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A neural network-based algorithm for high-throughput
characterisation of viscoelastic properties of flowing
microcapsules

A new method has been developed to accurately predict
multiple mechanical properties of microcapsules from their
dynamic deformation in a branched microchannel. The
method can process thousands of capsules per second and
opens up possibilities for high-throughput online mechanical
characterisation of flowing capsules or cells.
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A neural network-based algorithm for high-
throughput characterisation of viscoelastic
properties of flowing microcapsules
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Microcapsules, consisting of a liquid droplet enclosed by a viscoelastic membrane, have a wide range of

biomedical and pharmaceutical applications and also serve as a popular mechanical model for biological

cells. In this study, we develop a novel high throughput approach, by combining a machine learning

method with a high-fidelity mechanistic capsule model, to accurately predict the membrane elasticity
and viscosity of microcapsules from their dynamic deformation when flowing in a branched
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microchannel. The machine learning method consists of a deep convolutional neural network (DCNN)
connected by a long short-term memory (LSTM) network. We demonstrate that with a superior
prediction accuracy the present hybrid DCNN-LSTM network can still be faster than a conventional

inverse method by five orders of magnitude, and can process thousands of capsules per second. We

rsc.li/soft-matter-journal

1 Introduction

A microcapsule is a deformable particle which has a liquid core
enclosed by a thin elastic or viscoelastic membrane. Microcap-
sules have been a popular simplified mechanical model of living
biological cells,"> and the mechanical properties such as visc-
osity and elasticity have been related to cell states and human
disease processes.®” Artificial synthetic microcapsules are widely
used in biomedical and pharmaceutical applications such as
encapsulated cell culture,® controlled agent release” and targeted
drug delivery.® The membrane of microcapsules protects their
internal contents and regulates mass exchange. Its mechanical
properties determine a microcapsule’s mechanical strength and
its dynamic deformation corresponding to external forces. Char-
acterising mechanical properties of microcapsules is therefore
important in the design and manufacture of synthetic micro-
capsules, and in biomedical and clinical applications such as
active cell sorting and cancer diagnosis.

It has been very difficult to characterise mechanical properties of
microcapsules or biological cells due to their fragility and tiny size.
A number of methods have been proposed, such as atomic force
microscopy,” micropipette aspiration," parallel-plate rheometry,""
optical stretcher,”> magnetic twisting cytometry'*(see a recent
review'*). In these methods, a common practice is to measure
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also show that the hybrid network has fewer restrictions compared with a simple DCNN.

the deformation of particles under a well-defined stress. Note
that fluid forces generated in shear,”™” centrifugal,"®"® and
extensional®®?! flows have also been used to deform suspended
capsules. The throughput rates of these methods are typically
limited to 10-1000 capsules or cells per hour, which are inadequate
to the measurement of a large population of heterogeneous
particles. For biomedical applications such as cell sorting or cancer
diagnosis based on mechanical properties of cells, many thou-
sands to millions of cells need to be measured in minutes to hours.
Those applications therefore require high-throughput approaches
that can process at least hundreds of cells per second.’

To address the unmet need of the high processing through-
put rate, novel hydrodynamic approaches have been proposed
in recent years,»***> where microcapsules or living biological
cells are flowed through microfluidic channels. The particles
are deformed by the fluid stresses inside the narrow channels. By
fitting the steady or dynamic deformed particle profiles to theore-
tical predictions, mechanical properties such as viscosity and
elastic modulus, of the particle can be obtained inversely. The
current state-of-the-art systems can conduct real-time measure-
ment of the deformation of hundreds of cells per second.

A current limitation of the transformative hydrodynamic
approaches is that it still cannot conduct real-time measure-
ment of the viscosity and elastic modulus of microcapsules or
cells at a high throughput rate. The mechanical properties need
to be obtained by post-processing the experimental data using
inverse methods, with hours to days of processing time depending
on the size of the sample. This is because that existing inverse
methods often need to compare a test sample with a large
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number of samples (obtained by theoretical predictions) stored
in a data bank to find the best fit, which is a very time-
consuming process. Inferring viscosity of a particle is particularly
slow, since it is necessary to consider the time evolution of the
particle deformation.

In recent years, machine learning has attracted much attention
from different communities including soft matter physics and
engineering, for it provides a versatile tool which can infer the
relationship between data and their corresponding measure-
ments. Machine learning approaches, such as the supported
vector machines, have been applied to glassy systems to identify
flow defects,*® analyze atomic structures,** and predict plasticity.*®
Deep convolutional neural networks (DCNN) have significant
merits in processing data that come in the form of images,*
and have led to exciting applications such as classification of
cells,*” characterization of amorphous materials,® prediction of
emulsion stability,>® and geometrical optimization of aerofoils.*’
The long short-term memory (LSTM) neural networks®' are
superior in processing time-series data and building the
temporal connections, and have been broadly used in applica-
tions such as weather forecasting,*” clinical diagnosis,”® and
prediction of chemical reactions.**

In the present study we develop a novel high throughput
approach, by combining a hybrid DCNN-LSTM neural network
with a high-fidelity mechanistic capsule model, to accurately pre-
dict the membrane elasticity and viscosity of microcapsules from
their dynamic deformation when flowing in a branched micro-
channel. Unlike conventional inverse methods which have to
conduct a time-consuming process to find the best fit, the present
neural network is trained offline, and its predicting process only
involves a limited number of algebraic calculations. It is therefore
much faster and can predict the membrane elasticity and viscosity
of thousands of capsules per second. We also demonstrate that the
present method can deal with capsules with large deformation in
fast flows. Furthermore, the present DCNN-LSTM neural network
has fewer restrictions compared with a simple DCNN approach.

