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Onsager’s variational principle in active
soft matter

Haiqin Wang, ab Tiezheng Qian c and Xinpeng Xu *ab

Onsagers variational principle (OVP) was originally proposed by Lars Onsager in 1931 [L. Onsager, Phys.

Rev., 1931, 37, 405]. This fundamental principle provides a very powerful tool for formulating

thermodynamically consistent models. It can also be employed to find approximate solutions, especially

in the study of soft matter dynamics. In this work, OVP is extended and applied to the dynamic

modeling of active soft matter such as suspensions of bacteria and aggregates of animal cells. We first

extend the general formulation of OVP to active matter dynamics where active forces are included as

external non-conservative forces. We then use OVP to analyze the directional motion of individual active

units: a molecular motor walking on a stiff biofilament and a toy two-sphere microswimmer. Next we

use OVP to formulate a diffuse-interface model for an active polar droplet on a solid substrate. In

addition to the generalized hydrodynamic equations for active polar fluids in the bulk region, we have

also derived thermodynamically consistent boundary conditions. Finally, we consider the dynamics of a

thin active polar droplet under the lubrication approximation. We use OVP to derive a generalized thin

film equation and then employ OVP as an approximation tool to find the spreading laws for the thin

active polar droplet. By incorporating the activity of biological systems into OVP, we develop a general

approach to construct thermodynamically consistent models for better understanding the emergent

behaviors of individual animal cells and cell aggregates or tissues.

1 Introduction

Active matter represents a novel type of nonequilibrium systems
that contain a large number of self-propelling particles or
creatures moving in fluids or more complex environments.1–10

The self-propelling units are considered to be active in the sense
that they are capable of continuously converting fuel or chemical
energy (stored internally or in the ambient) into directional
motion or mechanical work. Active matter containing self-
propelled units is ubiquitous in biology and in many artificial
systems. Examples in biology are abundant and occur at all length
scales, ranging from bacteria suspensions3,9–12 to animal cells,2,4

animal cell aggregates (or tissues),13–17 bird and fish flocks,18,19

and pedestrian crowds.20,21 Artificially made active matter3

includes layers of vibrated granular rods,1,22 collections of
robots,23 and suspensions of colloidal or nanoscale particles24–26

that are propelled through catalytic activities at their surfaces.
A distinctive feature of active matter is that the system is

locally driven out of equilibrium by active units at the length

scale of a constituent component.1–3,27 This is distinct from
those nonequilibrium systems that are driven at the system
boundaries.28 The presence of self-propelled units in active
matter breaks the detailed balance and time-reversal symmetry
(TRS),1,3,5,8 resulting in a wealth of intriguing macroscopic
structures and behaviors, such as spontaneous flows,3,4

motility-induced phase separation,3,6,8 unusual mechanical
and rheological properties,2,10 wave propagation and sustained
oscillations even in the absence of inertia,29–31 etc. One of the
most interesting questions in the nonequilibrium dynamics of
active matter is how the local driving forces operating at the
small scale of individual active unit can produce the observable
macroscopic emergent phenomena at the large scale of the
whole system. Answering this question will not only shed new
light on the fundamental statistical mechanics,3,6,8,26 but also
deepen our understanding of biological processes,1–4 and help
design new generations of biomimetic active materials that
balance structural flexibility and stability.1,3,5

The study of active matter can be brought into the frame-
work of condensed matter physics based on the consideration
that the collective behaviors of active matter emerge from the
interactions among the constituent self-propelling units and
the dissipation mechanisms operating inside the system. In
particular, soft condensed matter physics provides many useful
model systems for reference to active matter,2,5 e.g. the wetting

a Technion – Israel Institute of Technology, Haifa, 32000, Israel
b Physics Program, Guangdong Technion – Israel Institute of Technology, Shantou,

Guangdong 515063, China. E-mail: xu.xinpeng@gtiit.edu.cn
c Department of Mathematics, The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong, China

Received 21st November 2020,
Accepted 4th January 2021

DOI: 10.1039/d0sm02076a

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 0
5 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

on
 1

1/
21

/2
02

5 
7:

27
:3

8 
PM

. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-4969-220X
http://orcid.org/0000-0002-1548-0161
http://orcid.org/0000-0002-3265-7678
http://crossmark.crossref.org/dialog/?doi=10.1039/d0sm02076a&domain=pdf&date_stamp=2021-01-22
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/d0sm02076a
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM017013


