parallel to the electrical condition applied at an
external electrode. However, the physical analogy between
electrostatics and capillary statics is not complete, despite their
shared mathematical structure. As we shall see, there are
important distinctions between electrical and capillary work
that emerge when boundaries are taken into account.

The remainder of this article focuses on paradigmatic problems
in electrostatics and capillary statics for the 2D geometry sketched
in Fig. 3. We begin in Section 3 with the electric problem,
specifically focusing on dielectrophoretic forces exerted on ideally
conducting and insulating particles. In Section 4, we consider the
analogous capillary problem. There, we examine the capillary
forces on colloids with either symmetrically pinned (non-
undulated) contact lines or equilibrium contact angles. In the
latter case, both cylindrical and spherical particles are considered.
Finally, we discuss our results and provide concluding remarks in
Section 5.

3 Electric problem

In this section, we examine dielectrophoresis of polarizable
particles in an electric field as an analogy to the migration of
inert colloids in a curved interface. Fig. 3 depicts a cylindrical
particle (radius a) embedded in a dielectric medium (permit-
tivity e) and bounded externally by a cylindrical shell (radius R).
No free charges are contained within the shell’s interior. The
same geometry was considered by Liu et al.40 in their study of
dielectrophoresis of dielectric particles.

In the particle’s absence, the electrostatic condition on the shell
boundary establishes a potential cext(r) at a position r relative to the
shell’s center. For simplicity, we consider the quadratic potential

cext ¼ �Eext
0 � r� 1

2
ð=EextÞ0:rr; (3.1)

with the associated electric field

Eext = �=cext = Eext
0 + (=Eext)0�r. (3.2)

Here, Eext
0 and (=Eext)0 are, respectively, the field and field

gradient evaluated at r = 0. It is assumed that these quantities
can be controlled independently by tuning the electrostatic
condition on the outer shell, as discussed below.

By the usual properties of electrostatics, the potential cext

must satisfy Laplace’s equation in the shell’s interior,

r2cext = 0 r r R, (3.3)

which implies that (rEext)0 is both symmetric and traceless.
Either of two conditions may be applied at the outer shell in
order to establish the external potential given by eqn (3.1). One
approach is to fix charges along the shell boundary so as to
constrain the normal derivative of the potential:

n̂�=cext = �n̂�Eext
0 � n̂�(=Eext)0�r at r = R. (3.4a)

Here, the reference potential is chosen such that the average poten-
tial of the outer shell vanishes: hcextiR ¼ ð2pRÞ�1

H
r¼R cextds ¼ 0.
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Alternatively, one could prescribe the potential distribution at
r = R by connecting the shell to a system of batteries:

cext ¼ �Eext
0 � r� 1

2
ð=EextÞ0:rr at r ¼ R: (3.4b)

Either condition (3.4a) or (3.4b) yields (3.1) as the unique
solution of (3.3). Thus, the external potential cext is insensitive
to the condition applied at r = R when the internal medium is a
homogeneous, linear dielectric.

The situation changes, however, when a polarizable particle
is placed at r = n. (Fig. 3 defines r0 = r� n as the position relative
to the particle’s center.) Inserting the particle changes the
potential to c(r;n), which now depends upon the electrostatic
condition applied at the outer shell. To illustrate this depen-
dence, we consider the change in electrical energy W required
to embed the particle in the dielectric medium. Assuming the
electrical properties of the particle are immaterial (e.g., ideally
conducting or insulating particles), then the energy W takes
the form,

W ¼ 1
2
e
ðð

r0 � a
r � R

j=cj2d2r� 1
2
e
ðð

r�R
j=cextj2d2r: (3.5)

Clearly, W depends non-locally on the electric fields �=c and
�=cext. Information from the inner boundary r0 = a and outer
boundary r = R is needed to fully specify the energy W. In
subsequent calculations, it will be shown that the choice of
electrostatic condition at r = R affects the energy even in the
limit as the shell becomes infinitely large (R - N).

By contrast, the force F can only depend upon the potential
disturbance in the immediate vicinity of the particle, regardless
of the condition used to establish the field. This can be seen by
substituting the Maxwell stress tensor

r ¼ e =c=c� 1
2
j=cj2d

� �
(3.6)

into eqn (2.1), giving

F ¼ e
I
r0¼a
ðn̂ � =cÞ=c� 1

2
j=cj2n̂

� �
ds: (3.7)

This expression shows that the force F depends only upon the
local behavior of �=c near r0 = a. Of course, the force is related
to the energy W by the principle of virtual work, eqn (2.2).

The electric potential c appearing in eqn (3.5)–(3.7) satisfies
Laplace’s equation,

r2c = 0 for r0 Z a and r r R, (3.8)

subject to appropriate boundary conditions at r = R and r0 = a.
Again, one of two conditions may be applied at the outer
shell r = R. If the charge density is fixed along the shell
boundary, then

n̂ � =cQ ¼ n̂ � =cext at r ¼ R; (3.9a)

where cext is given by eqn (3.1) and the subscript Q indicates
that the charge distribution is unchanged after inserting the
particle. Alternatively, if the potentials are fixed by connecting
the shell to a system of batteries, then

cV ¼ cext at r ¼ R; (3.9b)

where the subscript V now indicates a fixed distribution of
potentials. One may specify either eqn (3.9a) or (3.9b) at the
shell boundary, but not both.77 In either case, it is implied that
the reference potential is set to the average potential of the shell.

All that remains is to specify the condition on the particle
boundary r0 = a. Below, we consider two limiting cases, one
where the particle acts like a perfect conductor (Section 3.1) and
the other where it acts like a perfect insulator (Section 3.2). For
each type of particle, the methodology for calculating the
potential c, force F, and energy W is essentially the same. Thus,
to avoid redundancy, we focus the majority of our analysis on
conducting particles and only briefly present the key results for
insulating particles.

3.1 Conducting particle

We use the term ‘‘conductor’’ as a shorthand for particles with
large dielectric constants. Traditionally, a conductor refers to a
material that conducts electric current, which (for linear materials)
is related to the electric field by Ohm’s law. However, dielectric
materials with permittivities much larger than e tend to bend field
lines into an orientation that is normal to their boundaries, as
though they were drawing current from their surroundings.78–80

Thus, strong dielectrics behave like ideal conductors insofar as
propagating fields, even though they cannot actually conduct
currents.

At the boundary of a ‘‘conducting’’ particle, the tangential
component of the field vanishes and an equipotential is formed:

c = V at r0 = a (3.10)

The constant potential V ¼ ð2paÞ�1
H
r0¼a cds is solely a function

of the particle position n and is determined from the constraint
that the particle carry zero net charge,

Q ¼ �e
I
r0¼a

n̂ � =cds ¼ 0: (3.11)

Since the charge vanishes, the first non-vanishing multipole
moment on the particle is the dipole moment:

P ¼ �e
I
r0¼a
½r0ðn̂ � =cÞ � cn̂�ds: (3.12)

Eqn (3.8)–(3.11) comprise a linear boundary-value problem
for c. For the special case where the particle is concentrically
positioned inside the shell n = 0, the solution is straightfor-
wardly obtained as a finite series of the 2D vector harmonics.
For the more general case n a 0, a solution is possible using the
method of reflections81–84 (see the ESI,† Section S.1) or by
eigenfunction expansions in bipolar coordinates40,83 (Section
S.2, ESI†). Below, we present the first few reflections for the
electric potential, which are sufficient to calculate the electric
force and energy in the unbounded limit R - N.
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Assuming x = o(R), the solution satisfying the fixed-charge
condition (3.9a) is approximately given by

cQ ¼ cext þ a2Eext
n �

r0

r02
þ r

R2
þ 2rðr � nÞ � r2n

R4
þ � � �

� �

þ 1
2 a

4ð=EextÞn:
r0r0

r04
þ rr

R4
þ � � �

� �
;

(3.13)

where the subscript ‘‘n’’ indicates evaluation at r = n. Eqn (3.13)
is derived explicitly in Section S.1.1 of the ESI.† The field lines
associated with sequential reflections in eqn (3.13) are sketched
in Fig. 4. Reflected modes from the particle are decaying
harmonics with respect to r0, with the leading contribution
being the induced dipole. The shell reflections are growing
harmonics with respect to r that decay as R - N; these are
retained here for the virtual work calculation presented later in
Section 3.1.2. Higher reflections that are omitted in eqn (3.13)
contribute O(a2/R2) corrections in the vicinity of the particle.

If instead the potentials are fixed on the outer shell, then the
proper boundary condition is given by eqn (3.9b). In this case,
the approximation for the potential is

cV ¼ cext þ a2Eext
n �

r0

r02
� r

R2
� 2rðr � nÞ � r2n

R4
þ � � �

� �

þ 1
2
a4ð=EextÞn:

r0r0

r04
� rr

R4
þ � � �

� �
;

(3.14)

which differs from eqn (3.13) only in the sign of the shell
reflections. It can be generally verified that the Neumann (fixed-
charge) and Dirichlet (fixed-potential) boundary conditions on
the outer shell induce harmonic reflections of opposite sign in
2D [see Appendix S.A, eqn (S.A.5)–(S.A.6), of the ESI†]. Later, we
shall see that this sign reversal directly impacts the electrical
energy required to insert the particle into the field.

With the solution for the potential in hand, the force can be
calculated either directly, by use of the stress tensor method
[cf. eqn (3.7)], or indirectly, by applying the principle of virtual
work [i.e., differentiating eqn (3.5) with respect to the particle
position]. We illustrate both methods next.

3.1.1 Electric force based on the stress tensor. After sub-
stituting either cQ or cV [eqn (3.13) or (3.14)] into the stress-tensor
integral (3.7) and taking the limit as R - N, we obtain

F = pea2(=|Eext|2)n, (3.15)

where the higher-order terms are smaller by a factor of a2/R2.
Eqn (3.15) is the canonical expression for the dielectrophoretic
force on an ideally conducting, cylindrical particle.32–36 According to
this expression, the force is directed up gradients in the external
field strength |Eext|. Thus, freely floating conductors migrate to
regions of high field strength – so-called positive dielectro-
phoresis.85 Physically, the force arises from the coupling
between the background field gradient and the induced dipole
moment [cf. eqn (3.12)]

P = 2pea2Eext
n , (3.16)

so that eqn (3.15) has the expected form F = (P�=Eext)n (e.g., see
Griffiths,80 p. 165).

It is worth reemphasizing the force on the particle is insensitive
to the electrostatic condition at r = R when the medium is
unbounded. This is because the Maxwell stresses depend only
upon the potential disturbance in the immediate vicinity of the
particle. Thus, the shell reflections in eqn (3.13) and (3.14) need not
be considered. As we show below, this cannot be done when
applying the principle of virtual work, because the electrical energy
depends upon the potential disturbance everywhere in the domain.

3.1.2 Electric force based on virtual work. In the previous
section, we showed that the potentials cQ and cV give identical
results for the force F in the limit as the shell radius R - N.
The same is not true for the energy W because eqn (3.5) is a
non-local integral equation. Special consideration must, there-
fore, be given to the limiting procedure when evaluating W in
an unbounded medium. If the limit as R - N is taken before
evaluating the integrals in eqn (3.5), then one would incorrectly
conclude that W = 0. We derive this result explicitly in the ESI†
(Section S.1.1.2) by expanding the electric potential c up to the
first particle reflection. On the other hand, taking the limit after
integration recovers a finite energy W a 0, as we show below.