2 Method

The present method predicts the membrane viscosity and elas-
ticity of a microcapsule from its dynamic deformation in the
bifurcation region of a branched microchannel. The method
consists of two parts. The first part is a microfluidic platform for
flow-induced capsule deformation, which is detailed in Section 2.1.
The second part is a DCNN-LSTM network-based prediction
algorithm. As described in Section 2.4, the DCNN-LSTM network
belongs to supervised learning, and can be viewed as an operator
which maps inputs, that are images of the deformed capsule, to
measurements, that are membrane viscosity and elasticity.

2.1 Microchannel flow geometry

The problem setup is shown schematically in Fig. 1(a). An
initially spherical capsule of radius a flows through a straight
channel with an orthogonal side branch. The parent channel
and the two downstream daughter channels have a constant
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square cross-section 4[> with a side length 21. The corners of the
bifurcation are rounded with a radius of 0.4/. The length of the
parent channel and two daughter channels are 36/ and 10/,
respectively. A three-dimensional Cartesian coordinate is used
with x-axis along the axis of the main channel, z-axis along the
side branch axis and x =y = z = 0 at the bifurcation centre.

In the branched channel, the fluids inside and outside the
capsule are both incompressible and Newtonian with density
p and viscosity . No-slip boundary condition is imposed on the
channel wall. At the upstream inlet and the two downstream
outlets, the velocity profiles are set to be fully developed
laminar channel flow profiles corresponding to flow rates Qo,
Q; and Q, respectively, with Qy = Q; + Q,.

The length of the parent channel allows the capsule to
develop into a steady shape before arriving at the bifurcation
of the channel. We define a region of interest (Rol) covering the
entire bifurcation area of the channel with —3.5] < x < 4.5/
and —! < z < 1.5] (shown in Fig. 1(a)). When the capsule is
flowing in the Rol, its instantaneous deformed profiles at
different times are captured. These profiles are then employed
by a trained DCNN-LSTM neural network to predict the
membrane viscosity and elasticity of the capsule. The first
capsule profile is captured when the capsule’s front point
touches the plane S. at x = —2[. At this instance, the capsule
is at its steady shape of flowing in the straight parent channel.
The time interval AT between two adjacent capsule profiles is
1.341/v, where V is the mean fluid velocity in the parent
channel. With such a choice of time interval, five instantaneous
profiles can be captured when the capsule is flowing through
the Rol. This enables the DCNN-LSTM neural network to
accurately predict the capsule membrane properties.

The current microchannel geometry with a bifurcation pro-
vides a versatile platform where the trajectory and transient
deformation of the capsule can be controlled conveniently by
adjusting the flow strength and flow split ratio between two
downstream channels, without the necessity of changing the
geometry of the channel. In experiments, the channel can be
fabricated using polydimethylsiloxane with standard soft litho-
graphy, and the flow can be controlled by multiple syringe
pumps at the channel inlet and outlets.

2.2 Microcapsule mechanical model

The capsule is regarded as a liquid droplet enclosed by an infinitely
thin viscoelastic membrane with a small bending resistance. A no-
slip boundary condition at the capsule membrane has been
assumed. The membrane elasticity is modelled by the Skalak (SK)
constitutive law,*> which has a strain-hardening property. Specifi-
cally, the two principal in-plane tensions 15, are calculated as

G
=24

-5 1) conaiid )

€

75 (i* = 1) + CGy o (APA2" — 1),

@

where G; is the surface shear elastic modulus, 4, , are principal
extension ratios. The membrane area dilatation modulus is
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Fig. 1

(@) Transient deformation of an initially spherical capsule flowing through a straight channel with a right-angled side branch. A three-dimensional Cartesian

coordinate system is used with x-axis along the main channel axis, z-axis along the side branch axis, and the origin of the coordinate system is located at the intersection
of the centrelines of both two daughter channels. The red rectangular box enclosing the bifurcation region of the channel marks the region of interest (Rol) covering
—350 < x < 45, —[ < z < 15l Five instantaneous profiles of the same capsule when flowing in the Rol are captured and then used by a DCNN-LSTM neural network to
predict the membrane viscosity and shear elasticity of the capsule. The architecture of the DCNN-LSTM neural network consists of two sequential parts: (b) a DCNN (C:
convolutional layer, P: pooling layer) and (c) an LSTM neural network (FG: forget gate, IG: Input gate, OG: output gate). Details of the networks are elaborated in the text.

Ks=(1 +2C)G,. Here, we set C = 1, which has been found to be a
proper value for artificial capsules."" It should be noted that
the SK law can account for capsules and biological cells with
large deformation.*®*”

The viscous stress of the membrane t” is split into the shear

viscous stress t5 and the dilatational viscous stress t:*®

T =15 + 14 = ug[2D — tr(D)P] + uqtr(D)P,

(2)

This journal is © The Royal Society of Chemistry 2021

where P = 1 — n®n is the surface projection tensor with n
representing the unit normal vector to the deformed surface.
D is the strain rate tensor of the membrane, and tr(D) is the rate
of membrane area dilatation. In the present study, we have
neglected the viscous effect due to the rate of area dilatation for
the sake of simplicity.

