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Droplets move on substrates with a spatio-temporal wettability pattern as generated, for example, on light-

switchable surfaces. To study such cases, we implement the boundary-element method to solve the governing

Stokes equations for the fluid flow field inside and on the surface of a droplet and supplement it by the Cox–

Voinov law for the dynamics of the contact line. Our approach reproduces the relaxation of an axisymmetric

droplet in experiments, which we initiate by instantaneously switching the uniform wettability of a substrate

quantified by the equilibrium contact angle. In a step profile of wettability the droplet moves towards higher

wettability. Using a feedback loop to keep the distance or offset between step and droplet center constant,

induces a constant velocity with which the droplet surfs on the wettability step. We analyze the velocity in terms

of droplet offset and step width for typical wetting parameters. Moving instead the wettability step with con-

stant speed, we determine the maximally possible droplet velocities under various conditions. The observed

droplet speeds agree with the values from the feedback study for the same positive droplet offset.

1 Introduction

If a droplet can go uphill and move in response to light, where
are the limits of its motility? In their seminal experiment,
Chaudhury and Whitesides1 demonstrated that liquid droplets
can be driven up a tilted plane against gravity by chemically
treating the plane so it gradually becomes more wettable with
height. Later, Ichimura et al.2 showed that sessile droplets start
moving in response to gradients in wettability, which are
produced by a photo-chemical reaction. These experiments
essentially demonstrated an early use of structured light to
create motion on the micron scale, an approach which has
recently become the focus of intense research.3–5 Light-driven
fluid motion6–10 is an especially favorable control mechanism
because of its high precision and controllability through the
established experimental methods in optics.11 Notably, it can be
used in combination with or as an alternative to electrowetting
techniques.12 Precise control of fluid motion is foundational for
advanced lab-on-a-chip devices,13–15 as well as self-cleaning
surfaces,16,17 and printing with sub-droplet precision.4,18

Recently, significant advances toward light-switchable sub-
strates with large wettability gradients have been made.19 First,
Zhu et al.20 demonstrated light-induced droplet motion on a
substrate modified by azobenzene–calix[4]arene where the

equilibrium contact angle, as a measure for wettability, ranged
from 331 to 1101. Second, several groups21,22 have designed
arrays of micropillars made from light-switchable polymer
material. Switching the pillars between an upright and buckled
shape offers the possibility to reversibly switch the substrate into
a superhydrophobic state where wettability is vanishingly small.

In this article we implement the boundary-element method23–28

to solve the full three-dimensional equations of Stokes flow in order
to study droplet motion induced by non-uniform and dynamic
wettability patterns. In particular, we apply our method to moving
step profiles in wettability and explore the limits of droplet motion
induced by such wettability gradients, i.e., we determine the
maximally possible droplet speeds under various conditions.

Literature provides two research lines relevant to us. First, in
two articles McGraw et al. implemented the boundary element
method to gain insights into the internal flow fields of axisym-
metric droplets.29,30 They combined theory and experiment to
study how droplets relax towards their new equilibrium shape on a
substrate after an instantaneous change in the spatially uniform
wettability. Second, Glasner31 implemented the boundary element
method to study the dynamics of droplets placed on substrates
with static but non-uniform wettability profiles. The study
employed a quasi-static approximation where the gas–liquid inter-
face of the droplet is always assumed to be equilibrated w.r.t. to
the shape of the contact line. In a very recent example of the same
research line, Savva et al.32 extended Glasner’s method by describ-
ing the gas–liquid interface with the so-called thin-film approxi-
mation for Stokes flow for highly wettable substrates.

Our approach goes beyond both research lines because it
combines dynamic and spatially non-uniform wettability
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patterns and thereby offers the possibility to study continuous
droplet motion. It explores more widely the research avenue
recently opened in an experiment by Gao et al.33 who continu-
ously drove a droplet up a tilted plane using a thermally induced
wettability gradient that moved along with the droplet.

We apply our method to investigate a droplet surfing on a
moving step in wettability in two ways: first, by positioning the
droplet at a constant distance or offset from the center of the
wettability step using a feedback loop, we induce a self-regulated
motion of the droplet. Its velocity depends subtly on the properties
of the wettability step and its offset from the droplet. From this first
study we obtain typical values for the velocity with which a droplet
can be moved in a wettability step. Second, by letting the wettability
step approach the droplet with a constant speed, we find that up to
the feedback-regulated velocity the droplet is carried along by the
wettability step, while above this velocity the droplet is left behind.
The study also helped us to understand the role of convexity in
designing wettability profiles to induce steady droplet motion.

The article is structured as follows. We present the theory of
the boundary element method and its implementation in
Section 2. Our numerical approach is validated in Section 3
by studying a sessile droplet on a substrate with homogeneous
wettability. We study the droplet surfing on a wettability step
using a feedback loop in Section 4 and by moving the wett-
ability step with a constant speed in Section 5. Finally, in
Section 6 we present our conclusions.

2 Boundary element method for
dynamic wetting: theory
and implementation

We consider a liquid droplet sitting on a solid substrate with
switchable wettability (Fig. 1). The droplet is bounded by two
surfaces: its interface with the substrate and its free interface
with the gaseous atmosphere. The intersection where the
surfaces meet is the contact line, which is the three-phase
contact line where liquid, solid, and gaseous phase meet. Our
aim is to describe the droplet motion in response to wettability

changes of the substrate. The current section provides the
methodology to treat such a situation. To move the droplet, we
need to calculate the fluid velocity field on the droplet surfaces
using the boundary element method (Section 2.1) and the velocity of
the contact line using the Cox–Voinov law (Section 2.2). After
discretizing the droplet surface (Section 2.3), we can then move
each vertex point r(i) along the surface normal n(i) (Section 2.4). We
also implement a method to keep the volume fixed (Section 2.5) and
mesh optimization to avoid acute-angled triangles in the surface
mesh (Section 2.6). Finally, we nondimensionalize our equations
and introduce relevant material parameters (Section 2.7).