Directly calculating the energy W by means of eqn (3.5) is
straightforward, but tedious. For the integrals in (3.5) to converge
properly, one must retain the shell reflections in the solution for
the electric potential c; these are the terms that depend on R in

Fig. 4 Pictorial representation of the first few reflections in the electric
field �=cQ for a conducting particle held in a system of fixed charges. For
the field �=cV in a system of fixed potentials, the direction of the shell

reflection is reversed. In the sketch, ‘‘external field’’ refers to cext, ‘‘induced
dipole’’ refers to the terms p r0/r02, and ‘‘shell reflection’’ refers to the
terms p r/R2 in eqn (3.13) and (3.14).
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eqn (3.13) and (3.14). The shell reflections decay algebraically as R
- N, but are non-negligible when integrated over an O(R2)
region. Indeed, the nonlinear coupling between the shell reflec-
tions and external field is what gives rise to the change in
electrical energy. We evaluate this contribution explicitly in Sec-
tion S.1.1.3 [specifically, eqn (S1.31)] of the ESI.†

A more judicious approach to calculating the energy circum-
vents the need to evaluate the shell reflections explicitly. Instead, by
rearranging eqn (3.5), integrating by parts, and invoking the
electrostatic condition (3.9), the line integral at r = R can be made
to vanish identically (see Appendix A for the derivation). The
remainder, to be evaluated below, is an integral solely over the
particle boundary, to which the shell reflections contribute an O(a2/
R2) correction. For the potential cQ [eqn (3.13)] satisfying the fixed-
charge condition (3.9a), the insertion energy thus simplifies to

WQ ¼ � 1
2
e
I
r0¼a
fcQ½n̂ � =ðcQ � cextÞ� þ cextðn̂ � =cQÞgds

¼ � pea2 jEext
n j2 þ 1

4
a2jð=EextÞnj2

h i
;

(3.17)

where corrections of O(a2/R2) vanish in the limit as R -N. On the
other hand, applying the fixed-potential condition (3.9b) gives the
potential cV [eqn (3.14)] and the energy

WV ¼ � 1
2
e
I
r0¼a
fcV½n̂ � =ðcV þ cextÞ� � cextðn̂ � =cVÞgds

¼ pea2 jEext
n j2 þ 1

4
a2jð=EextÞnj2

h i
;

(3.18)

which is equal and opposite to WQ. Notably, eqn (3.17) and (3.18)
predict a non-zero insertion energy because the electrostatic con-
dition at r = R has already been applied. Neglecting this condition
altogether would lead one to conclude, incorrectly, that no energy is
required to insert a conducting particle into a dielectric medium. The
difference in sign between eqn (3.17) and (3.18) can be traced to
the terms containing R in eqn (3.13) and (3.14), even though these
terms were not explicitly needed in the integration. Below, we
examine how this sign reversal affects the virtual work calculation,
starting with fixed-charge case.

The fixed-charge energy WQ, given by eqn (3.17), depends upon
the particle position n through the field Eext

n = Eext
0 + (=Eext)0�n.

Thus, a perturbation dn of the particle position is accompanied by
an incremental change in energy,

dWQ ¼ �pea2ð=jEextj2Þn � dn: (3.19)

According to this expression, WQ decreases as the conducting
particle moves towards the outer shell where the field is
strongest. Since the source charge density is held fixed, no
external work is applied to the system: W ext

Q ¼ 0. In other

words, changes in WQ are due solely to changes in the particle’s
potential energy. Thus, substituting eqn (3.19) into the virtual
work principle (2.2) and rearranging gives the force

F ¼ �dWQ
dn
¼ pea2ð=jEextj2Þn; (3.20)

which is equivalent to the result obtained using the stress
tensor method [cf. eqn (3.15)].

A slightly different approach is required when the potentials,
rather than the charges, are held fixed on the outer shell. The
fixed-potential energy WV is given by eqn (3.18), and the
variation of WV with respect to n is

dWV ¼ pea2ð=jEextj2Þn � dn: (3.21)

This expression would seem to imply that the force on the
particle acts in the opposite direction, because WV increases as
the particle is moved towards the outer shell. However, displacing
the particle also alters the charge distribution on the shell in order
to maintain its potential cext. Since moving charges onto or off of
the shell requires work, energy has to be supplied from an
external power source (e.g., a system of batteries). The amount
of energy supplied (or work done) is

W ext
V ¼ � e

I
r¼R

cext
V ½n̂ � =ðcV � cext

V Þ�ds

¼ 2pea2 jEext
n j2 þ 1

4
a2jð=EextÞnj2

h i
¼ 2WV :

(3.22)

This is a classic result of electrostatics for dielectric capacitors
(see, for example, Section 4.7 of Jackson77 or Sections 4.4.3 and
4.4.4 in Griffiths80). When the external field is set up by a fixed
distribution of potentials, then exactly W ext

V ¼ 2WV of the energy
accounts for the change in the source charge distribution. This
‘‘charging energy’’ must be excluded from the total electrical
energy WV when applying the principle of virtual work. The
particle’s potential energy is given by WV �W ext

V ¼ �WV and
the force on the particle is, therefore,

F ¼ dWV
dn
¼ pea2ð=jEextj2Þn; (3.23)

as shown previously in eqn (3.15) and (3.20).
Irrespective of whether the charges or potentials are fixed on

the outer shell, the particle’s potential energy is generally given
by W �W ext ¼WQ ¼ �WV . A conducting particle’s potential
energy is maximized when the gradient of the local field strength
vanishes. This occurs at an unstable fixed point n = n*, where n*
is defined as

n� ¼ �ð=EextÞ0�1 � Eext
0 ¼ �

2ð=EextÞ0 � Eext
0

jð=EextÞ0j2
: (3.24)

Fig. 5 plots the force F [eqn (3.15)] and energy W�Wext [eqn (3.17)
and (3.18)] against the relative particle position n � n*. Since the
externally applied field Eext varies linearly with position, the force
and energy are, respectively, linear and quadratic functions of
n� n*. Also shown, for comparison, are the exact results for a/R =
0.01 using eigenfunction expansions in bipolar coordinates (see
the ESI,† Section S.2). The two solutions show excellent agree-
ment because the errors neglected in the reflections expansions
are of O(a2/R2).
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3.2 Insulating particle

The analysis presented thus far applies to conductors. We now
briefly turn our attention to insulators, i.e., dielectric materials
with permittivities much smaller than e. For insulating particles,
the boundary condition (3.10) at r0 = a is replaced by

n̂�=c = 0 at r0 = a (3.25)

Thus, rather than maintaining an equipotential boundary,
eqn (3.25) states that a perfect insulator expels field lines away
from the boundary. The zero-charge condition (3.11) is satisfied
automatically by (3.25).

Taken together, eqn (3.8), (3.9), and (3.25) comprise a
boundary-value problem for an insulating particle. As in the
previous section, the solution for the electric potential c can be
approximated, to a satisfactory degree of accuracy, using the
method of reflections (see the ESI,† Section S.1.2). The key
difference to recognize is that the insulating Neumann condi-
tion (3.25) induces particle reflections of opposite sign com-
pared to the conducting Dirichlet condition (3.10). Hence, the
induced dipole moment on the insulating particle is

P = �2pea2Eext
n , (3.26)

which is equal and opposite to eqn (3.26).
The fact that the dipole moment reverses sign implies that

the energy and force are also equal and opposite to the results
derived for a conducting particle [cf. eqn (3.17)–(3.23)]:

WQ ¼ �WV ¼ pea2 jEext
n j2 þ 1

4
a2jð=EextÞnj2

h i
; (3.27)

and

F ¼ �dWQ
dn
¼ dWV

dn
¼ �pea2ð=jEextj2Þn; (3.28)

where higher-order corrections are smaller by a factor of a2/R2.
Eqn (3.27) indicates that the potential energy of an insulating
particle increases with field strength and is minimized at the
stable fixed point n = n* [cf. eqn (3.24)]. As before, the difference
between the fixed-charge Qð Þ and fixed-potential Vð Þ energies
can be traced to the extra ‘‘charging energy’’ that must be
supplied in order to maintain a constant potential distribution
on the outer shell [cf. eqn (3.22)]. However, the force F, given by
eqn (3.28), is independent of whether the charges or the poten-
tials are prescribed on the outer shell. Indeed, eqn (3.28) is the
canonical expression for the dielectrophoretic force on a cylind-
rical, insulating particle in an unbounded medium. Since the
particle’s potential energy increases with the local field strength,
this force is directed down the gradient – so-called negative
dielectrophoresis.

Fig. 6 illustrates the potential and field lines for conducting
and insulating particles. For Eext

0 a 0, the fixed point r = n* is
displaced from the shell’s center r = 0. The conducting particle
attracts field lines and is drawn towards the outer shell where
the field is strongest. By contrast, the insulator expels field lines
and is drawn towards the fixed point.

The results presented above for cylindrical conductors and
insulators can be viewed as two limiting cases of a dielectric
material with permittivity ke, where k is the dielectric constant.
Dielectric particles were investigated by Liu et al.40 under
conditions where the potential distribution on the outer shell
was specified. The dielectrophoretic force on the particle is
generally given by

F = pefa2(=|Eext|2)n, (3.29)

where f = (k � 1)/(k + 1) is the 2D Clausius–Mossotti factor.39 In
the strong-dielectric limit (k - N), f = 1 and eqn (3.29)
simplifies to (3.15). In the opposite limit (k - 0) for weak
dielectrics, f = � 1 and we recover eqn (3.28).

This concludes our analysis of the electric problem. Although
the literature on this problem is well established, we carried out
the calculations explicitly to illustrate the subtleties that emerge,

Fig. 5 Electric force (top) and energy (bottom) plotted against the relative
particle position for a conducting particle in an unbounded dielectric
medium. The variables are scaled according to %F = F/[pea3|(=Eext)0|2],
%W = W/[pea4|(=Eext)0|2], and �x = (n � n*)/a, where n* is defined by eqn (3.24).

Fig. 6 Electric potential and field lines for conducting (left) or insulating
(right) particles. Field lines are directed away from regions of positive
charge (c 4 0, ‘‘hot’’ colors) towards regions of negative charge (c o 0,
‘‘cold’’ colors). The thick arrow indicates the direction of the electric force.
The fixed point, indicated by a cross, is stable for the conductor and
unstable for the insulator [cf. eqn (3.24)].
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though often under-appreciated, when applying the principle of
virtual work. Importantly, if the electrostatic condition at r = R is
neglected, then one might incorrectly conclude that no work is
needed to move the particle within the field. Accounting for this
condition is necessary to calculate the energy and recover the
well-known result [eqn (3.29)] for the dielectrophoretic force,
even in the unbounded limit R - N. Below, we show that the
same issues arise in the calculation of capillary forces on
particles trapped at fluid–fluid interfaces.

4 Capillary problem

In this section, we consider an inert, circularly symmetric
particle trapped at a curved fluid–fluid interface (interfacial
tension g) bounded externally by a cylindrical shell (Fig. 3). The
effect of a static pressure, e.g., due to gravity, is neglected in our
analysis. The vertical position of the interface is defined,
respectively, by z = zext(r) and z(r;n) before and after the particle
is embedded in the interface. For simplicity, we assume that
the host interface height zext is composed of a ‘‘saddle’’ plus a
‘‘monkey saddle,’’

zext ¼ 1
2K

ext
0 :r rþ 1

6ð=KextÞ0ð�Þ3r r r; (4.1)

with the associated curvature tensor

Kext = ==zext = Kext
0 + (=Kext)0�r. (4.2)

Here, Kext
0 and (=Kext)0 denote the curvature and curvature

gradient evaluated at r = 0. Other relevant geometric properties
of the interface are defined in Appendix B.