We employ the Kelvin-Voigt (KV) viscoelastic model*® to
describe the viscoelastic behaviour of the membrane. The total
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stress tensor is assumed to be the sum of the elastic and the
viscous stresses. It should be noticed that the KV model has
been widely used to describe the mechanics of capsules and
biological cells.>*">?

Apart from the elastic and viscous stresses, the out-of-plane
bending force is calculated as:>

fb = kc[[ZH + Co)(ZHZ — ZKg — C()H) + ALB(ZH — Co)]n,
(3)

where k. is the bending modulus, H is the mean curvature, x is
the Gaussian curvature, ¢, is the spontaneous curvature, and 4y
is the Laplace-Beltrami operator. A small bending resistance
with k. = 0.0008G4* has been used, so that local membrane
wrinkles can be suppressed but global deformation of the
capsule is not significantly affected.>® The present model is there-
fore valid mainly for capsules with a thin membrane (such as
nylon, aminomethacrylate and biocompatible alginate capsules).

The dimensionless parameters governing capsule deformation
in the bifurcation region are:

(i) the dimensionless membrane viscosity 1 = pug/(ua);

(if) the capillary number Ca = uV/Gs, which measures the
ratio between the viscous fluid force and the membrane
elastic force;

(iii) the size ratio f§ = a/l which compares the size of the
capsule to the hydraulic radius of the square channel;

(iv) the flow Reynolds number Re = pV(2])/y;

(v) the flow split ratio ¢ = Q,/Q,, which is the ratio of flow
rates in the side branch and the parent channel.

2.3 Immersed-boundary lattice Boltzmann method

We first use a well-tested immersed-boundary lattice Boltzmann
method to simulate the transient deformation of the capsule in
the branched channel. The simulations results, including
deformed capsule profiles and corresponding membrane para-
meters, are then used to train a DCNN-LSTM neural network.

Details of the immersed-boundary lattice Boltzmann method
can be found in our previous works,”>>" and only a brief
summary of the method is provided here. The fluid flow is
solved by a three-dimensional nineteen-velocity (D3Q19) lattice
Boltzmann method (LBM). At channel walls, the no-slip boundary
condition is applied using a second-order bounce-back scheme.’®
A second-order non-equilibrium extrapolation method®® has been
employed to impose the velocity boundary conditions at the inlet
and two outlets. The interaction between the fluid and the capsule
is solved using the immersed boundary method of Peskin.®” The
three-dimensional capsule membrane is discretised into flat
triangular elements, and a finite element membrane model is
employed to calculate the deformation gradient tensor, the
principal extension ratios 4, and 4, and the stress tensor. To
integrate the viscoelastic stress, we follow the same approach of
Yazdani and Bagchi.*’

The present numerical scheme for capsule deformation in
fluid had been validated extensively against previous theoretical
and computational results of capsules in linear shear flow>>>*°*
and channel flows.>”®* In the present study, uniform Cartesian
grids are used in the flow domain with Ax = Ay = Az = 0.04L.
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The capsule membrane is discretised into 8192 flat triangular
elements connecting 4098 nodes. We find further reducing flow
grid size or increasing membrane elements does not lead to any
visible change in capsule trajectory and deformed shapes in the
branched channel.

2.4 DCNN-LSTM neural network

The present neural network consists of a DCNN and an LSTM
network, that are connected in series. The hybrid network is
developed using the open-source software Tensorflow®® with
Keras Application Programming Interface (API),** and its archi-
tecture is shown in Fig. 1(b and c). The first part is a DCNN, and
its main function is to extract spatial features from transient
deformed profiles of the flowing capsule. As shown in Fig. 1(b),
the inputs of the DCNN are binary images of capsule instanta-
neous profiles at T=T; ~ T, where the subscript s denotes the
sth moment. Note that the mass centre of a capsule is at the
centre of each binary image which covers a square domain with
a side length of 2[. Spatial features of the capsule images are
learned and converted to a lower-dimensional form by the
convolutional and pooling layers of the DCNN. The output is
then reshaped by a flattening operation into a feature vector,
represented by x = x; ~ X, which is then fed to the LSTM neural
network that represents the second half of the hybrid network.
As shown in Fig. 1(c), the main function of the LSTM network is
to build the temporal connections between the DCNN outputs
and use them to predict the membrane viscosity and elasticity of
the capsule. More details of the two networks are given below.

The architecture of the DCNN is shown in Fig. 1(b), where there
are four convolutional blocks, within each a convolutional and a
pooling layers are in sequence. These are followed by a flattening
operation. The convolutional layer consists of a few filters, which
are much smaller in spatial dimensions than the input image.
During the convolution operation between each filter and the
input image, the filter slides through the entire image and the
filter weights make an elementwise scalar product with each small
region of the input image (see Fig. 2(a)), following:*°

dij - (1 X W)l'/' - Wmn * Ii+m‘j+ﬂ: [4)

where I represents the input image which has / and 4 pixels along
directions of the length and height, respectively. The term w
denotes the weights of the filter with a size of [; x l,. The indexes
i, j of the scalar product range from 0 to [ — [; and & — I,
respectively. The output of the convolution operation follows:

0 = a(dy + b), (5)

where b is a bias term, and ¢(z) is a nonlinear activation
function, for which we have used the rectified linear unit
(RELU) function:

o(z) = max(0, z). (6)

In eqn (6), the output of the RELU function is 0 when z < 0. The
RELU function has been shown to have superior ability to train
CNNs faster.®

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 (a) Convolution, (b) maximum pooling, and (c) flattening operations

in the convolutional, pooling and flattening layers, respectively, of the DCNN.