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 3634–3653 |  3635

of substrates by liquid droplets,32–34 the dynamics of colloid
suspensions,35,36 the dynamics of nematic liquid crystals,37 the
dynamics and rheology of polymer gels,38,39 and the phase
segregation of surfactants,40,41 etc. The major challenge is
to couple these model systems with active and molecularly
specific processes, such as the active force generation by self-
propelling units, and the binding and unbinding of transmem-
brane adhesion receptors on solid substrates.2,5 Over the last
decade, several soft matter systems have been revisited with a
focus on this point of view.2 The physical understanding for the
emergent structures and behaviors of active soft matter has
been rapidly growing,1–10 with particular attention paid to dry
active matter,3,18 active polar fluids,42 active nematics,43 active
gels,44 and active membranes.45

Theoretically there have been two major approaches to the
study of active soft matter: particle-based models3,6–8,26,46 and
continuum phenomenological models.1,2,4–6,14,15,43 In particle-
based models, the active units are usually modeled as self-
propelled particles with fixed or variable speed and random
orientation moving in an inert background, following the
seminal work of Vicsek et al.47 It provides a straightforward
approach to the study of active soft matter with an emphasis on
the order and fluctuations rather than the forces and
mechanics.3,7,8,26 In continuum phenomenological models,
active units are represented by a smooth density field rather
than individually resolved particles. A continuum model for
active soft matter is usually constructed by modifying the
dynamic model of a proper reference soft matter
system.1,2,4–6,43 This is typically accomplished by adding a
minimal set of extra terms that cannot be derived from any
free energy or dissipation functions. This is an effective way to
introduce the activity and break the TRS such as active forces,
active fluxes, and active chemical potentials.1,43,48,49 However,
there is another more systematic way of including activity by
introducing the mechanochemical coupling between passive
dissipative processes and some relevant biochemical
reactions1,4 in Onsager’s framework of irreversible
thermodynamics.50,51 The two theoretical approaches are
complementary. The particle-based approach involves only a
small number of parameters for each active unit, and therefore
the theoretical predictions can be readily compared with
experiments for some model active systems such as self-
propelled colloids.52 However, the model for interacting self-
propelled particles sometimes oversimplifies the problem, and
hence may lose some generality and applicability of its conclu-
sions when applied to real systems, especially in vivo biological
systems.1,2,4,43 By contrast, the formulation of phenomenological
models is based upon symmetry consideration, conservation laws
of mass, momentum, and angular momentum, and laws of
thermodynamics. This gives the continuum approach a large range
of applicability and generality when applied to real biological
processes.1,2,4,43 In this work, we focus on the continuum
phenomenological models and show that Onsagers variational
principle, which has been widely used in the study of soft
matter dynamics,53 can be extended for the study of active soft
matter.

Onsager’s variational principle (OVP) was originally
proposed by Lars Onsager in his seminar papers in 1931.54,55

He showed that for irreversible processes in a near-equilibrium
thermodynamic system, the thermodynamic fluxes can be
written as linear combinations of conjugate thermodynamic
forces, and the proportionality coefficient matrix must be positive-
definite and symmetric according to Onsager’s reciprocal
relations (ORR). The ORR lay the foundation for the theoretical
framework of linear irreversible thermodynamics. In the end of
his paper, Onsager proposed OVP as a variational principle that
is equivalent to the linear force–flux relations in describing
dissipative dynamics. In addition, OVP can be regarded as an
extension of ‘‘the principle of the least dissipation of energy’’
proposed by Lord Rayleigh.56 For isothermal systems, OVP
takes a simple form as follows.53,57,58 The irreversible processes
described by the thermodynamic fluxes _a follow the dynamic
path that minimizes the function:

R( _a) = F( _a) +
:
F( _a;a). (1)

Here the function R is called the Rayleighian as suggested by
Doi and Edwards,59 F is the dissipation function which is
quadratic in _a when the system is close to equilibrium, and

:
F is

the rate of change of the free energy in the isothermal system.
Onsager later used his principle to study the diffusion in
electrolyte solutions.57 However, OVP has not been widely
recognized and applied to describe irreversible processes
for a long time until 1953 when Onsager and Machlup60

established the statistical mechanical foundation of OVP. Since
then, OVP and its relationship with other thermodynamic
variational principles have been extensively studied and
identified.61 In recent years, OVP has been widely used as an
indispensable and powerful tool for the study of nonlinear and
nonequilibrium phenomena of soft matter.53,58,62–65