2.1 Boundary integral equation for Stokes flow

The boundary element method (BEM) approximates solutions
to linear partial differential equations (PDEs) based on their
Green’s functions.23,25 For droplets moving on substrates we
need to study Stokes flow in incompressible fluids, which obeys
two linear PDEs for velocity v and pressure p,26

mr2v(r) = rp(r) and r�v(r) = 0, (1)

where m is the shear viscosity and r the position vector. Green’s
function for Stokes flow in R3 is the Oseen tensor

OðrÞ ¼ 1

8pmjrj I þ r� r

jrj2

� �
(2)

where I is the unit matrix. Its associated stress field is a tensor
of rank three,26

TðrÞ ¼ � 3

4pjrj2
r� r� r

jrj3

� �
: (3)

We are interested in the flow field v inside and, in particular, on the
surface of the closed volume of a droplet. On any compact region
DCR3 with boundary qD and outward normal described by unit
vector n, the flow field fulfills the following integral equation:23,25,26

f ðrÞvðrÞ ¼
I
@D

Oðr� r0Þsðr0Þnðr0Þd2r0

�
I
@D

vðr0Þ � Tðr� r0Þnðr0Þd2r0:
(4)

Here, s =�pI + m[r# v + (r# v)T] is the stress tensor of the fluid,
T is the stress field of the Oseen tensor introduced above, and f (r) is
a dimensionless coefficient, which assumes different values inside
D and at the boundary qD:25

f ðrÞ ¼

1 for r 2 Dn@D ðinsideÞ

1

2
for r 2 @D; where @D is smooth

a
4p

for r 2 @D; where @D has a corner

with inward solid angle a:z

8>>>>>>>>><
>>>>>>>>>:

(5)

Fig. 1 Rendering of a droplet sitting on a substrate (grey surface). The
blue mesh indicates its free surface.

‡ The solid angle is calculated locally by considering a small sphere centered at
the position r on the droplet surface. The surface cuts out a volume from the
sphere directed towards the droplet, which encloses the solid angle a. Thus, a = 2p
on smooth parts of the droplet surface and a = 2y at the contact line, where y is
the contact angle.
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The first and the second term on the right-hand side of eqn (4)
describe the flow initiated by surface forces sn and a layer of force/
source dipoles at the surface, respectively. Therefore, they are also
called the single-layer and double-layer potentials. To close eqn (4),
one either needs to eliminate the surface stress force sn or the
velocity v by appropriate boundary conditions. We introduce the
boundary conditions in the next paragraph. Furthermore, in
Section 2.3 we describe our discretization of the integral
equations so that approximate values for v or sn can be
calculated on each piece of qD. Thereafter, we can calculate
the velocity field v(r) anywhere in D.24

The Stokes flow problem is only fully determined with
boundary conditions. The droplet boundary consists of two
parts, one interface with a solid substrate and a second with a
gas phase. This means each part has its own boundary condi-
tion. At the interface with the substrate there is a Robin
boundary condition (for fluids called the Navier condition),
mv + lsn = 0, with a slip length l,34 which connects tangential
velocity and tangential stress, while the normal component of
v is zero. A typical value for the slip length is l E 1 nm35 much
smaller than the droplet dimension. At the interface towards
the gas phase we assume zero viscosity of the gas phase so that
the tangential stress is zero. There remains a Neumann bound-
ary condition, n�sn = �2gk, which locally relates the normal
stress component n�sn to the mean curvature k, where g is the
local surface tension.36 In hydrostatics the stress tensor s is just
�pI and one recovers the expression for the Laplace pressure.
However, in our case in the presence of flow the stress tensor
s also includes the viscous part and, therefore, the boundary
condition also contains normal derivatives of the flow field.

2.2 Cox–Voinov law for the contact line

Droplets in equilibrium minimize the sum of their surface
energies from the interfaces towards the gas phase and sub-
strate, respectively, while preserving their volume.35 If wetting
is energetically more favorable than a dry substrate, the liquid
phase covers the substrate with a thin film. Otherwise, a droplet
forms with an energetically optimal ratio of the areas between
liquid–gas and liquid–substrate interfaces. On homogeneous
and planar substrates, the optimal shape obviously is a spherical
cap. The balance of all forces acting on the three-phase contact
line determines the contact angle yeq in equilibrium It results in
Young’s equation, which relates yeq to the surface tensions gij

between liquid (l), gas (g), and substrate (s), respectively:

gsg = gsl + glg cos(yeq). (6)

Higher wettability means smaller contact angle and according
to eqn (6) that the difference gsg � gsl of both surface tensions at
the substrate increases, since then it is energetically more
favorable to cover the substrate with liquid.

Here, when we talk about dynamic wettability patterns, we
will vary Dgs = gsg � gsl and thereby yeq in time. On substrates
with heterogeneous wettability the optimal droplet shape can
be much more complicated including complex shapes of the
contact line and varying curvature of the liquid–gas interface.31

The dynamics of the contact line and the contact angle are
not directly determined within the approach outlined so far.
Because the droplet surface is not smooth at the contact line, it
is not clear which boundary condition to use here. For the
Neumann boundary condition towards the gas phase the mean
curvature k diverges, while the Navier condition at the substrate
does not contain any surface tension necessary to obtain
Young’s eqn (6) in equilibrium. Therefore, the contact line
dynamics has to be determined by an additional relation, which
translates the fluid motion in the microscopic contact line
region to the macroscopic scale. Several such relations for
dynamic wetting exist.35,37–41 The most well-known among
them is the Cox–Voinov law40,41 derived from hydrodynamic
considerations:

vcontact ¼
glg

9m lnðh=lÞ ydyn
3 � yeq3

� �
(7)

It relates the difference of the cubes of dynamic and equilibrium
contact angles, ydyn and yeq, to the velocity of the contact line
vcontact. The dimensionless coefficient ln(h/l) is given by the ratio
of slip length l to a macroscopic length scale h. Voinov defines
h as the height above the substrate at which ydyn is measured.
However, experiments have demonstrated that ln(h/l) should be
treated as a free parameter characterizing the mobility of the
contact line.42 Note that Voinov derived eqn (7) under the
assumption of small contact angles. However, he also showed
that eqn (7) is valid beyond this assumption. Specifically, for
ydyn r 1351 the approximation error stays below 1%.40

The velocity vcontact determines the component of the fluid
velocity perpendicular to the contact line and in the plane of
the substrate. We evaluate ydyn using the surface normal n and
the substrate normal ez at the contact line:

cos ydyn = n(t)�ez. (8)

The resulting velocity vcontact of eqn (7) is included in the
discretized BEM problem as a boundary condition by introducing
a corresponding stress at the contact line as an additional
unknown. Furthermore, in the direction of the substrate normal
we prescribe a vanishing velocity and along the tangent of the
contact line we set the stress to zero. Together, these three
conditions fully determine fluid velocity and stress along the
contact line.§

On a light-switchable substrate the light patterns affect the
surface tension difference Dgs = gsg � gsl in eqn (6). Therefore,
as mentioned already, we will treat Dgs as a heterogeneous and
dynamic quantity, which locally determines yeq and, thereby,
deforms the droplet.