The pooling layer usually follows the convolutional layer and
reduce the dimension of the output of the convolutional layer.
In the present study, we have used the maximum pooling
operation that gives the maximum of the numbers in the
pooling kernel (see Fig. 2(b)). After the last maximum pooling,
a flattening operation is conducted on the pooled feature maps.
The flattening operation converts the two-dimensional digital
feature maps into single-column feature vectors (illustrated in
Fig. 2(c)), so that the outputs of the DCNN can be processed by
the connected LSTM neural network (Fig. 1(c)).

The LSTM neural network builds up the temporal connec-
tions between sequential feature vectors using memory cells
(shown in Fig. 1(c)). Each memory cell contains three gates:
the forget gate (FG), the input gate (IG) and the output gate (OG),
which regulate the flow of information by selectively adding
information (IG), removing information (FG), or letting it
through to the next cell (OG). A memory cell of the time instance
T, takes the cell state, cell output of the previous memory cell
(i.e, ¢;_1 and h,_4, respectively, which carry historical informa-
tion), and the current feature vector x, as inputs, and generates
its current cell state ¢, and output #,, that can be fed to the next
memory cell, or be used to make predictions.

The equations of a memory cell to compute its gates and
states are as shown in the following equations:*®

i, = o(Wyx,+ Wiihi—y + Wei o ¢mq + by),

Ji
Cy :ft oc¢ 1+ it o tanh(W\‘(’Xt + thht—l + b(‘)7 (7)

o(Wiexi + Wighi—1 + Wer 0 ¢;1 + br),

0y = O'( Wiox: + Whohr—l + Weoce + bu)a

h; = o, o tanh(c,),

where o denotes the element-wise product, the W terms denote
weight matrixes (e.g. Wy, is the weights matrix from the input to
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the input gate), the b terms denote bias vectors (e.g. b; is the
input gate bias vector), the subscript ¢ — 1 and ¢ indicate the last
moment and current moment, respectively, the sigmoid func-
tion denoted by ¢ follows

a(e) =1/(1 +e7°). (8)
The hyperbolic tangent function denoted by tanh is given by

tanh(z) = (1 — e 2)/(1 + e ). (9)

At the final memory cell, the cell output %, (s = 5 in the
present study) is fed into two output layers, which conduct
regression tasks and predict the capsule membrane viscosity
and shear elasticity. The equation of output vector y; is given by

Vs = 0(Wyhy) + by, (10)

where W, and b, represent weight matrix and bias vectors.

The present DCNN-LSTM neural network is trained on a set
of examples. Each example contains a few binary images of the
instantaneous profiles of a capsule when it is flowing in the
channel bifurcation region (see the binary images of Fig. 1(b)),
and the corresponding parameters such as the capsule
membrane viscosity and shear elasticity. The examples are
obtained from computational simulations using the immersed
boundary lattice Boltzmann method.

During training, the internal parameters of the network are
adjusted to minimize a loss function that describes how close
the predictions are to the ground truth. The total loss consists
of the losses from each regression tasks. We use the square loss
function for a regression task:

L8 = ||lyi® — y.?,

(11)

where y; represents the predicted quantity of Ca or n by the
present DCNN-LSTM neural network and y;®® is the corres-
ponding ground-truth. The total loss function follows:

1 N

v (L + 1),

(12)

Liotal =

where N is the number of training samples.

To optimize the trainable internal parameters, we derive the
gradients of the loss function L, with respect to these
parameters using a backpropagation algorithm,®” and then an
optimizer, which employs a stochastic gradient descent algorithm
called ADAM,® is used to update the values of these parameters.
Mini-batch mode training is applied, and exposing all training
samples to the DCNN-LSTM neural network once is called an
epoch. At the end of each epoch, the DCNN-LSTM neural network
is validated with a small portion of the training samples (i.e., 10%
in the present study) which have not been used in the training
process. With the process iterating, the total loss decreases and
converges towards small values. To avoid overfitting, a batch-
normalization® has been applied in the present model. The
training process is terminated with a predefined early stopping
criteria, when the total loss of validation shows no further
improvement over several iterations even after reducing the
learning rate. After training and validation, the DCNN-LSTM

Soft Matter, 2021,17, 4027-4039 | 4031
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neural network can be used to predict the membrane viscosity and
shear elasticity of flowing microcapsule from its transient profiles
in the channel bifurcation region.

The performance of the present DCNN-LSTM neural network
is affected by its certain hyperparameters. Our extensive valida-
tions and tests suggest that the following choices of hyperpara-
meters lead to the optimum prediction accuracy of the present:
the DCNN has four blocks, each of which has one convolutional
layer and one max-pooling layer in sequence. For each convolu-
tional layer, the filter size is 3 x 3 with a stride of one and the
same padding operation. The number of filters in each of the
four convolutional layers is 16, 32, 64, and 128, respectively. For
each max-pooling layer, the kernel size is 2 x 2 with a stride of
two and the same padding operation. In each memory cell of the
LSTM network, the number of neurons in the FG, IG and OG is
128. During training, the size of the mini-batch is chosen to be
32. An initial learning rate of 0.001 is applied with a learning rate
scheduler, which gradually reduces the learning rate when the
total loss of validation shows no improvement over epochs.