Assuming small slopes |=zext| { 1, the governing equations
of capillary statics are equivalent to those of electrostatics,16

with the interface height taking the place of the electric
potential. Hence, zext satisfies Laplace’s equation,

r2zext = 0 for r r R. (4.3)

Eqn (4.3) implies that Kext
0 and (=Kext)0 are both symmetric and

traceless, characteristic of an interface with vanishing mean
curvature but a finite and inhomogeneous deviatoric curvature
[for the definition of the deviatoric curvature, see eqn (B.10) of
Appendix B]. The cubic interface profile can be established
either by fixing the height (i.e., the position of the contact line)
at the outer boundary,

zext ¼ 1
2K

ext
0 :r rþ 1

6ð=KextÞ0ð�Þ3r r r at r ¼ R; (4.4a)

or by fixing the slope (i.e., the contact angle),

n̂ � =zext ¼ n̂ � Kext
0 � rþ 1

2
n̂ � ð=KextÞ0:r r at r ¼ R: (4.4b)

We note that eqn (4.1) is expanded up to cubic order in r,
whereas (3.1) is truncated after the quadratic term, due to the
physical constraints imposed on the interface height as compared
to the electric potential. In the electric problem, the reference
potential is taken to be the average potential of the outer shell:
hcextiR ¼ ð2pRÞ�1

H
r¼R cextds ¼ 0. This constraint eliminates

the constant term in eqn (3.1). In the capillary problem, the
analogous constraint requires the interface height to be measured

in a frame that is translated and rotated into the average height
and slope of the outer shell: hzextiR ¼ ð2pRÞ�1

H
r¼R zextds ¼ 0 and

hn̂ � =zextiR ¼ ð2pRÞ�1
H
r¼R n̂ � =zextds ¼ 0. Thus, both the con-

stant and linear terms vanish in eqn (4.1).
Placing a colloidal particle at a horizontal position r = n

distorts the interface, causing it to adopt a new profile z(r;n). In
the small-slope limit |=z| { 1 and |=zext| { 1, the capillary
distortion energy W associated with inserting the particle may
be expanded up to quadratic order in the interface slope (see
Appendix C for the derivation). Assuming the contact line is
circular with radius a, this energy is given as

W ¼ 1
2
g
ðð

r0�a
r�R
j=zj2d2r� 1

2
g
ðð

r�R
j=zextj2d2rþ 1

2
pga2O2; (4.5)

where X is the rotation of the particle out of the horizontal
plane. The last term in eqn (4.5) accounts for the O(O2)
distortion of the contact line in the horizontal plane (illustrated
in Fig. 7).

Eqn (4.5) excludes the ‘‘trapping energy’’ �pga2, which
represents the work done to eliminate a circular patch of
interfacial area. Thus, the energy W accounts only for distor-
tions of the interface curvature and vanishes if z = 0 [in this
sense, W is directly analogous to the electrical energy defined by
eqn (3.5)]. If the contact line is non-circular in the rotated
frame, then additional terms must be added to eqn (4.5) to
account for the distortion of the particle boundary (an example
is given later, in Section 4.2.2).

The capillary analogue of the Maxwell stress tensor was
derived by Domı́nguez et al.29 and is given by

r ¼ �g =z=z� 1
2
j=zj2d

� �
: (4.6)

The capillary stresses result from the nonlinear curvature-
capillary interaction between the particle and the surrounding

Fig. 7 (a) 3D illustration of an interface-trapped particle with a circular
contact line translated vertically by U and rotated horizontally by X with
respect to the undeformed plane. The vector X� ¼ �e �X is orthogonal to
X. (b) 2D illustration of how rotation deforms the boundary in the unde-
formed plane. A point r0 measured from the center of the particle to a circle

of radius a is transferred to a new point r0 � 1
2X�ðX� � r0Þ on an ellipse.
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interface. Substituting eqn (4.6) into (2.1) then yields the lateral
force on the particle:

F ¼ �g
I
r0¼a
ðn̂ � =zÞ=z� 1

2j=zj2n̂
� �

ds: (4.7)

(For the derivation of the last two expressions, see Appendix D.)
Domı́nguez et al.29 noted that eqn (4.6) and (4.7) bear resemblance
to their electrical analogues (3.6) and (3.7), but for the difference in
sign of the right-hand side. We propose to complete the analogy

by introducing the imaginary unit i ¼
ffiffiffiffiffiffiffi
�1
p

and the substitutions
e- g and c- iz. By defining an ‘‘imaginary potential,’’ the sign of
Coulomb’s force law is reversed. Hence, an electric charge density
q = �er2c can be made analogous to a capillary pressure (or force
density) p =�gr2z by setting q - ip. The inversion of the force law
implies that like ‘‘capillary charges’’ attract, with positive and
negative charges referring, respectively, to the vertical forces that
displace the interface above and below the undeformed plane.86

We are left to evaluate the interface height z appearing in
eqn (4.5)–(4.7). This is done by solving Laplace’s equation,

r2z = 0 for r0 Z a and r r R, (4.8)

subject to boundary conditions at r0 = a and r = R. Two
possibilities exist for the latter condition. Either the interface
heights on the outer shell are fixed,

zU ¼ zext at r ¼ R; (4.9a)

or the interface slopes are fixed,

n̂ � =zP ¼ n̂ � =zext at r ¼ R: (4.9b)

Here, the subscripts U and P denote, respectively, the fixed-
height and fixed-slope conditions. In both cases, we assume
that the reference frame is translated and rotated into the
average height and slope of the outer shell.

From here, the procedure is similar to the one laid out in
Section 3. First, we evaluate the interface height around a particle
with a pinned contact line (Section 4.1), which is the mathematical
analogue of a 2D electrical conductor. As in the electric problem,
we employ the stress tensor and the principle of virtual work to
compute the capillary force on the particle. The analysis is
presented explicitly for particles with symmetrically pinned contact
lines, and proper consideration is given to the wetting condition
on the outer boundary. Our virtual work calculation reveals,
somewhat surprisingly, that the interface height at a boundary
plays a similar role to the electric charge density. Subsequently, we
consider cylindrical and spherical particles with equilibrium con-
tact angles (Section 4.2). We show that equilibrated cylinders are
analogous to 2D electrical insulators with a boundary charge
distribution, whereas spheres are akin to insulators with a bound-
ary distribution of radially oriented dipoles.

4.1 Particle with a pinned contact line

In principle, there are several ways in which to pin the contact
line to the particle boundary; two possibilities are sketched in
Fig. 8. One strategy is to design the shape of the particle to have
a sharp edge (e.g., the bicone shape depicted in Fig. 8, left). Another
option is to synthesize a ‘‘Janus’’ particle with heterogeneous

surface chemistry (Fig. 8, right). In this section, we consider an
interface-trapped particle with a pinned, circularly symmetric
contact line of radius a. The effect of a static contact-line
undulation, e.g., due to an irregular particle shape14 or surface
roughness,23,24,30 is not our primary focus (although it is briefly
considered in Appendix E). As was discussed in Section 2, such
static undulations can produce a permanent capillary quadrupole
(as well as higher multipoles31,56) in the interface shape. Below, we
focus only on the induced quadrupole.

Assuming the particle is translated vertically by U and rotated
horizontally by X (Fig. 7a), the general boundary condition for a
particle with a symmetrically pinned contact line is

z = U + X��r0 at r0 = a (4.10)

where X� ¼ �e �X is the vector orthogonal to X in the hor-
izontal plane. The constants U ¼ ð2paÞ�1

H
r0¼a zds and X ¼

ðpa2Þ�1
H
r0¼a e � ðzn̂Þds are solely functions of n and must be

determined by applying force and torque balances to the
particle. Mechanical isolation requires that the transverse force
P on the particle vanishes:

P ¼ �g
I
r0¼a

n̂ � =zds ¼ 0; (4.11)

which, for isotropic particles like the ones considered here,
uniquely specifies the particle translation U. Similarly, the
rotation X is determined by insisting that the lateral torque
N on the particle also vanishes:

N� ¼ �g
I
r0¼a

r0ðn̂ � =zÞ � zn̂½ �ds ¼ 0; (4.12)

where N� ¼ �e �N is the vector orthogonal to N. Following our
aforementioned convention of an ‘‘imaginary potential,’’ the
quantities iP and iN� are, respectively, analogous to the charge
Q and polarization P of electrostatics [cf. eqn (3.11) and (3.12)].
Since both the monopole and dipole moments vanish, the first
non-vanishing multipole moment is the quadrupole moment:

Q ¼ �g
I
r0¼a
fð2r0 r0 � r02dÞðn̂ � =zÞ � 2z½n̂r0 þ r0n̂� ðn̂ � r0Þd�gds:

(4.13)

Following Section 3.1, we approximate the solution of
eqn (4.8)–(4.12) for the interface height z using the method of

Fig. 8 Conceptual strategies for pinning the contact line at a circular
particle boundary. (left) Bicone-shaped particle with a sharp edge. (right)
‘‘Janus’’ particle with heterogeneous surface chemistry.
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reflections (see the ESI,† Section S.3) and verify this approxi-
mation using an exact solution in bipolar coordinates (Section
S.4, ESI†). The first few reflections are presented in eqn (4.14)
and (4.15), below. If the fixed-height condition (4.9a) at the
outer shell is satisfied, then the solution for the interface height
is given by

zU ¼ zext � 1
2
a4K ext

n :
r0 r0

r04
� r r

R4
� 4r rðr � nÞ � 2r2rn

R6
þ � � �

� �

� 1
6
a6ð=K extÞnð�Þ3

r0 r0 r0

r06
� r r r

R6
þ � � �

� �
;

(4.14)

whereas the solution satisfying the fixed-slope condition
(4.9b) is

zP ¼ zext � 1
2
a4Kext

n :
r0 r0

r04
þ r r

R4
þ 4r rðr � nÞ � 2r2rn

R6
þ � � �

� �

� 1
6
a6ð=KextÞnð�Þ3

r0 r0 r0

r06
þ r r r

R6
þ � � �

� �
:

(4.15)

Here, it is implicitly assumed that x = o(R). For a detailed
derivation of eqn (4.14) and (4.15), see Section S.3.1 of the ESI.†

Fig. 9 depicts the various contributions to z. The externally
imposed interface height zext (Fig. 9, top) induces a capillary

quadrupole emanating from the particle (Fig. 9, middle). This
disturbance propagates to the outer shell, inducing additional
reflected modes that constrain either the outer height or the
outer slope (Fig. 9, bottom). The two solutions (4.14) and (4.15)
are similar but for the difference in sign of the shell reflections
[recall that the same result emerged in the electric problem, cf.
eqn (3.13) and (3.14)]. Higher reflections, which will not be
needed in our analysis, contribute O(a4/R4) corrections to the
interface height near the particle. Compared to the electric
problem, these corrections are substantially weaker due to the
faster decay of the capillary quadrupole (B1/r02) compared to
the electric dipole (B1/r0).

An important distinction between eqn (4.14) and (4.15) and
their electrostatic analogues (3.13) and (3.14) is the sign of the
first reflected mode emanating from the particle. For an
electrical conductor, the induced electric dipole moment P is
aligned with the local electric field Eext

n , as shown by eqn (3.16).
Consequently, polarized conductors tend to migrate towards
regions of high field strength. On the other hand, the induced
capillary quadrupole moment Q for a particle with a pinned
contact line is anti-aligned with the local curvature Kext

n , viz.,

Q = � 2pga4Kext
n (4.16)

by use of eqn (4.13). As we show below, this anti-parallel
alignment implies that the force on a particle with a pinned
(non-undulated) contact line is directed towards regions of low
deviatoric curvature. We first compute this force by directly
integrating the capillary stress tensor over the particle boundary
[eqn (4.7)]. Then, we apply the principle of virtual work to derive
the same force [by differentiating eqn (4.5) with respect to n].