2.3 Discretization

We discretize eqn (4) using a triangular mesh to cover all
droplet surfaces (solid–liquid and vapour–liquid). From the
triangular mesh we define a dual mesh in which each vertex

§ A similar approach was previously applied to bubbles on a submerged
substrate43 although the dynamics of submerged contact lines are necessarily
distinct from our case.
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at position r(i) is surrounded by a compact polygonal region
Ci = C(r(i)) (Fig. 2). Together, all the regions Ci cover the entire
surface. For a sufficiently fine and well-adapted mesh, field
variables are approximately constant on each Ci and integrals
can thus be evaluated piece-wisely. As a result, eqn (4) becomes
a system of linear equations of the form:X

j

AðijÞvð jÞ ¼
X
j

BðijÞtð jÞ; (9)

where v( j) and t( j) = s( j)n( j) are the respective values of the flow
field and the stress or surface force at vertex j. The tensors A(ij)

and B(ij) are piece-wise integrals, i.e.,

AðijÞ ¼ f rið ÞdijI þ
ð
Cj

T rðiÞ � r0
� �

nðr0Þd2r0 (10)

with Kronecker symbol dij and identity matrix I, and

BðijÞ ¼ �
ð
Cj

O rðiÞ � r0
� �

d2r0: (11)

The linear algebra problem in eqn (9) is fully solvable by
eliminating either v( j) or t( j) with the help of boundary condi-
tions at each vertex. It will be convenient to collect all matrices
A(ij) and B(ij) into block matrices A and B and all vertex velocities
and stress vectors into combined vectors v and t, so that eqn (9)
can be written simply as

Av = Bt. (12)

To perform the integrations in eqn (10) and (11), we sub-
divide the polygonal region Ci into triangles (Fig. 2) and
numerically integrate over each triangle using a Gaussian
quadrature stencil with 9 points for nonsingular integrands
and with 400 points for singular integrands (i.e. when i = j in
eqn (10) and (11)).23,28 Note that we never evaluate the integrand
at the vertex r(i), where the tensors O or T have integrable
singularities, but always choose points inside the triangles for
performing the Gaussian quadrature, which is sufficient.

To solve eqn (12), we first apply the boundary conditions
introduced above to remove one of the variables at the vertex,
either velocity or surface force. Specifically, at the interface
towards the gas phase the tangential component of the surface
force is zero while we replace the normal component by the
Laplace pressure �2gk. To calculate the principal curvatures at
each vertex, we use the discrete Laplace–Beltrami operator
described in method C of the review of Guckenberger et al.44

and the normal vector n(i) follows by taking the sum of the
normal vectors of all neighboring triangles and normalizing it.
At the interface with the solid substrate we set the normal
velocity component to zero and eliminate the tangential component
of the surface force by the Robin boundary condition. Finally, at the
contact line the velocity component normal to the substrate is zero.
The in-plane velocity component normal to the contact line obtains
the value prescribed by the Cox–Voinov law, and the tangential
component of the surface force is zero. We then collect all the
remaining unknown variables on the left-hand side and all the
known quantities on the right-hand side and solve the resulting
system of linear equations by inversion of the coefficient matrix.
Finally, the missing velocity and surface-force variables are
calculated from the boundary conditions. In total, solving the
linear problem of eqn (12) yields approximations for v and sn
anywhere on the droplet surface. Once these quantities are
known, v(r) can be calculated anywhere within the droplet by
numerical integration from eqn (4).

2.4 Time evolution

In the discretized version the dynamics of the free droplet
surface is specified by the velocity of each vertex with position
vector ri. Concretely, the vertex moves with the local normal
component of the fluid velocity and an artificial tangential
component w(i)

t , which is due to mesh optimization and intro-
duced rigorously in Section 2.6,

drðiÞ

dt
¼ nðiÞ � nðiÞ
� �

vðiÞ þ w
ðiÞ
t : (13)

Motion tangential to the droplet’s free surface is physically
irrelevant because it does not affect the shape of the droplet.
However, tangential motion can be used to improve mesh
fitness, i.e., adaptation of the mesh to the droplet shape.

Note that time appears only through eqn (13) in our problem
because Stokes flow adapts instantaneously to the droplet’s
shape. Numerically, the dynamics of each r(i) is calculated using
a state-of-the-art Runge–Kutta algorithm45 once the velocity
vectors v(i) are calculated with the BEM as described above.

We refine the numerical setting described so far with two
additional techniques described in Sections 2.5 and 2.6: a
volume constraint and a mesh optimization method.

2.5 Volume constraint

We follow a method first suggested by Alinovi et al.46 to
preserve the volume V of the droplet during motion through a
side condition for the velocity vectors of the droplet surface.
Since volume conservation can be formulated by the chain rule,

Fig. 2 Schematic of triangular mesh (black) in the neighborhood of vertex
r(i) and its associated polygonal region Ci (red). The region Ci is defined by
and subdivided into triangles, one of which is indicated in green. The three
corners of the triangles are the central vertex r(i), the point halfway toward
a neighboring vertex r( j), and the centroid (barycenter) of one of the black
mesh triangles.
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we obtain

dV

dt
¼
X
i

rrðiÞV �
dri

dt
¼
X
i

rrðiÞV � vðiÞ ¼ 0; (14)

We call c(i) =rr(i)V the local constraint vector and for further use
we concatenate all c(i) into a vector c, in the same order as v and
t in Section 2.3. Alinovi et al. estimate c(i) as the product of the
local normal n(i) vector and the surface element, which requires
a smooth surface around each vertex.¶ In order to also treat the
kink in the droplet surface at the contact line, we instead
calculate the gradients rr(i)V directly by numerical differentia-
tion, which gives well-defined constraints for the contact line.
Now, with the introduction of a Lagrange multiplier L for the
constraint of eqn (14), eqn (12) is extended to

A c

cT 0

 !
v

L

 !
¼

Bt

0

 !
: (15)

Any solution for the flow field on the droplet surface is now
guaranteed to conserve volume for an infinitesimal step in
direction of v.

2.6 Mesh optimization

During the simulation we optimize the mesh representing the
droplet meaning we avoid acute-angled triangles and keep the
triangle areas uniform across the whole droplet surface. This
guarantees that discretization errors remain minimal. According
to Zinchenko et al.,27 a mesh fitness is introduced that is
maximized for equilateral triangles. It is a function of all the
edge lengths of the triangles and their areas. Thus, improving
the mesh fitness w.r.t. the triangle shape minimizes discretiza-
tion errors.

Following Zinchenko et al.,27 we apply two measures at
different phases of time integration. First, when calculating
the r.h.s. of eqn (13), we choose the tangential velocity of each
vertex on the free droplet surface including vertices on the
contact line such that the rate of change of the overall mesh
fitness is minimal.8 We then move all the vertices on the free
droplet surface by one Runge–Kutta time step. Note that the
normal velocity, which affects droplet shape and motion,
remains unchanged. Second, as a next step we check the fitness
of the mesh facing the substrate and if the maximum edge
lengths exceeds 150% of the minimal edge length, the positions

of all substrate vertices (without the ones on the contact line)
are adjusted by tangential displacements.**

Since this technique is completely derived from literature
and by its very nature must not affect the dynamics of the
droplet, we do not reproduce the algorithm in detail here. In
Appendix A, Fig. 11 we display mesh fitness over time for a
benchmark case to show the effectiveness of the implemented
method.