3 Results and discussion
3.1 Prediction of membrane viscosity and shear elasticity

To test the prediction accuracy of the present DCNN-LSTM neural
network, we first use it to infer capsule membrane viscosity
n. Both the training and testing samples are obtained from
numerical simulation. The training data contains 52 samples,
and each sample consists of five binary images of instantaneous
cross-sectional profile of a capsule at different moments (see
Fig. 1(b)). The capsule membrane viscosity 7 ranges from 0.03 to
17, with Ca = 0.1 and 0.6, respectively. The values of parameters
considered cover the range of moderate to large deformation of a
capsule that can be readily achieved in experiments. The testing
data, not used in the training process of the network, are within
the same ranges of parameters. Fig. 3(a and b) compare the
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predicted # with the corresponding ground truth at Ca = 0.1 and
0.6, respectively. Excellent agreements can be observed. The mean
absolute percentage error (MAPE) of predicted n from corres-
ponding ground truth, evaluated from entire testing samples, is
3.38% at Ca = 0.1 and 3.47% at Ca = 0.6, which suggests excellent
prediction accuracy of the present model. In the present study,
the MAPE of a parameter A is defined as:

Aprcj - Agt,i

Agt,i

MAPE(4) = % i , (13)
i=1

where Apre ; and Ag; are the predicted and ground-truth values of
the ith testing sample; M is the total number of testing samples.

In the present study, training samples distribute evenly in
the parametric space considered. We find that the size of
training samples (i.e., the number of samples used in training)
has a significant effect on the prediction accuracy of the DCNN-
LSTM network. With the same network of Fig. 3(b) for capsules
at Ca = 0.6, we reduce the training sample size from 52 to 26,
and then to 13. We find that the MAPE of predicted # from the
corresponding ground truth increases sharply from 3.47% to
12.48%, and then to 26.24%.

The effect of membrane viscosity on capsule deformation in
the branch channel can be seen from Fig. 3(c and d). It has no
effect on the first profile of the capsule, which is still at its
steady-state in the feeding channel. However, membrane visc-
osity can significantly limit the deformation of a capsule during
its transient motion in the channel bifurcation. We also notice
that when 5 < 3.5, its effect on capsule deformation is weak, in
particular for a capsule with moderate deformation (e.g., at
Ca = 0.1). Capsule instantaneous profiles are visually identical
at membrane viscosity n = 0.17 and 3.5. However, the present
DCNN-LSTM neural network seems to be able to learn the
subtle differences between capsule profiles and give an accurate
prediction of the capsule membrane viscosity.

(b) 18
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= 12
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= @ Ca=06

: 12 18
n_ground truth

@ — 1=0.17 == =35 mexs fj=16.88
Ca=0.6

Fig. 3 Comparison between the predicted membrane viscosity 1 and the corresponding ground truth at (a) Ca = 0.1, and (b) Ca = 0.6. The solid lines are
used as guides for the eyes representing perfect agreement. Transient profiles of a capsule in the Rol at different moments with different n = 0.17
(red solid line), 3.5 (green long dashed line), 16.83 (blue dashed line) at (c) Ca = 0.1, and (d) Ca = 0.6. Other parameters are f = 0.6, g = 0.3, Re = 0.1.
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It is worth mentioning that the present mechanical models
for both fluid flow and capsule dynamics can conveniently take
into account the inertial effect,’” which is relevant to inertial
microfluidics where the average flow speed can reach meters
per second.>! We conduct studies similar to those in Fig. 3 and
consider the same capsule at a much higher flow Reynolds
number Re = 40 in the inertial flow regime. We find that the
prediction accuracy of membrane viscosity n by the present
DCNN-LSTM neural network is similar to that of Fig. 3 (not
shown). In practical experiments, for a microcapsule with a
radius of 50 mm suspended in water at room temperature, a
flow Reynolds number of Re = 40 can be achieved with an
average flow speed of 0.24 m s~ . This corresponds to a pressure
drop of 2.77 kPa per centimetre channel length in a microchan-
nel with a half cross-sectional width of 83 mm (f = 0.6).

Note that the present DCNN-LSTM neural network can be
conveniently extended to predictions of multiple mechanical
properties of the capsule membrane. This is done by adding
more parallel output layers. In the present study, we demonstrate
its extension to the prediction of capsule capillary number Ca,
besides the membrane viscosity #. The membrane shear elasti-
city G is calculated from the capillary number by G = uV/Ca. The
additional prediction task involves an increase in the training
sample size. Here the training data have been extended from
those used in Fig. 3, to include additional 260 samples, with Ca

View Article Online

Paper

ranging from 0.1 to 0.6, in the same range of membrane viscosity
n. The testing data consist of 36 samples at six values of # and six
values of Ca (see Fig. 4(b and c)). Fig. 4(b and c) compare the
predicted Ca and n with their corresponding ground truth. The
MAPEs of Ca and # from their ground truth are 3.65% and
3.42%, respectively, which suggest excellent prediction accuracy
of the present model.