OVP can be used to derive many transport equations for soft
matter dynamics,53,62 e.g., the Stokes equation for incompressible
low-Reynolds-number flows,58 the diffusion equation,53,62 the
reaction-diffusion equations for (low molecular weight) multi-
component solutions,51,64,65 the thin film evolution equations,63,66–68

the phase field model for two-phase hydrodynamics,58,69 the
electrorheological hydrodynamic equation,70 the two-fluid
model for the phase separation dynamics in colloids and
polymers,53,62,63 the dynamics of polymer gels,39,63 the dynamic
equations of lipid membrane,71–73 etc. Moreover, OVP also
provides a very convenient way to derive thermodynamically
consistent boundary conditions that supplement the transport
equations in the bulk region.58,69 Examples include the general-
ized Navier boundary condition (GNBC) for the contact line
hydrodynamics,58 the generalized nemato-hydrodynamic
boundary conditions for liquid crystals,74 and the boundary
conditions for block copolymer solution films,75 etc. In addi-
tion, Doi and his collaborators have recently proposed that OVP
can be used as a direct variational method to find approximate
solutions for complex soft matter dynamics.63,68,76 This
approximation method has been successfully used to study
the evolution of droplets and thin films,63,67,77,78 the dynamics
of the beads-on-string structure of viscoelastic polymer
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filaments,63,79 the sedimentation in colloidal suspensions,80

and the translocation of a vesicle through a narrow hole,81 etc.
Although OVP has been widely applied with great successes in
the study of inert soft matter dynamics, it is rarely used in the
study of active soft matter dynamics.65,82–84 In the present work,
we will show that OVP can be readily extended to include
biochemical activity and conveniently applied to study the
emergent structures and behaviors of active soft matter. OVP
can not only be applied to formulate thermodynamically
consistent models, but also be used to generate approximate
solutions for the complex dynamics of active soft matter.

This paper is organized as follows. In Section 2, a brief
review of OVP is provided, and a simple extension of OVP is
presented for applications to active matter, in which the active
forces are treated as non-conservative forces that cannot be
derived from any free energy and dissipation functions. In the
next three sections, we apply OVP and its extended form to
three representative active matter problems motivated by the
biology of bacteria and animal cells. In Section 3, we present
the first application of OVP to the directional motion of an
individual active unit, e.g., a molecular motor walking on a stiff
biofilament and a toy two-sphere microswimmer moving in a
viscous fluid. In Section 4, we consider the two-phase hydro-
dynamics for active polar droplets. We use OVP to formulate a
diffuse-interface model for an active polar droplet on a solid
substrate. This hydrodynamic model is thermodynamically
consistent and consists of hydrodynamic equations in the bulk
region and boundary conditions at the solid surface. In Section 5,
we consider a thin active polar droplet moving on a solid substrate
in two dimensions. Under the lubrication approximation, we
firstly apply OVP to derive the classical thin film equation that
has been obtained previously. We then use OVP as an approxi-
mation tool to find the scaling laws for the spreading of a thin
active droplet in the respective limits of negligible activity and
strong activity. In Section 6, we summarize our major results,
make some general remarks, and envision a few potential appli-
cations of OVP to more realistic biological problems.

2 Variational principles for active
matter dynamics

In this section, we show that the original variational principle
of Onsager54,60 can be easily modified to study the dynamics of
active soft matter by including active forces as non-conservative
forces that can not be derived from any free energy function.
Since we are mostly interested in the flow, diffusion, and
biochemical reactions in active soft matter, we, therefore, limit
our discussions to isothermal systems where temperature is
assumed to be constant.

2.1 Onsager’s variational principle and Onsager–Machlup
variational principle

Consider a non-equilibrium isothermal system that is charac-
terized by a set of coarse-grained, slow state variables, a �
{a1,a2,. . .,aN}. The dynamics of the system is then described by

the time evolution of a(t) which is governed, in the linear
response regime near equilibrium, by the general (overdamped)
Langevin equation60

XN
j¼1

zij _aj ¼ fiða; tÞ þ friðtÞ; (2)

in which f = {zij} is the friction coefficient matrix that generally
depends on the state variables65 a. Here we assume that all the
state variables a have the same time parity, and therefore,
according to Onsager’s reciprocal symmetry, the friction matrix
f is not only positive definite (due to the second law of
thermodynamics) but also symmetric,54 i.e., zij = zji. State
variables with different time parities have been discussed
briefly in the Appendix Section A.2. The stochastic force fr(t)
is assumed to be an uncorrelated white noise

h fri(t)i = 0, h fri(t) frj(t0)i = 2zijkBTd(t � t0), (3)