2.7 Nondimensionalization and material parameters

We are able to nondimensionalize our continuum equations by
introducing a characteristic length scale R0, a time scale t, and a
force scale fc. Using these three parameters, we will then rewrite all
quantities ai as dimensionless quantities ãi. For R0 we choose the
radius of the initial circular base area of the droplet. Furthermore,
we remove dynamic and kinematic viscosities from our equations,
which then implies the characteristic time and force scales

t ¼ R0
2

n
and fc ¼ nm: (16)

Note that fc is the intrinsic force scale of a Newtonian fluid and the
limit of small Reynolds number means that all acting forces are
smaller than fc. All relevant quantities can now be written in

dimensionless form: curvature ~k ¼ R0k, slip length ~l = l/R0, stress
tensor components ~sij = sijR0

2/fc, and surface tensions ~gij = gijR0/fc.
Since the reduced time and coordinates are t̃ = t/t and x̃ = x/R0, the

respective reduced derivatives become ~@t ¼ t@t and ~@x ¼ R0@x.
In ref. 42 de Ruijter et al. considered the relaxation of a

droplet on a uniform substrate towards its equilibrium shape
assuming that the droplet is always a spherical cap (spherical-cap
model). Then, the constant volume V or its reduced value Ṽ is
always strictly related to the momentary contact angle. In parti-
cular, with the initial contact angle y0 we have

~V ¼ V

R0
3
¼ p

3

2þ cos y0ð Þ 1� cos y0ð Þ2

sin3 y0
: (17)

For the half-sphere droplet with y0 = p/2, this gives Ṽ = 2p/3, as it
should. Assuming that the dynamics of the relaxing droplet is
completely determined by the motion of the contact line, the authors
identify a characteristic relaxation time tc, which in units of t reads

tc=t ¼ �9glg�1
ffiffiffiffiffiffiffiffiffiffiffiffi
3 ~V=p

3

q
ln ~l=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 ~V=2p

3

q� �
: (18)

In Table 1 we collect the material parameters and their
dimensionless counterparts for a 90% glycerine/10% water

Table 1 Material parameters: dynamic viscosity m, kinematic viscosity n, surface tension g, slip length l, unit of length R0, unit of time t, unit of force fc,
dimensionless surface tension ~g, dimensionless slip length ~l, Cox–Voinov-coefficient ln(h/l), and characteristic time tc for y = 901

# Material m [mPa s] n [mm2 s�1] g [mN m�1] l [nm] R0 [mm] t [ms] fc [mN] ~g ~l ln(h/l) tc/t

1 90% glycerol 209 169 65.3 1 100 59 35 0.19 10�5 44a 2084
2 90% glycerol 209 169 65.3 1 1500 13 300 35 2.8 0.67 � 10�6 44a 141

a For glycerin, de Ruijter et al.42 fitted ydyn(t) as a solution of eqn (19) to their experimental data and observed the value 44 for ln(h/l). They interpret
this large value as the result of ‘‘an additional source of energy dissipation within the three-phase zone’’.42

¶ This estimate makes sense since rr(i)V is the direction of maximal change in V

and since any volume change must be proportional to the area associated with a
given vertex.
8 Zinchenko et al. call this approach passive mesh stabilization. ** Zinchenko et al. call this approach active mesh stabilization.
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mixture for various length values R0 and use them in the
following.

3 Validation: switching a
homogeneous substrate

We apply our method to a simple case to validate its perfor-
mance. The simplest applicable test case is the relaxation of a
sessile droplet on a homogeneous substrate that switches from
one wettability to another (see Movie M01 in the ESI†). Thus the
equilibrium contact angle is switched at a specific time and we
observe how the droplet relaxes towards the new equilibrium
contact angle. Note that our method includes a valid model for
the motion of the contact line because we impose the Cox–
Voinov law explicitly. However, the motion of the contact line is
coupled to the motion of the free surface and the fluid inside
the droplet.

In the following we illustrate the overall dynamics of the
droplet at a specific system. We rely on experimental data
published by de Ruijter et al.42 who observed the spreading of
ca. 5–10 mm3 of a 90% glycerol/10% water mixture on PET.
All material properties and parameters are collected in
Table 1, row 2.

As already explained in Section 2.7 de Ruijter et al. modeled
the relaxation of the droplet using the spherical-cap model and
used the Cox–Voinov law to completely describe the droplet
dynamics by the dynamic contact angle ydyn. It obeys the
following differential equation:

dydyn
dt

¼ �
glg

9m lnðh=lÞ

ffiffiffiffiffiffiffi
p
3V

3

r
ydyn3 � yeq3
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos ydyn
� �2

2þ cos ydyn
� �43

q (19)

The characteristic time tc introduced in eqn (18) follows by
linearizing eqn (19) in small changes of ydyn and including only
the coefficients independent of ydyn or yeq.

In Fig. 3 we present results for the relaxing glycerin droplet
using the material parameters of row 2 in Table 1. We compare
our results for the contact angle from the BEM to numerical
solutions of eqn (19) in Fig. 3(a). We find qualitative agreement
between both approaches. However, the observable deviations
of the two curves, the BEM shows a slower relaxation in the
contact angle, reveals that the fluid flow included in our
method slows the relaxation further down. Our simulated
dynamics also matches the experimental results in both the
shape of the relaxation curve of the contact angle and relaxation
time, as the experimental points in Fig. 3(a) show. We achieve
this despite several uncertainties: We know neither the exact
initial shape of the droplet in the experiments of de Ruijter
et al. nor the exact volume of liquid they used. We also note
during our simulations fluctuations in the droplet volume do
not exceed 0.15% of the initial volume, while the droplet base
radius and height, displayed in Fig. 3(b), change by over 20% of
their initial values. This clearly demonstrates the robustness of
our implementation. Finally, in Fig. 4 we display the stream

lines of the fluid at t = 7t, along which material is transported
from the top to the sides of the droplet as it spreads.

We also studied a number of wettability switches on homo-
geneous substrates to test the technical limitations of our mesh
stabilization. Specifically, we were able to realize changes in
contact angle of �151 when starting from 601 and �301 when
starting from 901. Notably, the latter case means that our method
is able to cross into regions where droplets overhang their base
area without any special modifications to treat this case. For
example, in Fig. 5 we demonstrate the relaxation of the contact
angle from ydyn = 601 to yeq = 1201. (A corresponding animation is
included as Movie M01 in the ESI†.) A clear deviation from the
spherical-cap model is visible.