3.2 Prediction using capsule footprint profiles

Often it is not easy to obtain the cross-sectional profile of a
capsule from an experimental image when the capsule is experi-
encing large deformation inside a microchannel. Such a case can
be seen from Fig. 4(a) for a capsule with Ca = 0.6, where the rear
region of the capsule forms a concave parachute shape and part
of it hides in the shadow. In previous studies, it was necessary to
manually erase the concave region to obtain the cross-sectional
shape,”® which may cost considerable processing time. To solve
this difficult problem, we test if the present DCNN-LSTM neural
network can make accurate predictions from the footprint profiles
of a capsule (see images on the right side of Fig. 4(a)). The training
and testing data, using samples of footprint profiles, are prepared
from the same cases employed in Fig. 4(b and c). With the new
solution, we compare the predicted capillary number Ca and
membrane viscosity # with their corresponding ground truth in
Fig. 4(d and e). The MAPEs of Ca and 7 from their ground truth are

18
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% '§ 0.4f 8 17y
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D @ D | =
5 5
/ \ > =
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T, D 0.2 0.4 0.6 6 12 18
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binarization binarization

Fig. 4

Ca_ground truth

1_ground truth

(a) lllustration of cross-section and footprint binarization of capsule profiles. (b and c) Comparisons of predicted capillary number Ca and the

membrane viscosity n with the corresponding ground truth, where the training and testing samples of the network are binarized cross-section capsule
profiles. Solid lines are guides for the eyes representing perfect agreement. The thirty six testing samples cover six values of 5 and six values of Ca. Other
parameters are f = 0.6, g = 0.3, Re = 0.1. (d and e) Comparisons of predicted capillary number Ca and the membrane viscosity # with the corresponding
ground truth, where training and testing samples of the network are binarized footprint profiles of the same capsules of (b and c).
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4.98% and 4.78%, respectively, which are only slightly higher than
those using the cross-sectional profiles of the capsule, that contain
more geometrical information of the capsule’s rear region.

3.3 Comparison with an inverse method

We compare the performance of the present DCNN-LSTM
neural network with that of a conventional inverse method.
There are mainly two types of conventional inverse methods.
The first type compares simple unique features of a deformed
capsule measured in the experiment, such as the total length
along the flow direction, with those of a data bank that have
been obtained by theoretical predictions covering a wide range
of parameters. The mechanical properties of the capsule are
inferred from the theoretical prediction that gives the best fit.>®
The second type of inverse method is similar to the first type in
that it also infers properties from the best fit, however, the
second type of method compares the entire profile of a deformed
capsule.

In the present branched channel geometry, the dynamic
deformation of the capsule in the bifurcation region is compli-
cated and cannot be captured by simply considering the
capsule length, we therefore use the second type of inverse
method. We compare all the five instantaneous capsule profiles
of a testing sample with those corresponding profiles of each
sample image stored in a data bank. The geometrical difference
between capsule profiles is quantified by the mean Hausdorff
distance (MHD)" in the present study. To explain the MHD, let
us consider a set of m’ points, R = {ry, r,, 3,.. .Iy} from the ith
instantaneous capsule profile of a testing image, and another
set of n’ points, S = {sy, sy, S3,.. .Sy} from the ith instantaneous
capsule profile of an image of the data bank. Assuming that the
two sets of points have the same centre of mass, the MHD

h{R,S) of the two capsule profiles is defined as:

hi(R,S) = mlz min[d(r,s)], (14)

where d(r,s) is the distance from any point in R to any point in
S. The total MHD accounting for all capsule profiles of two
images is defined as:

v
H(R,S) = h(R,S), (15)
i=1
where M’ is the number of instantaneous capsule profiles in the
Rol. The minimum total MHD H(R,S) indicates the best fit. The
properties of the capsule in the testing sample are then
considered to be identical to those of the capsule from the
data bank that gives the best fit.

We first compare the accuracy of the DCNN-LSTM neural
network and the inverse method in predicting the capsule
membrane viscosity n and capillary number Ca. The same
training and testing samples of Fig. 4(b and c) have been used
here. In the inverse method, the training samples are used as
the data bank, which provides images that a testing image can
be compared with. We find both methods can accurately
predict Ca with a comparable MAPE that is around 3%.
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However, the present DCNN-LSTM neural network is consider-
ably more accurate than the inverse method in predicting the
capsule membrane viscosity #. The MAPE by the DCNN-LSTM
neural network is 3.42%, which is significantly lower than
16.29% by the inverse method. We notice that the DCNN-
LSTM neural network significantly outperforms the inverse
method when the capsule membrane viscosity is low and
therefore only weakly affects the capsule deformation (see
capsule profiles in Fig. 3). This result is actually not surprising.
In the inverse method, the cross-sectional profile of a capsule
membrane has been discretised into 128 elements. While in the
present DCNN-LSTM neural network, each binary image has an
area of 2/ x 2[ that is covered by 80 x 80 pixels. The cross-
sectional profile of a capsule membrane is covered by more
than 150 pixels, which are considerably more than the
membrane elements used in the inverse method. The higher
resolution may have resulted in a better prediction accuracy.

Next, we compare the throughput rate of the present DCNN-
LSTM neural network and the inverse method. There are
mainly two steps in the prediction process. The first step is
image processing where the original image of a deformed
capsule is converted into a form that can be used as an input
by a prediction method. In the second step a prediction method
calculates the membrane shear elasticity and viscosity based on
the transient capsule profiles in the channel bifurcation. For
the inverse method, image processing involves edge detection
and segmentation of the five cross-sectional profiles of a
capsule membrane, with each profile discretised into 128
equal-sized elements. This can be done conveniently using
Matlab and 1351 samples can be processed within a single
second using a desktop personal computer (Intel Core i7,
4 GHz). Image processing in the present DCNN-LSTM neural
network is mainly a binarization process where the five instan-
taneous capsule profiles of a sample are converted into five
binary images with value 1 inside the capsule and 0 outside (see
Fig. 1(b)). A Matlab subroutine can process 3975 samples
per second with the same desktop computer.