4.1.1 Capillary force based on the stress tensor. In an
unbounded interface, the lateral force on the particle can be
calculated by substituting either zU or zP [eqn (4.14) or (4.15)]
into the stress-tensor integral (4.7) and subsequently taking the
limit as R - N. Thence, we obtain

F ¼ �1
4
pga4ð=jKextj2Þn; (4.17)

where the terms neglected are smaller by a factor of a4/R4.
Using eqn (D.11) in Appendix D, we may show that the
transverse torque T on the particle identically vanishes.

Eqn (4.17) shows that the force acts against the curvature
gradient if the contact line on the particle is pinned. Using the
definition of the induced quadrupole moment given by
eqn (4.16), the force may be rewritten as F ¼ 1

4
ðQ:=KextÞn. This

form is equivalent, save for a factor of two, to eqn (39) in the
article by Domı́nguez et al.29 The analogous dielectrophoretic
force on an electrically conducting particle in a dielectric
medium is given by eqn (3.15).

Sharifi-Mood and coworkers2,23,24,27 arrived at a different
conclusion based on virtual work arguments. Contrary to
eqn (4.17), these authors found that the capillary force on an
inert particle vanishes in a curvature gradient. In the next
section, we uncover the source of discrepancy between our
approach and theirs by applying the virtual work method to
compute the force on the particle.

Fig. 9 Pictorial representation of the first few reflections in the interface
gradient =zU for a particle with a pinned contact line trapped at an
interface with a fixed outer height distribution. For the gradient =zP
defined by a fixed outer slope distribution, the direction of the shell
reflection is reversed. In the sketch, ‘‘external curvature’’ refers to zext,
‘‘induced quadrupole’’ refers to the terms p r0r0/r04, and ‘‘shell reflection’’
refers to the terms prr/R4 in eqn (4.14) and (4.15).
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4.1.2 Capillary force based on virtual work. As discussed
previously in Section 3.1.2, the issue with using the energy W to
calculate the force F is that the condition on the outer boundary
must be taken into account. Indeed, this very issue was raised
by Domı́nguez et al.29 in their comparison of the stress tensor
and virtual work methods to compute capillary forces. The shell
reflections in eqn (4.14) and (4.15) ensure that the interface
height z satisfies the boundary condition (4.9) at r = R. If these
reflections are neglected in the limit as R - N, then a direct
evaluation of eqn (4.5) gives W = 0 as predicted by Sharifi-Mood
et al.23,24 In the ESI,† we explicitly derive this result by truncat-
ing the solution for the interface height after the first particle
reflection (see Section S.3.1.2, ESI†). However, this result is
incompatible with the force (4.17) obtained via the stress
tensor. In Section S3.1.3 of the ESI,† we show that including
the shell reflections in eqn (4.5) gives W a 0 and rectifies the
disparity between the stress tensor and virtual work methods.
This is, in fact, the very resolution offered by Würger.26 Below,
we arrive at the same result without having to evaluate the shell
reflections explicitly.

In lieu of evaluating the energy W by ‘‘brute force,’’ a much
simpler approach is to factorize the integrand of eqn (4.5),
integrate by parts, and use the boundary condition (4.9) to
eliminate the integral over r = R (see Appendix A). This leaves
only the line integral over the particle boundary to be evaluated,
and the shell reflections contribute an O(a4/R4) correction to this
integral. Using zU from eqn (4.14), we may evaluate the capillary
distortion energy for an interface with fixed outer heights:

WU ¼ � 1
2
g
I
r0¼a

zU ½n̂ � =ðzU þ zextÞ� � zextðn̂ � =zUÞ
	 


ds

þ 1
2
pga2OU 2

¼ 1
4
pga4 jK ext

n j2 þ 1
12
a2jð=KextÞnj2

h i
;

(4.18)

where corrections of O(a4/R4) vanish asymptotically as R - N.
Identifying WU as the particle’s potential energy, we may then
use the virtual work principle (2.2) to derive the force on the
particle. Varying WU with respect to n gives

dWU ¼ 1
4
pga4ð=jK extj2Þn � dn; (4.19)

from which the force F is obtained upon rearrangement:

F ¼ �dWU
dn
¼ �1

4
pga4ð=jKextj2Þn: (4.20)

Notably, the capillary force based on virtual work [eqn (4.20)] is
equivalent to the force based on the stress tensor [eqn (4.17)].

Eqn (4.18)–(4.20) may be rationalized as follows. First, by
assuming the interface height zU is fixed at an outer radius R, the
resulting distortion energy WU , given by eqn (4.18), is non-zero.
Moreover, no external work is needed to displace the particle
(W ext
U ¼ 0), which allowed us to relate the force F to the negative

derivative of WU with respect to n [eqn (4.20)]. The last result is
interesting because the mathematically analogous problem of
electrostatics, that of fixed potentials on the outer shell, requires

some extra work to be done in order to move a particle through
an electric field. We showed in Section 3.1.2 that this work must
be supplied by an external power source in order to adjust the
charge distribution on the outer shell [cf. eqn (3.22)]. In capillary
statics, fixing the height (the mathematical analogue of the
potential) does not require any extra work.

The opposite is true when the interface slopes, rather than
the heights, are prescribed on the outer shell. Following the
same procedure as above, we may calculate the distortion
energy WP associated with the deformation zP [eqn (4.15)] for
fixed outer slopes. In the limit as R - N, we obtain

WP ¼ � 1
2
g
I
r0¼a

zP½n̂ � =ðzP � zextÞ� þ zextðn̂ � =zPÞ
	 


ds

þ 1
2
pga2OP2

¼ � 1
4
pga4 jKext

n j2 þ 1
12
a2jð=K extÞnj2

h i
;

(4.21)

which is equal and opposite to WU . Likewise, the variation of
WP with respect to n is equal and opposite to eqn (4.19),

dWP ¼ �1
4
pga4ð=jKextj2Þn � dn: (4.22)

This expression shows that the capillary energy, somewhat non-
intuitively, decreases as the particle moves towards regions of
high curvature. The reduction in energy is attributed to the
adjustment of the interface height at the shell boundary in
order to maintain a fixed slope (see Fig. 10 for an illustration).
As the outer height changes, so does the wetted area on the
shell surface. The energy required to alter the wetted area is
given by the Young-Dupré work of adhesion,

W ext
P ¼ �g

I
r¼R
ðzP � zextP Þðn̂ � =zextP Þds

¼ �1
2
pga4 jK ext

n j2 þ 1
12
a2jð=KextÞnj2

h i
¼ 2WP ;

(4.23)

which is physically analogous to the ‘‘charging energy’’ defined
by eqn (3.22). In this sense, the interface height z at a fluid–solid
boundary plays a similar role to the electric charge density �e(n̂�

Fig. 10 Illustration of the interface displacement zP � zextP induced by the

particle while maintaining a fixed slope n̂ � =zextP at the shell boundary. The

Young–Dupré work of adhesion, given by eqn (4.23), accounts for the change
in the wetted area on the shell surface.
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=c). Since the wetted area on the boundary is not fixed, one
must account for the change in the adhesion energy W ext

P when
applying the principle of virtual work. Thence, we identify
WP �W ext

P ¼ �WP as the potential energy of the particle in a
curved interface with externally fixed slopes. Using eqn (2.2)
and (4.22), the force on the particle is then given by

F ¼ dWP
dn
¼ �1

4
pga4ð=jKextj2Þn (4.24)

as before.
The particle’s potential energy W �W ext ¼WU ¼ �WP is

minimized at a stable fixed point n = n*, where the gradient of
deviatoric curvature vanishes:

n� ¼ �ð=KextÞ�10 :Kext
0 ¼ �

2ð=KextÞ0:Kext
0

jð=KextÞ0j2
: (4.25)

Physically, this energy minimum can be understood as the region
of the interface that best accommodates the shape of the contact
line. In the analogous electrical problem, the point n = n* [defined
by eqn (3.24)] is unstable (energy-maximizing) for a conducting
particle. That is, electrical conductors are attracted to regions of
high field strength, whereas particles with pinned contact lines
are attracted to low-curvature regions of the interface.

Fig. 11 plots the force F [eqn (4.17)] and energy W � Wext

[eqn (4.18) and (4.21)] against the relative particle position n � n*.
Also plotted are results for a/R = 0.1 obtained by means of
eigenfunction expansions in bipolar coordinates (see the ESI,†
Section S.4). The two solutions are indistinguishable because the
O(a4/R4) errors in the reflections solution are negligibly small.
As a/R is increased, higher-order corrections contribute more
significantly to the force on the particle; these corrections

depend upon whether the heights (U) or slopes (P) are fixed
on the outer shell. Further details on finite-size effects can be
found in Section S.3.1.5 of the ESI.†

The preceding results explicitly assume that the interface is
pinned to a circularly symmetric particle. In the presence of a
curvature gradient (e.g., a ‘‘monkey saddle’’ surface), such
particles experience a capillary force against the gradient that
drives them towards regions of low curvature. If the contact line
is asymmetrically pinned (i.e., undulated), then the coupling
between the asymmetric distortion of the interface to the
curvature gradient drives the particle towards regions of high
curvature.23,24,30 This effect is neglected in our analysis above,
but is briefly considered in Appendix E.

4.2 Particle with an equilibrium contact angle

Our final calculation focuses on interface-trapped particles with
equilibrium contact angles instead of pinned contact lines.
Spherical colloids with equilibrium wetting properties were
first analyzed by Würger19 and later re-examined by numerous
investigators.20–28 It is, therefore, appropriate that our analysis
has come full circle to this original problem. We shall see that a
particle with an equilibrium contact angle is the capillary
analogue of an electrical insulator.

Since the contact line is free to move, the pinned-contact-line
condition (4.10) no longer applies. The proper wetting condition for
a fixed contact angle depends upon the particle shape. Fig. 12
illustrates the equilibrium wetting condition for cylindrical and
spherical particles. A cylindrical particle (Fig. 12, left) is free to
translate in the transverse direction but must rotate to an orienta-
tion perpendicular to the interface plane in order balance lateral
torques. If the particle’s buoyant weight is negligible, then a balance
of transverse forces restricts the contact angle to 901; otherwise, the
interface would slip until it pins to the edge of the cylinder. By
comparison, a spherical particle (Fig. 12, right) is rotationally
invariant yet translates until the interface meets the boundary
at a prescribed contact angle; this ensures that transverse forces
are balanced. Since the particle translation is an extra degree of
freedom, the contact angle is unrestricted for spheres.

In the presence of a background curvature, the interfacial
distortions induced by cylindrical and spherical particles are
distinct and must be treated separately. Below, we first consider
the wetting condition for a cylindrical particle with a contact
angle of 901 (Section 4.2.1). Then, we examine a spherical particle

Fig. 11 Capillary force (top) and energy (bottom) plotted against the
relative particle position for a particle with a circularly pinned contact line
trapped at an unbounded interface. The variables are scaled according to
�F ¼ F= 1

4
pga5jð=K extÞ0j2
� �

, �W ¼W= 1
4
pga6jð=K extÞ0j2
� �

, and �n = (n � n*)/a,

where n* is defined by eqn (4.25).
Fig. 12 Particles with an equilibrium contact angle a. (left) Cylindrical
particle with a = 901. (right) Spherical particle with a a 901.
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without placing any restrictions on the contact angle (Section
4.2.2). In both cases, we denote by a the radius of the circular
contact line in a planar interface. We shall see that the capillary
force is qualitatively similar for both cylindrical and spherical
particles, but for a difference in the numerical prefactor.

4.2.1 Cylindrical particle. For a cylindrical particle with a
contact angle of 901, the equilibrium wetting condition constrains
the slope of the interface at the particle boundary:

n̂�=z = n̂�X� at r0 = a, (4.26)

where the particle rotation X ¼ e �X� ¼ ðpa2Þ�1
H
r0¼a e � ðzn̂Þds

is determined from the torque-free condition (4.12). The force-
free condition (4.11) is satisfied automatically by (4.26); thus,
the particle translation does not enter into the problem. This
reflects the fact that a cylinder is translationally invariant along
its axis. It should be noticed that eqn (4.26) is mathematically
analogous to the insulating Neumann condition (3.25), except
that the right-hand side is non-zero.