Fig. 3 Relaxation of a 90% glycerol droplet after the wettability of the
substrate is switched from an equilibrium contact angle of 901 to yeq = 651
at time t = 0: (a) dynamics of the contact angle ydyn plotted versus time.
Solid blue line shows the result from the BEM and dashed-dotted orange
line from the spherical-cap model. The dashed black line shows the final
equilibrium contact angle. The symbols refer to experimental data points
reproduced from Fig. 2(a) in ref. 42. (b) Deformation of the droplet as a
function of time either characterized by droplet height (solid blue line) or
radius of the base area (dashed orange line). The change relative to the
respective initial values x0 are shown. Both curves are calculated with the
BEM.

Fig. 4 Computed stream lines (white solid) in the central cross section of
the 90% glycerol droplet at t = 7t. Its outline is the solid black line and
background color indicates speed. The streamlines follow within the BEM.
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4 Surfing on a wettability step profile
with feedback

A droplet placed on a substrate with a gradient in wettability
will move in the direction of increasing wettability meaning
smaller contact angle. In the following two sections we consider
a smooth step profile in wettability (cf. Fig. 6). In this Section 4
we use a feedback loop to move the step with the droplet so that
the distance between wettability step and the droplet’s center of
mass stays constant. Thus, the droplet quasi ‘‘surfs’’ on the
wettability step (see Movie M02 in ESI†). Then, in Section 5 we
will move the wettability step with fixed speed and monitor the
motion of the droplet. We will demonstrate that the feedback-
regulated droplet motion agrees with the moving-droplet state
found for a fixed step speed.

4.1 Setup

In our approach we quantify the wettability of the substrate by
the local equilibrium contact angle. To realize a step profile in
wettability, yeq(y,t) (displayed in Fig. 6), we use the logistic step
function and write

yeqðy; tÞ ¼ ymax
eq �

ymax
eq � ymin

eq

1þ exp � y� ymðtÞ½ �=Dyð Þ (20)

Thus, the wettability step is characterized by its maximum and
minimum contact angles ymax

eq and ymin
eq and by the width Dy as a

measure for its maximum steepness. Via feedback control we

keep the position of the step center at ym(t) = yc(t) � s, where
yc(t) is the position of the droplet center of mass and s the fixed
offset between the step and droplet centers. Here, s o 0 means
that the droplet lags behind the wettability step. In the following,
we study how the four parameters ymax

eq , ymin
eq , Dy, and s influence

the droplet speed. In addition, we analyse the deformation of the
droplet to a nonequilibrium but steady shape while in motion
and the steady-state flow field inside the droplet.

Here, all droplets are simulated using the material properties
set out in row 1 of Table 1 which describes a 90% glycerol/10%
water mixture with R0 = 100 mm.

4.2 Flow field

Regardless of the specific values for each parameter for the
wettability step, the droplet eventually settles into a steady state
with constant shape and constant flow field. The moving
droplet never adjusts to the local equilibrium angles exactly.
Rather a difference remains between ydyn and yeq, which drives
the droplet and determines its steady-state speed

v0 ¼ lim
t!1

dyc

dt
: (21)

Notably, the droplets never enter into a limit cycle with oscillat-
ing speed but rather approach a speed value constant in time.

As a representative example, in Fig. 7 we display the internal
flow field of a droplet surfing on a wettability step characterized
by ymin

eq = 901, ymax
eq = 1201, and Dy = 1/3 at an offset s = 0, i.e.,

directly on the steepest location. The flow field forms one single
vortex filling the droplet in the plane parallel to its direction of
motion and two vortices in the plane perpendicular to this
direction. The fluid is transported predominantly along the free
surface and so, in effect, it rolls on the substrate as the droplet
moves forward.

4.3 Speed

The steady-state droplet speed v0 depends on the various
parameters of the wettability profile. In Fig. 8(a) we plot the
droplet speed versus the offset s for several parameter sets
structured by (i) the limiting equilibrium contact angles on
both sides of the wettability step and (ii) the step width Dy.

First of all, we observe that v0 increases overall with decreas-
ing Dy which is consistent with the expectation that steepness
of the wettability step drives the droplet forward. Furthermore,
as Dy decreases for the same combinations of contact angles,
an optimal offset s becomes prominent close to s = �0.2R0

(circle and triangle symbols in Fig. 8(a)), meaning the droplet
lags behind the step and is pushed forward. Since the wett-
ability gradient is largest at s = 0, we conclude that the
steepness of the wettability step does not solely determine
droplet speed. Rather, there is a competing influence
from the fact that the equilibrium contact angles ymax

eq and
ymin

eq contribute nonlinearly to droplet speed via the contact
line. According to the Cox–Voinov law the speed of the contact
line depends on the difference of the cubes of ydyn and yeq.
Thus, v0 increases with yeq even when the difference ydyn � yeq

remains the same. As a result, the droplet speed increases for

Fig. 5 Relaxation of the contact angle from 601 to 1201 of a 90% glycerol/
10% water droplet with R0 = 100 mm on a homogeneous substrate.

Fig. 6 Three examples for a step profile in wettability quantified according
to eqn (20) by the equilibrium contact angle. ym is the center of the
wettability step with maximal gradient and Dy its width.
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larger yeq, which the droplet encounters if it lags behind at
s o 0.

This is nicely visible in Fig. 8(a), when we compare the 601 to
�901 combination in equilibrium contact angles (red symbols/
dash-dotted lines) to the 901 to �1201 combination (purple
symbols/full line). Even though the difference between the
limiting angles is 301 in both cases, the droplet speed is larger
for the larger equilibrium contact angles.

We estimate the magnitude of this effect in Appendix C,
where we extend the spherical-cap model to describe a surfing
droplet. We are able to derive a relation, which shows how the
maximum surfing speed vmax depends on the wettability con-
trast determined by ymin

eq and ymax
eq :

vmax ¼
glg

18m lnðh=lÞ ymax
eq

� �3
� ymin

eq

� �3	 

: (22)

Our estimate shows clearly that vmax increases with the contact
angle difference Dyeq = ymax

eq � ymin
eq but also with ymin

eq itself for
constant Dyeq. This dependence is illustrated in Fig. 12.