Regarding the second step of processing, from Table 1 it can
be seen that the prediction throughput rate of the present
DCNN-LSTM neural network is higher than that of the inverse
method by five orders of magnitude. The high throughput rate
of the DCNN-LSTM neural network is not surprising and is
mainly due to two reasons. Firstly, compared with the inverse
method which needs to conduct a time-consuming process to
find the best fit, the present DCNN-LSTM neural network has
completed training offline before making a prediction, and the
prediction process only involves a limited number of algebraic
calculations. Secondly, computations of the DCNN-LSTM
neural network are GPU based and utilize parallel computing,

Table 1 Throughput rates of the DCNN-LSTM neural network and the
conventional inverse method

Throughput rate/method Inverse method Present method

1351
0.01

3975
2470

Image processing (sample/s)
Prediction (sample/s)
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Fig. 5 Architecture of a DCNN for predicting membrane elasticity and viscosity of the capsule. It has four convolutional and pooling layers, followed by a
fully-connected layer and two output layers (C: convolutional layer, P: pooling layer, FC: fully connected layer).

which is the case for the present prediction (GPU model: Tesla
V100-16GB, 1.38 GHz).

3.4 Comparison with a DCNN

Note that we can use a simple DCNN to predict the capsule
membrane properties from its transient deformation in the
Rol. Such a DCNN is also developed in the present study and its
architecture is shown in Fig. 5. Compared with the architecture
of the DCNN-LSTM neural network, the only difference of the
DCNN is that it has replaced the LSTM network by a fully
connected layer which has 256 neurons in the present study.
For the DCNN, a sample image used for training or testing is in
the form of a binary image which stacks multiple instantaneous
capsule profiles in the Rol, as shown in Fig. 5.
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Fig. 6

It is very interesting to compare the prediction accuracy and
throughput rate of the two neural networks. Here we consider
the performance of both networks with different numbers of
instantaneous capsule profiles within the same Rol, using the
same cases of Fig. 3. As illustrated in Fig. 6(a), we double the
image capturing frequency in each test so that the number of
capsule profiles in the Rol increases from two, which is the
minimum for analysing time evolution of capsule deformation,
to three, five and finally to nine, where capsule profiles have
overlapped (see the column of sample images used by the
DCNN) due to the small time interval between two adjacent
profiles.

The comparisons of MAPE of the predicted membrane
viscosity 1 from the corresponding ground truth and the

DCNN-LSTM

e
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(a) Increasing the number of capsule profiles in the Rol by doubling the image capturing frequency. The term mAT_n is the label of a sample

where there are n capsule profiles in the Rol and the time interval between two adjacent capsule profiles is mAT, where AT = 1.34{/V. The corresponding
binary images used as inputs of the DCNN and DCNN-LSTM neural network are shown in the middle and right columns, respectively. Comparison of
(b) the MAPE of the predicted membrane viscosity 5 from the corresponding ground truth, and (c) the prediction throughput rate, of the two networks.
The same cases used in Fig. 3 have been employed in the tests here.
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prediction throughput rate of the two networks are presented in
Fig. 6(b and c). From Fig. 6(b), it can be seen that when the
number of capsule profiles is small and there is no overlap
between capsule profiles, the prediction accuracy of the two
networks are comparable. With the number of capsule instan-
taneous profiles in the Rol increases, the time evolution of
capsule deformation is better resolved which has led to higher
prediction accuracy for both networks. However, we notice that
with nine instantaneous capsule profiles in the Rol, the overlap
of capsule profiles of sample images used by the DCNN causes
loss of local geometrical information, which has resulted in a
reduced prediction accuracy. The DCNN-LSTM neural network,
however, does not have such a limitation because it processes
individual instantaneous capsule images.

It can be seen from Fig. 6(c) that the prediction throughput
rate of the DCNN does not depend on the number of capsule
images in the Rol. This is due to the fact that the DCNN
processes sample images covering the same Rol with the size
of 8/ x 2.5/ represented by 320 x 100 pixels. For the DCNN-
LSTM neural network, the amount of data that need to be
processed is proportional to the number of capsule profiles,
and therefore the prediction throughput rate decreases with the
number of capsule profiles in a sample. Note that the two
networks have similar prediction throughput rates when there
are five capsule profiles in the samples. In such a situation, the
total number of pixels of a DCNN-LSTM sample is 80 x 80 x 5 =
32000, which is the same to that of a DCNN sample. With the
same amount of data contained in the samples, we notice that
the DCNN-LSTM neural network has a slightly higher predic-
tion throughout rate than the DCNN, possibly due to the fact
that there are fewer neurons in the LSTM network compared
with the FC layer of the DCNN.