Solving eqn (4.26), (4.9), (4.12), and (4.26) for z is straightfor-
ward using the method of reflections (see the ESI,† Section
S.3.2.1). The solution is similar to the one found in Section 4.1
for a particle with a pinned contact line [cf. eqn (4.14) and (4.15)],
except that the particle reflections reverse sign. Consequently, the
induced quadrupole moment is equal and opposite to eqn (4.16):

Q = 2pga4Kext
n . (4.27)

Applying the same methods as in Section 4.1, the potential
energy and force for a cylindrical particle with an equilibrium
contact angle of 901 are, respectively,

WU ¼ �WP ¼ �1
4
pga4 jKext

n j2 þ 1
12
a2jð=K extÞnj2

h i
; (4.28)

and

F ¼ �dWU
dn
¼ dWP

dn
¼ 1

4
pga4ð=jKextj2Þn; (4.29)

where corrections of O(a4/R4) have been neglected. Comparison
with eqn (4.18)–(4.24) reveals that the energy and force have
reversed sign. That is, the equilibrium wetting condition drives
particles towards more curved regions of the interface. The
difference between WU and WP in eqn (4.28) is attributed to the
Young–Dupré work of adhesion needed to maintain a fixed
slope distribution on the outer shell [cf. eqn (4.23)].

Fig. 13 illustrates the interface height and gradient for pinning
and equilibrium wetting conditions on the particle boundary. The
fixed point r = n* is indicated by a cross, where n* is again given by
eqn (4.25). This point attracts particles with pinned contact lines
(stable) and repels particles with equilibrium contact angles
(unstable). It is noteworthy that the gradient lines always terminate
at the particle boundary, regardless of the wetting condition,
because the particle rotation X is finite.

4.2.2 Spherical particle. Würger19 derived the equilibrium
wetting condition for a spherical particle with an arbitrary
contact angle:

n̂ � =z� z
r0
¼ �U

r0
at r0 ¼ a; (4.30)

where the particle translation U ¼ ð2paÞ�1
H
r0¼a zds is determined

from the force-free condition (4.11). The torque-free condition
(4.12) is automatically satisfied by (4.30), a consequence of the
rotational invariance of spheres. Here, a denotes the lateral radius
of the contact line in the undeformed interface (see Fig. 12, right).
The radius of the sphere measured from its centroid is given by
a/sina, where a is the contact angle.

The Robin boundary condition (4.30) for spheres differs from
the Neumann condition (4.26) for cylinders. The difference can
be understood in the context of their 2D electrostatic analogues.
Physically, eqn (4.26) specifies a distribution of transverse forces
at the contact line, which have a one-to-one correspondence with
electric charges. Thus, a cylindrical particle is akin to an elec-
trical insulator with a prescribed boundary charge density such
that its dipole moment vanishes. By contrast, eqn (4.30) con-
strains the lateral torque distribution at the contact line. This is
analogous to a boundary distribution of splayed, radially
oriented electric dipoles of equal strength. In this sense, spherical
particles can be understood as uncharged insulators with a pre-
scribed dipole density.

Eqn (4.8), (4.9), (4.11), and (4.30) may be straightforwardly
solved for z using the method of reflections (see the ESI,†
Section S.3.2.2). The quadrupole moment thus obtained,

Q ¼ 2
3
pga4Kext

n ; (4.31)

is one-third that found for a cylindrical particle of radius a
[cf. eqn (4.27)]. The force F may then be calculated using either
the stress-tensor integral (4.7) or the point-quadrupole formula
F ¼ 1

4
ðQ:=K extÞn to give

F ¼ 1
12
pga4ð=jKextj2Þn; (4.32)

which is one-third the result (4.29) for cylinders.
Calculating the energy is slightly more involved because the

shape of the contact line on the particle is not necessarily
circular. Recall that the energy W given by eqn (4.5) was derived
assuming that the contact line was a perfect circle rotated out of

Fig. 13 Interface height and gradient lines for a cylindrical particle with a
symmetrically pinned contact line (left) or an equilibrium contact angle of
901 (right). Gradient lines are directed away from lower regions (z o 0,
‘‘cold’’ colors) towards higher regions (z4 0, ‘‘hot’’ colors). The thick arrow
indicates the direction of the capillary force. The fixed point, indicated by a
cross, is stable for the pinning condition and unstable for the equilibrium
wetting condition [cf. eqn (4.25)].
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the horizontal plane. For spherical particles, this is only true
when the curvature of the interface vanishes everywhere (Kext = 0).
When the interface is curved (Kext a 0), then the contact line on
the particle deforms in order to maintain a fixed contact angle a
(Fig. 14). The radial distortion da of the contact line is related to
a and z by the equation,19

(a + da)2 = a2 � 2a~z cot a�~z2, (4.33)

where ~z = (z � U � X��r0)|r0=a is the height of the contact line in
the co-translated and co-rotated frame.

The distortion energy W1 associated with inserting the
particle into the interface, without accounting for the deforma-
tion of the contact line, may be calculated using eqn (4.5). In
the limit as R - N, we obtain

W1U ¼ � 7
36
pga4 jKext

n j2 þ 3
32
a2jð=KextÞnj2

h i
(4.34)

for a fixed distribution of heights on the outer boundary, or

W1P ¼ � 1
36
pga4 jKext

n j2 � 3
32
a2jð=K extÞnj2

h i
(4.35)

for fixed slopes. The additional work W2 required to deform the
contact line from r0 = a to a + da is given by

W2 ¼ g
ðð

r0�a
d2r� g

ðð
r0�aþda

d2r

¼ pga2 � 1
2
g
I
r0¼a

a� 2~z cot a�
~z2

a

 !
ds

¼ 1
36
pga4 4jKext

n j2 þ 9
32
a2jð=KextÞnj2

h i
;

(4.36)

where we have used eqn (4.33) to eliminate da. Since the term

linear in ~z integrates to zero, the result (4.36) is independent of
the contact angle a. Summing the two energies W = W1 + W2

then gives

WU ¼ �WP ¼ � 1
12
pga4 jKext

n j2 þ 1
8
a2jð=KextÞnj2

h i
: (4.37)

The last expression is the desired particle potential energy and
may be compared against the analogous result (4.28) for
cylinders. It is straightforward to show, using eqn (4.32) and
(4.37), that the force and energy are related by the virtual work
principle F ¼ �dWU=dn ¼ dWP=dn, as was shown for cylinders
[cf. eqn (4.29)]. A comparison of the force and energy for
cylinders and spheres with equilibrium contact angles is shown
in Fig. 15. Also plotted are exact results for a/R = 0.1 by means of
eigenfunction expansions in bipolar coordinates (see the ESI,†
Section S.4). Clearly, the bipolar solutions agree very well with
the unbounded, analytical results, which neglect errors of
O(a4/R4).

The first term on the right-hand side of eqn (4.37) – the part
of the energy that depends on n – was derived first by Würger19

and later by other investigators.20–22 Although the magnitude of
this term has recently become controversial in the literature,19–28

our calculations here – using both the stress tensor and the
principle of virtual work – confirms Würger’s original prediction.
The key insight, as suggested by Würger himself,26 is to realize
that the interfacial distortion produced by the spherical particle
disturbs the static boundary condition at a faraway distance R.
Enforcing this condition requires some work to be done; as we
have shown, this work remains finite even as R - N. It follows

Fig. 14 (a) 3D and (b) 2D illustrations of the contact-line distortion on a
spherical particle with an equilibrium contact angle a. The radius a of the
undeformed contact line is deformed to a new radius a + da [defined by
eqn (4.33)] when the particle is embedded in an interface with an
inhomogeneous, deviatoric curvature. The capillary work required to
deform the contact line is given by eqn (4.36).

Fig. 15 Capillary force (top) and energy (bottom) plotted against the
relative particle position for cylindrical and spherical particles with equili-
brium contact angles. The variables have the same meaning as in Fig. 11,
assuming a common radius a of the undeformed contact line. The radius
of the sphere is given by a/sin a for an arbitrary contact angle a; the
cylinder is restricted to contact angles of 901.
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that the capillary distortion energy W depends upon whether the
heights (U) or slopes (P) are prescribed at r = R. The energies in
these two cases are equal and opposite, as indicated by
eqn (4.37), as a direct consequence of the fact that the particle
is inert (for the contrary example of a ‘‘non-inert’’ particle, see
Appendix E).

5 Discussion and conclusions

At the end of Section 3, we summarized classical results for
cylindrical conductors and insulators by writing the general
expression for the dielectrophoretic force,

F = (P�=Eext)n = pefa2(=|Eext|2)n, (5.1)

where P = 2pefa2Eext
n is the electric dipole moment and f is the

2D Clausius–Mossotti factor that ranges from �1 (for ideal
insulators) to 1 (for ideal conductors). Based on our results
from Section 4, we may write a similar expression for the
capillary force on an interface-trapped colloid:

F ¼ 1
4
ðQ:=KextÞn ¼ �1

4
pgfa4ð=jKextj2Þn; (5.2)

where Q = �2pgfa4Kext
n is the capillary quadrupole moment and

f = 1 for a particle with a circularly pinned contact line, �1 for a
cylindrical particle with a 901 contact angle, and �1

3
for a

spherical particle with an arbitrary contact angle. These expres-
sions clearly show the analogy between dielectrophoresis and the
motion of inert colloids in a curved interface. To calculate the
velocity of the overdamped motion, one need only equate the force
F to the drag exerted on the particle by the surrounding media.

Both eqn (5.1) and (5.2) can be expressed as the gradient of a
potential energy by use of the principle of virtual work. In the
electric problem, the correct potential energy is WQ – the
electrical energy needed to insert the particle into a fixed
distribution of charges. In practice, it is more common to
establish the field using a configuration of electrodes main-
tained at fixed potentials. Then, the associated energy WV is not
equivalent to the particle’s potential energy. It is well known in
the electrostatics literature77,80 that some extra work W ext

V must
be done (e.g., by a system of batteries) to move charges onto or
off of the electrodes, and this work must be excluded from the
total electrical energy WV . For non-polar particles, the batteries
must do W ext

V ¼ 2WV amount of work and the correct potential
energy (for fixed potentials) is �WV .

In the capillary problem, we showed that fixing the interface
height at a boundary has a similar effect to fixing the electric
charge density. This result is somewhat surprising, since the
interface height z is the mathematical analogue of the electric
potential c. Nevertheless, there is a physical basis for it. If the
interface heights are fixed at the outer boundary enclosing
the particle, then the adhesion energy remains constant as the
particle moves through the interface, and the only change to
the capillary energy is due to particle-sourced interfacial distor-
tions. Hence, we identified WU as the particle’s potential
energy. By analogy to the electric problem, fixing the outer
slopes results in a different energy WP . We showed that the

difference between the two energies is associated with the
Young–Dupré work of adhesion W ext

P needed to alter the wetted
area on the outer boundary. For inert colloids, W ext

P ¼ 2WP and
the correct potential energy (for fixed slopes) is �WP . Of
course, it is typically easier to create a fluid–fluid interface in
the laboratory by fixing the interface heights, provided the wall
of the container has a well defined edge.