4.4 Deformation

Since the droplets are placed on a non-uniform wettability
pattern, their shapes adapt and become asymmetric. There is
a competition between the Laplace pressure depending on the
local curvature of the free surface, which drives the droplet
toward a uniform curvature, and the forces acting on the
contact line, which drive the local contact angle toward its
equilibrium value. Therefore, the free surface will deviate from
a spherical cap. The result of these competing forces can be
observed in the variation of the dynamic contact angle ydyn

along the contact line in steady state. To quantify this variation,
we plot in Fig. 8(b) the difference of the largest and smallest
contact angle, Dydyn = ymax

dyn � ymin
dyn , versus the offset s for the

different parameter sets. Simply put, a larger difference Dydyn

indicates a more asymmetric droplet shape. Note that ymin
dyn and

ymax
dyn are realized at the front and the back of the droplet w.r.t. to

its direction of motion as indicated in the inset of Fig. 8(b),
where the equilibrium contact angles are extremal. At these

locations the contact line velocity vcontact must equal the droplet
speed v0 in steady state. So the difference between the extrema
of ydyn and yeq along the contact line determines v0.

We observe that Dydyn is primarily determined by large
variations in yeq, which makes sense. For example, the wett-
ability profiles with ymin

eq = 451 and ymax
eq = 901 [green symbols/

dashed lines in Fig. 8(b)] cause larger variations Dydyn than step
profiles with ymin

eq = 901 and ymax
eq = 1201 [purple symbols/solid

lines in Fig. 8(b)] for otherwise same parameters.
In addition, for Dy/R0 = 1/3 and 1/2, Dydyn shows a strong

dependence on the offset s. Interestingly, for these cases the
droplet asymmetry decreases notably as s approaches the speed
optimum s = �0.2R0. Apparently, a more symmetric droplet has
larger differences between ydyn and yeq along its contact line
and therefore achieves higher speeds v0. In Appendix C
we show, using the spherical-cap model, that droplets with
symmetric shape move faster than the asymmetric droplets
observed here. A comparison of the optimal speed values
estimated from the model and the simulation results [both
displayed in Fig. 8(a)] reveals the following. While the model
overestimates droplet speed, it reproduces the optimal offset, i.e.,
the fact that the fastest droplets lag behind.†† Because the model
only considers perfectly symmetric droplets, the higher speed for
lagging droplets can be attributed to the nonlinear dependence of
the Cox–Voinov law on ydyn and yeq as explained at the end of
Section 4.3.

In summary, we observe droplets settle into a rolling motion
when they are a placed on a wettability step profile with a
constant offset to the location of steepest wettability gradient.
Their limiting speed increases with the steepness of the gra-
dient. For large steepness there is an optimal offset so that the
droplets are pushed forward by regions of lower overall wett-
ability. Their shapes become more asymmetric in response to
steeper gradients, while the optimal offset for speed is corre-
lated with a more symmetric shape.

Fig. 7 Flow field in the interior of the droplet (a) in the comoving reference frame of the droplet moving with speed v0, and (b) in a cross-sectional plane
perpendicular to the direction of motion for a 90% glycerol/10% water droplet with R0 = 100 mm ‘‘surfing’’ with ymin

eq = 901, ymax
eq = 1201, Dy = 1/3, and s = 0.

An animation of point-like tracer particles corresponding to (a) is contained in the ESI† as Movie M05.

†† The complete results from the model are displayed in Fig. 13.
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5 Wettability step profile with constant
driving
5.1 Setup

As an alternative to the feedback method described above, we
study the simpler setup where the wettability step of eqn (20)
moves with constant speed. Here, two scenarios are possible: if the
droplet can keep up with the moving wettability profile, it will surf
on the pattern, otherwise it will fall behind, stop moving, and
eventually adapt its shape to the lower wettability of the substrate.

To gain insight into these scenarios, we re-examine one
particular pattern from the previous part: a wettability step with
ymin

eq = 901 and ymax
eq = 1201, and Dy = 1/3. We place a glycerol

droplet with parameters according to row 1 of Table 1 well before
the step and, unlike before, let the step approach the droplet with
a constant speed vs independent of the position of the droplet.

5.2 Long-time dynamics

We first position the droplet at t = 0 with an initial lead s0 = 2R0

before the steepest point of the step, which means the droplet
is on the more wettable side of the step. This gives the droplet
some time to adapt to a surfing shape under the influence of
the approaching step. We then observe how the droplet lead,

s(t) = yc(t) � vst + s0, (23)

evolves as step and droplet advance. Here, yc(t) is the distance
traveled by the droplet. Thus, in steady state, if the droplet can
follow the wettability step, the droplet lead approaches a
constant value.

In Fig. 9 we display trajectories leading to either droplets
surfing on the wettability step or droplets that cannot follow.
Above a step speed of roughly vs = 1.1 � 10�3R0/t droplets
cannot keep up with the step meaning their droplet lead tends
to minus infinity. Below, droplets match the step speed and
surf, meaning their droplet lead approaches a constant value.
In both scenarios the droplets deform in response to the
wettability step (cmp. insets in Fig. 9). However, in the first
case they eventually relax into an equilibrium shape, i.e., a
spherical cap with an increased contact angle, while in the
second case they take on an asymmetric surfing shape. At the
transition between both scenarios the droplets achieve their
maximum surfing speed. In Appendix C we estimate its value
using the spherical-cap model and show its dependence on the
wettability contrast for several minimum contact angles in
Fig. 12. In our simulations, the transition occurs close to the
maximum droplet speed of 1.1 � 10�3R0/t, which we observed
using the feedback mechanism in Section 4.3, Fig. 8(a).
Furthermore, we note that the droplet lead of 0.24R0 observed
for vs = 10�3R0/t is close to the lead 0.2R0, which occurred for a
similar speed of v0 = 1.01 � 10�3R0/t in Section 4.3 [purple
triangles in Fig. 8(a)].

So far, we can draw two conclusions from our investigations
in comparison to the feedback studies of the previous section.
First, for a given step speed a droplet sitting ahead of the
approaching wettability step assumes the offset s given in
the upper curve of Fig. 8(a) by the branch to the right of the

Fig. 8 Steady-state (a) speed v0 and (b) maximal contact-angle difference
Dydyn plotted versus offset s for various feedback-driven droplets of a 90%
glycerol/10% water mixture in response to wettability step profiles char-
acterized by different parameter sets (see legend). Lines between symbols
are added to guide the eye. The open symbols in (a) show estimates for the
maxima of the curves using the spherical-cap model as outlined in
Appendix C. Inset in (b): Example for a contact line (red) surfing on a
wettability step (background shading) with markers for the locations of ymin

dyn

and ymax
dyn (circles).
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maximum. Second, droplets cannot follow wettability steps
with larger speeds.