3.5 Effect of image resolution

In experiments, images of capsules or biological cells may have
different resolutions which can affect the performance of the
present DCNN-LSTM neural network. We therefore test this effect
by considering capsule images with three different levels of
resolution (illustrated in Fig. 7(a)). Note that both training and
testing samples, with various resolutions, are prepared using the
same cases employed in Fig. 3(b). From Fig. 7(b), it is seen that
with the image resolution dropping to 20 pixels in each direction,
deviation of the predicted # from the corresponding ground truth
has increased. The MAPE of the predicted n from the corres-
ponding ground truth increases from 4.25%, using images with 80
pixels in each direction, to 10.09%. However, the sacrifice of
prediction accuracy is associated with a significant increase of
prediction throughput rate, which has grown from 2470 to 6800
samples per second, that can be seen from Fig. 7(c). This feature
may be very useful to applications where the processing through-
put rate is more important than precise membrane rheology.

3.6 Effect of capsule off-centre distance

Note that capsules have been initially centre-aligned in the
feeding channel in the present numerical simulations. In
experiments, microcapsules or biological cells may flow into
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Fig. 7 (a) Binary images of capsule profiles with three resolutions. Com-
parisons of (b) predicted membrane viscosity n with the corresponding
ground truth, and (c) prediction throughput rates of the DCNN-LSTM
neural network using sample images with three different resolutions. The
solid lines in (b) are guides for the eyes representing perfect agreement.

the channel with a random distribution of off-centre initial
positions.”> We therefore also test the performance of the pre-
sent DCNN-LSTM neural network by predicting the membrane
viscosity # of capsules which are released from different initial
off-centre positions. We consider the same capsules of Fig. 3(b)
with low and moderate membrane viscosity, and use the same
DCNN-LSTM neural network of Fig. 3(b). Fig. 8 compares pre-
dicted n with the corresponding ground truth, for testing sam-
ples with different initial off-centre distances along the channel
depth and width directions, respectively. The prediction accuracy
of the DCNN-LSTM neural network deteriorates with the capsule
off-centre distance, and is particularly sensitive to capsule off-
centre distance along the channel width direction. The results
suggest that in experiment an upstream flow-focusing
module’*”* will be needed in order to align capsules with the
channel centreline in the feeding channel.

3.7 Performance of the network in extrapolation

We also test the prediction accuracy of the present DCNN-
LSTM network in extrapolation. We use the same network of
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Fig. 8 Comparison of predicted membrane viscosity n with the corres-
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at Ca = 0.6. The solid lines are guides for the eyes representing perfect
agreement.

Fig. 4(b and c) but train it with samples that cover a narrower
parametric space. The parametric boundaries of the training
samples are marked by dashed lines in Fig. 9(a and b), which
compare the predicted Ca and #, respectively, with the corres-
ponding ground truth. In Fig. 9, a few testing samples are
outside the parametric space of the training samples, and
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Fig. 9 Comparisons between the predicted (a) capillary number Ca (with
n = 16.83) and (b) membrane viscosity n (with Ca = 0.6) and the corres-
ponding ground truth. The solid lines are guides for the eyes representing
perfect agreement. The dashed lines mark the parametric boundaries of
the training samples.
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therefore the DCNN-LSTM network needs to extrapolate to predict
values of Ca or # from those samples. From the results shown in
Fig. 9, we can see that the extrapolation accuracy of the present
neural network deteriorates with the extrapolation distance of a
testing sample, and is generally not satisfactory.

4 Conclusions

We have developed a novel approach, by integrating a DCNN-
LSTM neural network with a high-fidelity mechanistic capsule
model, for high throughput and accurate characterisation of the
membrane viscosity and shear elasticity of flowing microcap-
sules. We have demonstrated the high accuracy of the approach
through extensive tests against computer-simulation data where
the ground truth is exactly known. Unlike conventional inverse
methods, which need to conduct a time-consuming process to
identify the best fit, the present DCNN-LSTM neural network is
trained offline and its prediction process only involves a limited
number of simple algebraic calculations. The present method
can therefore increase the throughput rate by five orders of
magnitude and characterise thousands of capsules per second.
The present approach is also very flexible in that it can deal with
both the cross-section and footprint capsule profiles with com-
parable high accuracy. Furthermore, our new approach can
conveniently characterise capsules with large deformation in
inertial flow regimes, due to the versatility of the present
mechanical models for both capsule dynamics and fluid flow.
We have compared the performance of the DCNN-LSTM neural
network with a simple DCNN, which has also been proposed in
the present study, and show that the DCNN-LSTM neural net-
work is superior and has fewer restrictions.

Note that the present study has its limitations. Firstly, we
have only considered capsules with a KV membrane in a narrow
range of associated parameters. For practical unknown micro-
capsules, there may be a range of possibilities in membrane
constitutive laws and the measurement of the membrane
elasticity and viscosity will depend on the choice of the con-
stitutive models in the regime of large deformation.”’ In
principle our method can be extended to cover additional
membrane constitutive laws (e.g., power law models”’®) and
a much wider parametric space, to avoid extrapolation. How-
ever, this may involve a significant expansion of the size of
training samples and possibly also the architecture of the
network. Secondly, the present branched channel is a flow-
through device which can facilitate high-throughput measure-
ment, however, there is a broad scope to optimize the geometry
to promote tank-treading motion of the capsule'” at the chan-
nel bifurcation, so that the capsule dynamics is more sensitive
to the membrane viscosity. Finally, the present approach has
only been tested using simulation results. Validation with
experiments will be an important step in our future research.
The present work, as a preliminary study, suggests that the
DCNN-LSTM neural network may serve as a promising tool for
high throughput mechanical characterisation of flowing micro-
capsules or biological cells.
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