An important implication of these results is that two interface-
trapped particles will attract each other if the interface has a finite
deviatoric curvature, even if the particles themselves do not create
distortions within a planar interface. To see this explicitly, it is
useful to apply eqn (5.2) to a pair of particles. Fig. 16 illustrates two
circularly symmetric particles of radii a and a0 that are well
separated, i.e., their center-to-center separation n is large in com-
parison to their radii. For simplicity, we assume the particles are
embedded in an interface with constant curvature Kext

0 . In the limit
of infinite separation x - N, the external curvature induces the
quadrupole moments Q = �2pgfa4Kext

0 and Q0 = �2pgf0a04Kext
0 on

the first and second particle, respectively. For finite but large
separations, the total curvature Kext that is ‘‘felt’’ by the second
particle is, to a first approximation, the sum of the host-interface
curvature Kext

0 and the quadrupolar distortion produced by the first
particle:

K ext ¼ Kext
0 �

1

8pg
Q:=4 log r; (5.3)

where r is the position measured from the center of the first
particle. Then, the lateral force on the second particle (at r = n) due
to the presence of the first (at r = 0) is, to the quadrupolar level of
approximation,

F ¼ 1

4
ðQ0:=KextÞn

¼ � 1

32pg
ðQ0:=5 log r:QÞn

¼ � 1
8
pgff 0a4a04K ext

0 :=5
n log x:Kext

0 ;

(5.4)

where the errors neglected are of O(a4/x4,a04/x4). By symmetry
arguments, the force exerted on the first particle by the second is
equal and opposite to eqn (5.4). This force scales like B1/x5

(corresponding to a potential energy B1/x4) as determined by
previous investigators.19,29,30

In the pair problem just described, the transverse torque on
each particle vanishes, T = 0. This is because (i) the particles are

Fig. 16 Two circular particles of radii a and a 0 with center-to-center
separation n = r � r0.
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circularly symmetric and (ii) their induced quadrupole moments
are always aligned with the local curvature [this can also be
proven rigorously, by applying eqn (D.11) in Appendix D]. How-
ever, the net torque on a pair (or, more broadly, a cluster) of
particles is non-zero, in general, because the force F on the
individual particles is not necessarily parallel to their pair
separation n. The transverse torque on a particle pair acts to
rotate n until it is aligned with a principal curvature (i.e., parallel
to an eigenvector of Kext

0 ), at which point the torque vanishes.
Once aligned, Kext

0 = �Dx2=2
n log x = D(2nn/x2 � d) and the force

on each particle [eqn (5.4)] simplifies to

F ¼ �12pgff 0a4a04D2 n

x6
; (5.5)

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
Kext

0 :K ext
0

q
is the deviatoric curvature [defined in

Appendix B, eqn (B.10)]. According to eqn (5.5), particle pairs will
attract if their form factors f and f 0 share the same sign.
Conversely, a particle with a pinned contact line ( f 4 0) will
repel a particle with an equilibrium contact angle ( f 0 o 0).

Our findings confirm a type of capillary attraction between
‘‘inert’’ particles that was originally discovered by Würger19 for
spherical particles with equilibrium contact angles. In fact, we
have extended his prediction to explain the force of attraction
between particles with planar, pinned contact lines and cylind-
rical particles with 901 contact angles. Moreover, our calculations
reveal the source of inconsistency that led Sharifi-Mood and
coworkers23,24 to conclude, incorrectly, that particles with planar,
non-undulated contact lines would not migrate in a curvature
gradient. The issue, which was correctly identified by Würger26 in
a subsequent comment, is in the treatment of the outer boundary
enclosing the particle, which is ultimately responsible for estab-
lishing the curvature of the host interface. Although this boundary
might be sufficiently far from the particle so as not to affect its
motion, we have demonstrated (specifically, in Section 4.1.2) that
the capillary energy is not independent of the far-field wetting
condition. If one properly accounts for this wetting condition, as
we have done, then it is clear that the distortion energy is finite
and the lateral force predicted by a virtual work argument is
exactly that given by integrating the stress tensor (4.6) over the
particle boundary.

Regarding the energy calculation, two points are worthy of
emphasis. First, as a general rule, it is often preferable to use
the principle of virtual work to derive interparticle forces in a
many-body system in lieu of integrating the stress tensor over
the particle boundaries. Although the stress tensor method is
the more ‘‘direct’’ approach, it is computationally infeasible to
apply it to a system containing anything more than two
particles. Comparatively, it is a much simpler matter to compute
the energy W for a many-body system. (This was done, for instance,
by Bonnecaze and Brady87 in their simulation of dielectric particle
suspensions interacting through dielectrophoretic and hydrody-
namic forces.) Consequently, it is crucial that the energy W is
accurately calculated; to this end, we hope our study clarifies the
subtle, yet essential, role played by boundaries in such calcula-
tions. As was mentioned earlier, this subtlety was also identified by

Domı́nguez et al.29 and later by Würger26 in a qualitative sense.
Our work systematically develops their arguments, on a rigorous
and quantitative basis, for a single particle trapped at a curved, but
bounded, interface, thereby illustrating the effect of the boundary
on the capillary energy.

The second point we wish to emphasize is the connection
between dielectrophoresis and the interfacial migration of inert
colloids, and its important implications for the work done on a
moving particle. Our central argument is that the verified32

existence of dielectrophoretic forces on cylindrical, non-polar
bodies implies that there must be an analogous capillary force
on an interface-trapped, inert colloid, and vice versa. Put
another way: if an induced capillary quadrupole does not lead
to particle migration in a curvature gradient, it would imply that
2D dielectrophoresis does not exist! In fact, this very conclusion
was reached, albeit unintentionally, in a recent review by Liu
et al.2 (Sectin 5.1.1 of their article). There, they argued that
embedding a conducting particle in a dielectric medium with
an applied electric field requires no electrical work. Our calcula-
tions in Section 3.1 directly refute this conclusion; again, the
discrepancy can be explained by considering the electrostatic
condition in the far field.

Interestingly, a similar problem also emerges in 3D dielectro-
phoresis. For a spherical conductor of radius a placed in a linear
field set up by fixed charges, classical arguments77 show that the
electrical energy in 3D is

WQ ¼ �2pea3 jEext
n j2 þ 1

6
a2jð=EextÞnj2

h i
; (5.6)

which may be compared to the analogous result (3.17) in 2D. On
the other hand, if the electrostatic condition on the outer
boundary is neglected, then one obtains instead

W�
Q ¼ 2

3
pea3 jEext

n j2 þ 1
10
a2jð=EextÞnj2

h i
; (5.7)

which is non-zero but different from the correct result (5.6).
Eqn (5.7) mistakenly suggests that a conducting particle is forced
in the opposite direction (against the field gradient) with one-
third the strength. It should be recalled that the analogous 2D
energy was WQ

� ¼ 0 when the outer boundary condition was
neglected. Thus, the 2D problem is, in some sense, pathological.
It is straightforward to verify that eqn (5.6), not (5.7), gives the
correct dielectrophoretic force33,34,39 upon differentiation with
respect to n:

F ¼ �dWQ
dn
¼ 2pea3ð=jEextj2Þn; (5.8)

which is the 3D analogue of (3.20).
Although our study is the first, to the best of our knowledge, to

explicitly consider an outer shell enclosing an interface-trapped
particle, all of the results presented in the main text apply to the
unbounded limit R - N. The first effect of the particle–shell
interaction due to an induced capillary quadrupole contributes an
O(a4/R4) correction to the capillary force and energy. These correc-
tions are summarized in Table S.2 of the ESI† for different types of
particles and shell wetting conditions. In the electric problem, the
analogous finite-size correction is of O(a2/R2) (see Table S.1, ESI†)
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due to the slower decay of the dipolar interaction. All of the
analytical results for finite values of a/R were computed using the
method of reflections and verified by comparing against an exact
solution in bipolar coordinates (see Fig. S.1–S.10, ESI† for the
comparisons).

Besides accounting for the finite size of the domain, a
number of other physical forces may be introduced to ensure
that the energy remains finite. One such resolution was offered
by Galatola,25 who suggested that the small-slope approximation
|=z| { 1 does not apply far from the particle. He argued that,
because the curvature of the interface is assumed to be every-
where finite, the interface slope |=z| diverges in the far field. In
this region, Laplace’s equation r2z = 0 is no longer a suitable
approximation of the exact governing equation

2H ¼ = � =zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j=zj2

p
 !

¼ 0 (5.9)

for the shape of a static interface under zero pressure. Here, H is
the mean curvature defined in Appendix B [eqn (B.8)]. Eqn (5.9)
shows that the curvature 2H remains bounded even as |=z| -N.
For Laplace’s equation to hold within the domain of interest, the
shell radius R must be small compared to the characteristic radius
of curvature of the interface. Assuming the host-interface curva-
ture is given by eqn (4.2), this yields the criteria |Kext

0 | { 1/R and
|(=Kext)0| { 1/R2. If these conditions are not met, then the exact
curvature 2H must be used in place of its small-slope approxi-
mationr2z. This also means that the expressions for the capillary
energy W, force F, and torque T must be modified to account for
finite interface slopes.

Another, perfectly reasonable possibility is the force of
gravity exerts a hydrostatic pressure on the interface to weigh
it down in the far field. Gravitational forces were neglected in
Section 4. In the small-slope limit, the addition of hydrostatic
pressure transforms Laplace’s equation into88

=2z� z
lC2
¼ 0; (5.10)

where lC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g=Drg

p
is the capillary length, Dr is the difference

in (mass) density between the two fluids, and g is the accelera-
tion due to gravity. For gravity to be safely neglected, the size of
the container must be smaller than the capillary length: R { lC.
For typical working fluids, this means that the shell radius R
must be smaller than a few millimeters (e.g., for a water–air
interface, lC = 2.7 mm). If this condition is not met, then the
hydrostatic pressure [the second term in eqn (5.10)] causes
exponential decay of particle-sourced interfacial distortions at
large distances r = O(lC). At that point, the disturbance created at
the outer boundary is immaterial. The electrostatic analogue of a
hydrostatic pressure is an electrolytic medium with N mobile
charge carriers. In the high-temperature limit (kT/e c zjc), the
governing equation for c then becomes89

=2c� c
lD2
¼ 0; (5.11)

where lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekT=

PN
j¼1

njzj2e2

s
is the Debye screening length, e is

the elementary charge, and nj and zj denote, respectively, the
number density and valence of the jth charge carrier. Eqn (5.11)
states that the electric field is exponentially screened at distances
r = O(lD). For screening effects to be safely neglected in the
electric problem (Section 3), we must have R { lD.

Finally, it bears mentioning that there are other analogies to
capillary statics, besides 2D electrostatics, that may be useful to
gain physical insight. There is, of course, historical precedent77

for the association of Poisson’s equation (the inhomogeneous
form of Laplace’s equation) to problems of electrostatics.
However, Poisson’s equation in 2D governs a wide variety of
other physical phenomena.90 As an example, both electrostatics
and magnetostatics share a common mathematical structure in
2D. Consequently, either one of these can be made analogous
to capillary statics through a suitable change of variables (see
Table 1, as well as footnote 28 in the article by Domı́nguez et al.29).
Of particular relevance to the present work is the one-to-one
correspondence between dielectrophoresis and magnetophoresis.39

In fact, the latter phenomenon is more commonplace: a paper
clip sitting on a table will not move on its own, but placing a bar
magnet nearby magnetizes the paper clip, pulling it towards the
bar magnet. From a pedagogical perspective, there is greater value
in an analogy that is more immediately familiar. On that basis
alone, we could have written this entire article in terms of a
physical analogy to magnetophoresis, instead of dielectrophor-
esis. We chose to focus on the latter, due to the already
well-established2,29–31 connection between capillary statics and
electrostatics in the literature.