5.3 Preferred surfing state

How does the final surfing state of the droplet depend on the
initial droplet lead s0? To answer this question, we placed a
droplet with initially spherical cap shape and initial contact
angle ydyn = 901 at different positions relative to the wettability
step, which moved with different velocities. The result is
presented in the state diagram s0 vs. vs of Fig. 10. The black
solid-dashed line indicates the result from the feedback analysis
in Fig. 8(a). The yellow triangles mean that the droplet lead
decreases. For vs r 1.1R0/t, when the lead reaches the upper
branch of the black curve, the droplet is taken along by the step
and moves with constant speed. For vs 4 1.1R0/t the droplet
cannot follow the wettability step and is left behind (see Movies
M03 and M07 in ESI†). The blue triangles inside the black curve
indicate droplets that initially move faster than the wettability
step. The droplet lead s increases until it hits again the solid
black line and the droplet again moves with constant speed vs

(see Movies M04 and M06 in ESI†).
Therefore, the solid black line in Fig. 10 taken from our

feedback analysis gives exactly the resulting lead sN of a droplet
constantly moving with the step profile when starting with an
initial lead above the dashed black line. It also indicates the
maximum step speed for dragging a droplet along. From the
perspective of non-linear dynamics the solid line is a stable
branch indicating that the droplet will mostly move in front of
the wettability step (sN 4 0). In contrast, the positions given by

the dashed line are unstable. This behavior is reminiscent of a
saddle-node bifurcation near vs E 1.1R0/t. Our results also
show that for droplets on wettability steps feedback has a
stabilizing effect on an otherwise unstable state (see, e.g.,
ref. 47).

The (in)stability of either branch is intuitively explained by
the steepness and local curvature of the sigmoid curve, which
we use for the wettability profile (see Fig. 6): By definition, a
leading droplet is on the convex part of the sigmoid which
means, as it falls behind it is exposed to an increasing gradient
which speeds it up again. Conversely, a lagging droplet is on the
concave part of the sigmoid and as it falls behind it is exposed
to a decreasing gradient which slows it down further. Only close
to the turning point also lagging positions are stable. We
explain this by the fact that the droplet is an extended object.
The unstable and stable positions meet at the bifurcation point,
which is near the steepest part of the sigmoid. There, the
droplet is exposed to the largest possible gradient and therefore
achieves its maximum speed.

6 Conclusions

In this article we have applied the boundary element method
and developed a numerical scheme to simulate droplets on
substrates with switchable and non-uniform wettability realized,
for example, by light-switchable surfaces. A strong emphasis was
put on developing a stable grid on the droplet surface. We are
able to simulate droplets on the whole range of possible contact
angles and, in particular, investigated speed and deformation
of droplets under the influence of moving wettability steps.
A crucial ingredient for simulating the dynamics of droplets is
the Cox–Voinov law, which governs the motion of the three-phase
contact line. In addition, using the boundary element method

Fig. 10 Moving direction of the droplet plotted in a diagram versus initial
lead s0 and step speed vs. Blue and yellow triangles indicate decreasing or
increasing droplet lead, respectively. The black solid-dashed curve corresponds
to the steady-state motion from the feedback study in Section 4 [cf. the purple
triangles in the upper curve of Fig. 8(a)]. As the blue and yellow triangles show,
the solid black curve also gives the final offset sN of a droplet surfing steadily on
a moving wettability step. Same parameters as in Fig. 9 are used.

Fig. 9 Droplet lead s with initial value s0 = 2R0 plotted versus step
displacement vst. The wettability step is characterized by ymin

eq = 901,
ymax

eq = 1201, and Dy = 1/3 and for the droplet glycerol parameters (row 1
in Table 1) are taken. Solid lines indicate trajectories for various vs as
indicated in the legend. Insets: Snapshots of droplet shapes shown from
above with droplet surface (light blue), contact line (solid red), and
wettability profile (background shading). The arrows point to the moments
at which the snapshots are taken (see also Movies M06 and M07 in ESI†).
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allows us to calculate flow fields inside the droplet and not just on
its surface and thereby provides a further understanding of the
droplet motion.

We first applied our method to sessile droplets and exposed
them to a spatially uniform but instantaneous change in
wettability. We carefully compared our findings to experimental
results from ref. 42 and found quantitative agreement. The
spherical-cap model, where the dynamics is governed by the
dynamics of the contact line via the Cox–Voinov law, shows
small but noticeable differences.

We then applied our numerical scheme to droplets surfing on
moving wettability steps. First, using a feedback loop we kept the
center of the wettability step at a constant distance or offset from
the droplet center. For a range of offsets and step widths, this gives
rise to droplets surfing at constant speed on the wettability step into
the direction of higher wettability. Inside the droplet a single vortex
forms such that the droplet rolls on the substrate. For shallow
wettability steps the resulting droplet speed hardly depends on the
droplet offset in the range investigated. However, for steeper steps
the speed develops a maximum at offsets behind the steepest point
of the step so that the droplet experiences regions of lower overall
wettability. Additionally, while droplets surfing on steep steps are
less symmetric compared to more shallow steps, droplets surfing
with the maximum speed are more symmetric compared to slower
droplets on the same wettability profile.

In a second study we moved the wettability step at a constant
speed with various initial offsets between the step and droplet
center. Beyond the maximal droplet speed from the feedback
study, steady surfing is not possible. The droplet cannot follow
the wettability step and is left behind. Below the maximal
surfing speed, droplets always settle to the same offset as
observed in the feedback study. However, only the leading
positions where the droplet is pushed forward are stable, while
the lagging positions are unstable in the absence of feedback.
We explain this by the curvature of the smooth wettability step:
In the leading position the convex variation of the wettability
step generates an effective restoring force when the droplet is
left behind, while in the lagging position the concave variation
cannot stabilize the surfing droplet against small displace-
ments away from the step center.

Our findings demonstrate how a dynamic wettability profile,
for example, controlled by structured light can be used to
continuously drive droplets forward. We have investigated here
the important parameters to optimize the speed of droplets
w.r.t. the shape of the wettability profile and its driving speed.
Because a single wettability step can be set up to move droplets
in any direction, in principle, we provide here a tool to steer
droplets along arbitrary paths and with variable speed on a
light-switchable substrate. In the future, we plan to investigate
droplet dynamics in more complex spatio-temporal wettability
patterns motivated by the possibilities of structured light.11
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A Mesh degradation

Over the course of a simulation, mesh fitness M (see ref. 27 for
definition) degrades due to physically necessary changes in the
mesh shape. In Fig. 11 we give an example of mesh degradation
during the initial relaxation of a droplet on a uniform substrate
presented in Section 3. Notably, M initially decreases roughly
linearly while the droplet changes shape, as visible in Fig. 3.
However, M decreases further thereafter which implies that,
even in the absence of further deformations, numerical error
still compounds. Small numerical errors have a compounding
effect on M because M is a nonlinear function of vertex posi-
tions, and therefore displacements of similar magnitude have a
small effect on the initial (effectively optimal) initial mesh for
t o 1 s and a disproportionally larger effect on the already
deformed mesh for t 4 1 s.