There are other reasons, besides greater familiarity, for why
other physical analogies should be explored. As was discussed
near the beginning of this section, there are subtle differences
between capillary statics and electrostatics that emerge when
evaluating the energy W. However, these differences are not
ubiquitous among other physical analogies. By way of illustration,
consider the magnetic work required to move a paramagnetic
particle through a magnetic field Bext. The potential energy of the
particle is equivalent to the magnetic energy W of the configu-
ration, provided that the magnetic potential A is fixed on the
boundaries that establish the field.77,78 However, in the analogous
problem of calculating the electric work done on a dielectric
particle moving through an electric field Eext, it is the electric
charge density�e(n̂�=c), not the electric potential c, that must be
fixed on the boundaries. As it turns out, the problem of fixed
potentials c in electrostatics is analogous to fixed currents J in
magnetostatics (see Jackson,77 p. 214). Turning to the capillary

Table 1 Physical analogies between variables in capillary statics, electro-
statics, and magnetostatics in 2D. Here, g is the interfacial tension, p is the
capillary pressure, z is the interface height, and i ¼

ffiffiffiffiffiffiffi
�1
p

is the imaginary
unit

Electrostatics Magnetostatics

Permittivity e - g Permeability m - 1/g
Charge density q - ip Current density J - p
Electric potential c - iz Magnetic potential A - z
Electric field E - � i=z Magnetic field B ! e � =z
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problem, one immediately concludes that the interface height z
plays a similar role to the magnetic potential A, and, furthermore,
the two are mathematical analogues according to Table 1. In
this sense, the analogy between capillarity and magnetism is,
surprisingly, more complete than the analogy to electricity.

Conflicts of interest

There are no conflicts to declare.

A Partial integration of the energy
integral

In this appendix, we illustrate how to integrate eqn (3.5) and (4.5)
by parts such that the line integral at r = R vanishes, resulting in
eqn (3.17), (3.18), (4.18) and (4.21) in the main text. Essentially
the same approach is used by Jackson77 (pp. 166–167) and by
Landau and Lifshitz78 (pp. 52–53) in order to evaluate the
electrical energy.

We consider two harmonic functions f (r) and g(r) defined
within the geometry of Fig. 3, and denote the integral I by

I ¼
ðð

r0 � a
r � R

j=f j2d2r�
ðð

r�R
j=gj2d2r: (A.1)

Such an integral appears in eqn (3.5) and (4.5) with (f,g) =
(c,cext) and (z,zext), respectively. A clever factorization of the
integrand yields the following, equivalent representation:

I ¼
ðð

r0 � a
r � R

=ð f � gÞ � =ð f þ gÞd2r�
ðð

r0�a
j=gj2d2r: (A.2)

Here the integral over r r R has been broken into two parts,
one evaluated over the particle region and the other over the
interstitial region bounded by the particle and the shell.

Eqn (A.2) may be integrated by parts in one of two ways. In
the first approach, the gradient of (f + g) in the first term is
integrated, giving

I ¼�
I
r0¼a

n̂ � ½ f=ð f � gÞ�þ g=f �ds�
I
r¼R
ð f þ gÞ½n̂ �=ð f � gÞ�ds;

(A.3)

where we have used r2f = r2g = 0 to eliminate the area
integrals, leaving only line integrals at the particle and shell
boundaries. If n̂�=f = n̂�=g at r = R, then the integral over the
shell boundary vanishes. This leads directly to eqn (3.17) and
(4.21) in the main text.

On the other hand, if we integrate the gradient of ( f � g) in
the first term of eqn (A.2), we obtain instead

I ¼�
I
r0¼a

n̂ � ½ f=ð f þ gÞ� g=f �ds�
I
r¼R
ð f � gÞ½n̂ �=ð f þ gÞ�ds:

(A.4)

Here, the second integral vanishes if f = g at r = R, resulting in
eqn (3.18) and (4.18) in the main text. Thus, although eqn (A.3)
and (A.4) are entirely equivalent, they are respectively preferred

in situations where Neumann and Dirichlet conditions are
applied to the outer boundary.

B Differential geometry of a Monge
patch

In the Monge gauge, the three-dimensional (3D) position of a
surface is given by r + z(r)ẑ, where r is the horizontal position, z(r)
is the vertical position of the surface at r, and ẑ is the unit vector
in the vertical direction. In keeping with the notation of the main
text, we denote by d the two-dimensional (2D) unit tensor in the
horizontal plane. Below, we express the differential geometry of a
Monge patch for small slopes |=z| { 1, retaining terms up to
quadratic order in |=z|.

In local polar coordinates (r,y), the covariant tangential
vectors of the surface are

sr ¼
@

@r
ðrþ zẑÞ

¼ r

r
� ½dþ ð=zÞẑ�;

(B.1a)

sy ¼
@

@y
ðrþ zẑÞ

¼ ðẑ� rÞ � ½dþ ð=zÞẑ�;
(B.1b)

where ẑ � r = rĥ is the vector tangent to a circle of radius r. In
order to form a complete covariant basis, we define the unit
normal m̂ to the surface as

m̂ ¼ sr � sy

jsr � syj

¼ ẑ� =zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j=zj2

p
’ ẑ� =z� 1

2
j=zj2ẑ;

(B.2)

where the last line is an approximation for small slopes |=z| { 1.
The surface metric J is defined as the scalar triple product of the
covariant basis vectors scaled with respect to the radius r:

J ¼ ðsr � syÞ � m̂
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j=zj2

q
’ 1þ 1

2
j=zj2:

(B.3)

Thence, we may also define the contravariant tangential vectors
via the reciprocal relations,

Tr ¼
sy � m̂

rJ

’ r

rJ
� dþ ð=zÞẑ� =z=zþ 1

2
j=zj2d

� �
;

(B.4a)
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Ty ¼
m̂ � sr

rJ

’ ẑ� r

r2J
� dþ ð=zÞẑ� =z=zþ 1

2j=zj2d
� �

;

(B.4b)

where we have used ẑ�r = 0. The vector line element along an
arbitrary contour G tangent to the surface is given by

dl ¼ srdrþ sydy

¼ ½dþ ẑð=zÞ� � r
dr

r
þ ðẑ� rÞdy

� �
:

(B.5)

Likewise, the area element of an arbitrary surface patch S is

dS ¼ Jd2r

’ 1þ 1
2
j=zj2

� �
d2r:

(B.6)

The curvature tensor of the surface is defined with respect to
the gradient of the surface normal as

K ¼ �=m̂ þ m̂ðm̂ � =m̂Þ

’ ==zþ 1
2
ẑ=ðj=zj2Þ þ =ðj=zj2Þẑ
� �

:
(B.7)

For all intents and purposes, the O(|=z|2) terms in eqn (B.7) are
of little consequence and may be neglected, giving K C ==z. The
principal scalar invariants of K include the trace

2H ¼ trK

¼ �= � m̂

’ =2z

(B.8)

and the sum of principal minors

2K ¼ ðtrKÞ2 � trðK � KÞ

¼ ð= � m̂Þ2 � =m̂:=m̂

’ ð=2zÞ2 � ==z:==z:

(B.9)

(The determinant of K vanishes identically, det K = 0.)
Here, H and K denote the mean and Gaussian curvatures,
respectively. The deviatoric curvature D is related to H and K
by the relation

2D2 ¼ 2ðH2 � KÞ

’ ==z:==z� 1
2
ð=2zÞ2:

(B.10)

The sign of D is a matter of convention, depending on the
direction of the surface normal m̂. It is worth noting that
eqn (B.8)–(B.10) are accurate up to O(|=z|3) errors.

For interfaces under zero static pressure, a balance of forces
normal to the interface shows that the mean curvature H must
vanish locally (see, for instance, Section 60 of Landau and
Lifshitz91). In the small-slope limit, eqn (B.87) thus gives

r2z = 0, (B.11)

which is Laplace’s equation. Substituting eqn (B.11) into (B.10)
gives the deviatoric curvature D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2==z:==z

q
for a static

interface.

C Capillary distortion energy

Eqn (4.5) for the capillary distortion energy W was presented in
the main text without derivation. In this appendix, we derive
this expression starting from a general representation for the
interface (interfacial tension g) surrounding an embedded
particle with a circular contact line (radius a) and bounded
externally by a circular shell (radius R).

If the interface were initially flat, then inserting the particle
creates no distortion and the energy cost is given by the
‘‘trapping energy,’’

W0 ¼ g
ðð

r0 � a

r � R

d2r� g
ðð

r�R
d2r

¼ �g
ðð

r0�a
d2r

¼ �pga2:

(C.1)

For a curved interface with initial height z = zext(r), inserting the
particle distorts the interface to a new height z = z(r;n).
We denote by S and S0 the set of contiguous points occupied
by the interface and the particle, respectively. Then, using the
area element defined by eqn (B.6), we may write the new energy
cost as

W1 ¼ g
ðð

r2SnS0

Jd2r� g
ðð

r2S
Jextd2r

’ 1
2
g
ðð

r2SnS0

j=zj2d2r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W1A

�1
2
g
ðð

r2S
j=zextj2d2r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W1B

�g
ðð

r2S0

d2r|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
W1C

;

(C.2)

where the second line is an approximation up to quadratic order in
the interface slopes |=z| and |=zext|. For the first two integrals in
eqn (C.2), the integrands are sufficiently small such that the regions
of integration may be transferred to the undeformed interface plane:

W1A ’ 1
2
g
ðð

r0 � a
r � R

j=zj2d2r; (C.3)

W1B ’ �1
2
g
ðð

r�R
j=zextj2d2r: (C.4)

The same action cannot be taken for the for the last integral in
eqn (C.2) because the integrand is of O(1). However, we may
apply the divergence theorem to transform the area integral
over S0 into a line integral over the bounding contour G:

W1C ¼ �1
2
g
I
r2G

r � n̂ds: (C.5)

To transfer the contour of integration to r0 = a, we must account
for the small distortion of the contact line. For circular contact
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lines, the only such distortion is due to a rotation X out of the
horizontal plane (see Fig. 7). Up to quadratic order in X,
eqn (C.5) may be approximated as

W1C ’ �1
2
g
I
r0¼a
ðr0 � n̂dsþ dr0 � n̂dsþ r0 � dn̂ dsþ r0 � n̂ ddsÞ;

(C.6)

where the perturbations dr0, dn̂, and dds are proportional to the
dyad X�X�ðX� ¼ �e �X and e is the 2D alternating tensor).
Applying the differential geometry of curves, we find

dr ¼ �1
2
X�ðX� � r0Þ; (C.7)

dn̂ ¼ �1
2
O2n̂þ 1

2
ðX� � t̂Þ2n̂þ 1

2
X�ðX� � n̂Þ; (C.8)

dds ¼ �1
2
ðX� � t̂Þ2ds; (C.9)

where t̂ ¼ �e � n̂ is the unit tangent to the contour (the inter-
mediate algebra leading to these expressions is available from
the authors upon request). After substituting eqn (C.7)–(C.9)
into (C.6) and setting r0 = an̂ at r0 = a, we obtain

W1C ’ �1
2
ga
I
r0¼a

1� 1
2O

2
� �

ds

¼ �pga2 1� 1
2
O2

� �
:

(C.10)

Summing eqn (C.3), (C.4), and (C.10) then gives

W1 ¼ W1A þW1B þW1C

’ 1
2
g
ðð

r0 � a

r � R

j=zj2d2r� 1
2
g
ðð

r�R
j=zextj2d2r� pga2 1� 1

2
O2

� �
:

(C.11)

It is worth noting that the first integral in eqn (C.11) contributes a
term �1

2
pga2O2 that exactly cancels the last term 1

2
pga2O2 arising

from the boundary distortion. Thus, the constant part of the
energy W1 is �pga2, as expected for circularly symmetric particles.