B Parameters used for movies in ESI†

All movies visualize simulations with material parameters from
row 1 of Table 1. Movie M01 (ESI†) corresponds to the last
example provided in Section 3 and Fig. 5, which means it shows
an instantaneous change in uniform wettability from yeq = 601
to 1201. Movie M02 (ESI†) corresponds to the purple triangle at
offset �0.2R0 in Fig. 8(a). Movie M03 (ESI†) shows a droplet
driven by a wettability step from 901 to 1201 with steepness
Dy = 1/3, step speed of vs = 2 � 10�3R0/t, and an initial lead of
s0 = 2R0. Movie M07 (ESI†) shows the same droplet from directly
above with its contact line drawn in red. Movie M04 (ESI†)
corresponds to the same parameters, except vs = 1 � 10�3R0/t.
Movie M06 (ESI†) shows another surfing droplet with the same
parameters, except vs = 1.1 � 10�3R0/t, from above with its
contact line drawn in red. Movie M05 (ESI†) corresponds to the
parameters given in Fig. 7. Note that the movies each run at
different speeds.

C Speed estimate for spherical-cap
droplets surfing on a wettability step

In Section 4.3 we observe that the droplets which move fastest
in the feedback setup tend to have the most symmetric shape
when compared to slower droplets on the same wettability
profile. The limit of droplet axisymmetry are spherical caps.

Fig. 11 The mesh fitness M for a sessile glycerol droplet decreases over
time in response to a wettability change at t = 0 s.
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To distinguish the contribution of shape asymmetry from other
factors, we consider here the simplified case of droplets that are
geometrically constrained to the shape of a spherical cap.

Based on this constraint, we use eqn (7) (the Cox–Voinov
law) to estimate the speed of a droplet surfing on a given
wettability profile. For steady droplet motion the velocities of
the contact line at the front and the back of the droplet must
match exactly. Using the sign convention of the Cox–Voinov law,
this means vfront

contact = �vback
contact, and together with constant ydyn

along the contact line of a spherical-cap droplet, eqn (7) gives

ydyn3 ¼
1

2
yfronteq

� �3
þ ybackeq

� �3	 

: (24)

The respective equilibrium contact angles at the front and back
of the droplet, yfront

eq and yback
eq , depend on the position and shape

of the droplet on a given wettability profile yeq(y). A spherical cap
with a base radius R and offset s between its center of mass and
the reference point y = 0 of the wettability profile has

yfront
eq = yeq(s + R) yback

eq = yeq(s � R). (25)

Geometrically, the radius R of the droplets circular base area is
a function of volume V and ydyn, i.e.,

R3 ¼ 9V

4p
� 2 sin3 ydyn

2þ cos ydyn
� �

1� cos ydyn
� �2: (26)

The spherical cap shape thus provides a closure relation for the
surfing condition established in eqn (24). We solve eqn (24) and
(26) numerically using eqn (25) to attain the pair of unknowns
(R,ydyn) for any given V, s, and wettability profile yeq(y). Finally,
we use R and ydyn to calculate the contact line velocity at the
front of the droplet from eqn (7) which now equals the surfing
speed of the droplet.

Note by choosing the fully symmetric spherical-cap droplet,
anything we observe here must be due to the properties of the
Cox–Voinov law and the wettability profile under consideration.

First, we estimate the maximum attainable surfing speed
vmax for a wettability contrast Dyeq = ymax

eq � ymin
eq by considering

the limit of R c Dy in eqn (20). In effect, we consider the
maximum possible contrast of a given substrate material here,
which means we estimate an upper bound on the speed
of droplets with finite R. Substituting eqn (24) with yfront

eq =
ymin

eq and yback
eq = ymax

eq into eqn (7) for the droplet front gives

vmax ¼
glg

18m lnðh=lÞ ymax
eq

� �3
� ymin

eq

� �3	 

: (27)

Because of the nonlinear dependence of the Cox–Voinov law on
the contact angles, also this estimate is nonlinear in Dyeq and
as a result depends, e.g., on ymin

eq . In Fig. 12 the estimate is
plotted versus the wettability contrast for different minimum
contact angles. Surfing speed vmax increases both with Dyeq and
ymin

eq due to the nonlinear dependence. Thus a given contrast
Dyeq = 301 will lead to faster droplet motion for ymin

eq = 901
compared to ymin

eq = 301. Because we calculate an upper bound
here, vmax slightly overestimates the speeds observed in
Fig. 8(a).

Second, we study the effect of the droplet offset s in the
wettability step on the estimated surfing speed to develop an
understanding for our findings in Fig. 8(a) and 10. Since
smaller droplets cannot necessarily extend from the least to
the most wettable region of a given wettability step, their
optimal surfing position is not a priori clear. We follow the
numerical procedure described at the beginning of this section
and display surfing speed v versus s in Fig. 13 for the same
wettability step profiles as in Fig. 8. The estimated speed values
qualitatively match our findings in Fig. 8(a). The droplet speed
depends on the minimum and maximum contact angles, and
the overall steepness of the step. In particular, for small
steepness parameters Dy the pronounced maxima are recovered.

Fig. 12 Estimated maximum surfing speed vmax plotted versus contact
angle contrast ymax

eq � ymin
eq for different minimum contact angles ymin

eq for
glycerol parameters (row 1 in Table 1).

Fig. 13 Estimated surfing speed v plotted versus offset s for different
wettability step profiles as given in the legend, which is the same as in
Fig. 8. The glycerol parameters (row 1 in Table 1) are taken. Markers
indicate the maxima on the interval [�0.5R0,0.5R0].
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Their positions s roughly match the positions observed in
Fig. 8, which indicates that the spherical-cap model is well
suited to estimate the droplet speed near the maximum. So
the spherical-cap model, which we introduced based on the
observation that for the maximum surfing speed the asymmetry
in the droplet shape is small, provides a good estimate for this
maximum. In contrast, the spherical-cap model overestimates
the surfing speed compared to our simulations in cases with
strong shape asymmetry (cmp. triangles in Fig. 8 and 13).
Furthermore, droplet speed is more sensitive to shape asymmetry
in cases with large ymin

eq (cmp. squares in Fig. 8 and 13) which is
likely an effect of the nonlinearity illustrated in Fig. 12. Our
observations underline that the optimal offset positions for
the droplet surfing speed are a consequence of the nonlinear
Cox–Voinov law (as noted in Section 4.3) and not of the
asymmetry in droplet shape. Thus, the estimate for the
droplet speed based on the spherical-cap model provides a
useful guide for experiments towards the optimal surfing
speed in wettability step profiles.
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