Subtracting the trapping energy W0 [eqn (C.1)] from W1

[eqn (C.11)] then gives the energy solely associated with the
distortion of the interface:

W ¼ W1 �W0

’ 1
2
g
ðð

r0 � a

r � R

j=zj2d2r� 1
2
g
ðð

r�R
j=zextj2d2rþ 1

2
pga2O2;

(C.12)

which is equivalent to eqn (4.5) in the main text. For non-
circular contact lines, additional terms must be added to
eqn (C.12) to account for the deformation of the contact line
in the co-rotated frame (e.g., see Section 4.2.2 for a discussion
of spherical particles with equilibrium contact angles).

D Capillary force and torque

In this appendix, we derive the force and torque on an interface-
trapped particle due to the nonlinear curvature-capillary

interaction. Some of this material can be found in the articles
by Domı́nguez et al.,29 Fournier,92 and Galatola;93 however, for
the sake of clarity, it is worth revisiting the derivation.

Our starting point is an expression for the force df due to
interfacial tension g acting on a line element dc of an arbitrary
contour G. Using elementary geometry, we may write

df = �gv̂ � dc, (D.1)

where m̂ is the unit normal to the interface as defined in
Appendix B. Substituting eqn (B.5) for dc and using the
reciprocal relations (B.4), we find

df ¼ �gm̂ � ðsrdrþ sydyÞ

¼ grJðTrdy� TydrÞ

’ g dþ ẑð=zÞ � =z=zþ 1
2
j=zj2d

� �
� rdy� ðẑ� rÞdr

r

� �
:

(D.2)

The last expression may be simplified further via the sub-
stitutions

n̂ds ¼ �ẑ� r
dr

r
þ ðẑ� rÞdy

� �

¼ rdy� ðẑ� rÞdr
r

(D.3)

and

r ¼ g ðẑ� =zÞðẑ� =zÞ � 1
2jẑ� =zj2d

� �
¼ �g =z=z� 1

2
j=zj2d

� � (D.4)

[equivalently, eqn (4.6)] to get

df C [gn̂ + g(n̂�=z)ẑ + n̂�r]ds. (D.5)

The first (constant) term on the right-hand side of eqn (D.5)
represents the force exerted on the contour in the absence of
interfacial curvature. The second (linear) term is of O(|=z|) and
will be shown, below, to contribute to the transverse force and
lateral torque on the particle. The final (quadratic) term is of
O(|=z|2) through the capillary stress tensor r, and will be shown
to contribute to the lateral force and transverse torque.

To calculate the total force on the particle, we integrate
eqn (D.5) over the contact line G:

F � Pẑ ¼
I
r2G

df

’
I
r0¼a

gðn̂ � =zÞẑþ n̂ � r½ �ds;
(D.6)

where we have used
H
r0¼a gn̂ ds ¼ 0. The horizontal component

of eqn (D.6) is

F ¼
I
r0¼a

n̂ � rds; (D.7)

where F is the horizontal force exerted on the particle by the
interface. eqn (D.7) is equivalent to (4.7) in the main text with
the substitution (4.6) for the stress tensor r. The vertical
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component of eqn (D.6) is

P ¼ �g
I
r0¼a

n̂ � =zds; (D.8)

where P denotes the vertical force exerted on the interface by the
particle. Hence, a positive pressure force P displaces the
particle above the undeformed interface plane. For a circularly
symmetric particle, the resulting interface profile is a capillary
monopole (Fig. 1a):

zmonopole ¼ �
P

2pg
log r0: (D.9)

For the monopole to vanish, we must have P = 0 [eqn (4.11)].
To calculate the torque on the particle, we take the cross

product of the position (measured from the particle’s center at
r = n, z = U) with the differential force element (D.5) and
integrate over the contact line:

T ẑ�N ¼
I
r2G
½r� nþ ðz�UÞẑ� � df

’
I
r0¼a

g½r0ðn̂ � =zÞ � zn̂� � ẑþ r0 � ðn̂ � rÞf gds
(D.10)

where we have used r0 = r � n and
H
r0¼a gUðẑ� n̂Þds ¼ 0. For a

general vector A in the horizontal plane, we define the ortho-
gonal vector A� ¼ �e � A ¼ ẑ� A. Then, taking the vertical
component of eqn (D.10) gives

T ¼
I
r0¼a

ẑ � ½r0 � ðn̂ � rÞ�ds

¼ �
I
r0¼a

r0 � ½ẑ� ðn̂ � rÞ�ds

¼ �
I
r0¼a

e:r0ðn̂ � rÞds

¼ �
I
r0¼a

r0 � ðn̂ � rÞ�ds:

(D.11)

The transverse torque T exerted on the particle by the inter-
face is non-zero only if the particle has inherent orientation
that couples to the background curvature [see, for example,
eqn (E.7) in Appendix E]. For circularly symmetric, ‘‘inert’’
colloids, no such orientation exists and we have T = 0. The
horizontal component of eqn (D.10) is given by

N� ¼ � e �N

¼ � g
I
r0¼a

ẑ� ½r0ðn̂ � =zÞ � zn̂� � ẑds

¼ � g
I
r0¼a
½r0ðn̂ � =zÞ � zn̂�ds;

(D.12)

where N ¼ e �N� denotes the horizontal torque exerted on the
interface by the particle. A positive torque N, e.g., due to a
polarized pressure distribution on the particle face, rotates the
particle out of the plane. The simplest of such deformations is

the capillary dipole (Fig. 1b):

zdipole ¼
N�
2pg
� r
0

r02
: (D.13)

For the dipole to vanish, we must have N� = 0 [eqn (4.12)].
For mechanically isolated particles with vanishing monopole

moment (P = 0) and dipole moment (N� = 0), the lowest-order
multipole moment is the (symmetric and traceless) quadrupole
moment Q, which is given by eqn (4.13) in the main text. A pure
capillary quadrupole centered at the particle admits the interface
profile (Fig. 1c),

zquadrupole ¼
Q

4pg
:
r0r0

r04
: (D.14)

E Effect of a static contact-line
undulation

Stamou et al.30 and later Sharifi-Mood et al.23,24 showed that a
static undulation of the contact line causes a particle to migrate
towards regions of high curvature. Such transverse undulations
are neglected in the analysis presented in Section 4.1, but we
briefly consider their effect here. Approximating the static
undulation as quadrupolar (see Fig. 1 of Stamou et al.30), the
boundary condition (4.10) is modified to read,

z ¼ U þX� � r0 þ 1
2
P:r0r0 at r0 ¼ a; (E.1)

where P is a symmetric and traceless tensor. If eqn (E.1) is
satisfied, then the new quadrupole moment of the particle
given by

Q = 2pga4(P � Kext
n ), (E.2)

instead of eqn (4.16). Thus, the contact-line undulation creates
a permanent quadrupole moment 2pga4P that can oppose the
induced quadrupole moment �2pga4Kext

n . The natural electro-
static analogue of an interface-trapped particle with an undu-
lated contact line is an ‘‘electret’’ (a permanently polarized
dielectric) in an electric field.

Following the same approach used to derive eqn (4.18), we
may calculate the capillary energy for fixed heights on the
outer shell:

WU ¼ 1
4
pga4 jKext

n j2 þ 1
12
a2jð=KextÞnj2 þ 1

2
jPj2 � 2P:Kext

n

h i
:

(E.3)

Compared to eqn (4.18), (E.3) contains additional terms
proportional to P. The crucial coupling term P:Kext

n results in
both a force and torque on the particle (discussed below). Since
the wetted area on the outer shell remains fixed, no additional
energy is supplied to the system: W ext

U ¼ 0. Thus, we identify
WU as the particle’s potential energy in an external curvature.

Similarly, the energy while holding the outer slopes fixed is

WP ¼ �1
4
pga4 jKext

n j2 þ 1
12
a2jð=K extÞnj2 � 1

2
jPj2

h i
; (E.4)
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which may be compared to eqn (4.21). Importantly, the cou-
pling term P:Kext

n does not appear in eqn (E.4). Thus, we find
WP a�WU , contrary to the result for a symmetrically pinned
contact line. Physically, the undulation of the particle’s contact
line can be regarded as a source of force density (the capillary
analogue of an electric charge density) that contributes addi-
tional work when the interface height on the outer shell is not
fixed. Indeed, if we calculate the Young–Dupré work of adhe-
sion needed to displace the outer height, we find

W ext
P ¼ �1

2
pga4 jKext

n j2 þ 1
12
a2jð=KextÞnj2 �P:Kext

n

h i
; (E.5)

which may be compared to eqn (4.23). Subtracting eqn (E.5)
from (E.4) gives WP �W ext

P ¼WU , i.e., the particle’s potential
energy.

In their analysis of particles with undulated contact lines,
Sharifi-Mood et al.23,24 did not enforce the wetting condition on
an outer enclosing boundary. Consequently, they derived an

energy W� ¼ 1
4
pga4 1

2
jPj2 �P:Kext

n

h i
that differs from the correct

energy (E.3) in that the coupling term P:Kext
n is halved while the

terms containing |Kext
n |2 and |(=Kext)n|2 vanish altogether. This

error was correctly identified by Galatola.25 For practical pur-
poses, the wrong prefactor of the coupling term P:Kext

n has little
consequence because the amplitude of P is typically fit to
experimental data. Thus, the only modification when using
the formulas of Sharifi-Mood et al.23,24 is that the fit values of P

must be doubled.
By applying a virtual work principle to eqn (E.3), one derives

the lateral force on the particle,

F ¼ �dWU
dn
¼ 1

4
pga4 =ð2P:Kext � jK extj2Þ

� �
n
; (E.6)

which again satisfies the point-quadrupole formula F ¼
1
4
ðQ:=KextÞx with Q given by (E.2). (Note that FadWP=dn in

this case!) If P and Kext are aligned, then the force due to the
permanent quadrupole acts against the induced quadrupole,
driving the particle towards regions of high curvature.

One may also use a virtual work argument to derive the
transverse torque T on the particle. Unlike ‘‘inert’’ particles,
which have no intrinsic orientation, particles with undulated
contact lines have a preferred director p. Expanding the quad-
rupolar amplitude as P = 2pp � p2d, the torque on the particle
is directly given by the virtual work principle,

T ¼ �e:p
dWU
dp
¼ �pga4e:ðP � KextÞn; (E.7)

which, by use of eqn (E.2), simplifies to T ¼ �1
2
e:ðQ � K extÞn.

This form is equivalent, save for a factor of two, to eqn (40) in
the article by Domı́nguez et al.29 According to eqn (E.7), the
torque acts to align the director p with the principal curvature
of the host interface. When T = 0, then P and Kext

n are aligned
and the permanent and induced quadrupoles act in opposition
to each other.

For the contact-line undulation to be safely neglected, its
quadrupolar amplitude must be small compared to the local

curvature: |P| { |Kext
n |. For an interface with characteristic devia-

toric curvature D, we have |Kext
n | B D. According to the particle

boundary condition (E.1), the quadrupolar amplitude scales as
P B ~z/a2, where ~z = (z � U � X��r0)|r0=a is the height of the
particle-sourced undulation. This gives a criterion ~z { a2D for the
permanent quadrupole to be subdominant. To be quantitative, we
assume a typical particle radius a C 5 mm and deviatoric curvature
D C 1 mm�1, which are characteristic of the conditions used in the
studies by Sharifi-Mood et al.23,24 Then, for the permanent quadru-
pole to be subdominant, the contact-line undulation ~z must be
much smaller than a2D C 25 nm, which is commensurate with
surface roughnesses measured by Sharifi-Mood et al.23,24 using
atomic force microscopy. Assuming the contact-line undulation (~z)
is fixed, the ratio |P|/|Kext

n | can be reduced either by increasing the
particle radius a (while maintaining a small buoyant weight) or by
increasing the deviatoric curvature D of the host interface.
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