with kB denoting the Boltzmann constant and T the temperature.
The generalized force fi, in general, includes two types of forces:
fi(a,t) = fci(a) + fai(a,t), in which the conservative force fci(a) can be
derived from some free energy F(a) by

fciðaÞ ¼ �
@FðaÞ
@ai

; (4)

and fai(a,t) is the active force, a non-conservative force that
cannot be derived from any energy function. Physically, the
active forces arise from the persistent consumption of chemical
energy and they continuously drive the system out of equili-
brium locally at the small scale of individual active unit. For
example, the active forces can be generated by biochemical
reactions such as ATP hydrolysis in animal cells/tissues,1,4 or
by external fields such as light acting on active colloids with
photosensitive coatings.3,7 The active forces also break the time-
reversal symmetry (TRS) of the system (in a sense different from
the breakdown of TRS due to friction).8,43,48,85 For example, the
self-propelling force in active colloids drives the persistent
motion of colloids in some direction, resulting in the intrinsic
breakdown of TRS.43

From the Langevin eqn (2), we calculate the transition
probability60 P(a0,t + dt|a,t) from the state a at time t to a0 at t + dt:

P a0; tþ dtja; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN detð2f�1kBTÞdt

p exp �Oða
0; dt; a; tÞ
2kBT

� �

(5)

for a0 close to a, and dt is an infinitesimal time interval. Here the
Onsager–Machlup function O is defined by

O ¼ 1

2dt
zij a

0
i � ai � mik fkða; tÞdt

� �
a0j0 � aj � mjk fkða; tÞdt
h i

¼ 1

2
zij _ai � mik fkða; tÞ½ � _aj � mjk fkða; tÞ

� �
dt

(6)

with the rates _ai � ða0i � aiÞ=dt and mij being the mobility coeffi-
cient matrix that is positive definite and symmetric, and satisfies
zijmjk = dik. From the transition probability P(a0,t + dt|a,t) in eqn (5),
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the most probable transition occurring between a and nearby a0 is
the one which minimizes the Onsager–Machlup function O or
equivalently the function

R( _a;a) = F( _a, _a) +
:
F( _a;a) � :

Wa( _a;a) (7)

with respect to a0 or equivalently, the rates _a for prescribed a.

Here R is called the Rayleighian,62,63 Fð _a; _aÞ � 1

2
zij _ai _aj is the

positive-definite dissipation-function, _Fð _a; aÞ � @F

@ai
_ai ¼ �fciða; tÞ _ai

is the change rate of free energy, and
:

Wa( _a;a) = fai(a,t) _ai is the work
power done by the active force, fa. The Euler–Lagrange equation for
minimizing R in eqn (7) with respect to _a is

zij _aj ¼ fiða; tÞ ¼ �
@FðaÞ
@ai

þ faiða; tÞ; (8)

as expected from the Langevin eqn (2) for dynamic processes where
the stochastic forces and fluctuations can be neglected.† The
dynamic equations in eqn (8) state the balance among the dis-
sipative (frictional) forces, the conservative forces derived from the
free energy, and the active forces that are non-conservative and
generated by biochemical reactions. This variational principle of
minimizing the Rayleighian R with respect to the rates _a was
originally proposed by Lars Onsager in 193154,60 and usually
referred to as The principle of least dissipation of energy or simply
Onsager’s variational principle (OVP).

We would like to give some remarks on OVP as follows.

(i) A term Cð f ða; tÞ; f ða; tÞÞ � 1

2
mikfiða; tÞfkða; tÞ appearing in

the Onsager–Machlup function O in eqn (6) does not contribute
to the Rayleighian R because we are considering the most
probable state a0 at an immediate future time close to t, which
is to be determined from the prescribed state a and hence the
prescribed forces f (a,t) and C( f (a,t), f (a,t)).

(ii) The active matter may also be subject to the influence of
some external forces that do not arise locally from the con-
sumption of chemical energy of the system. This can be treated
by subtracting the work power

:
Wext( _a;a) done by the external

forces from the Rayleighian R in eqn (7):

R( _a;a) = F( _a, _a) +
:
F( _a;a) � :

Wa( _a;a) � :
Wext( _a;a). (9)

Minimization of R leads to an Euler–Lagrange equation that
includes the external forces, in a form generalized from eqn (8).

(iii) In a continuum model of active matter, the set of slow
variables a can represent the field variables both in the bulk
and at the boundary. Then eqn (8) derived from OVP gives the
dynamic equations both in the bulk and at the boundary, with
the latter becoming dynamic boundary conditions. Furthermore,
if there are external forces applied at the system boundary, then

their contributions may be described by
:

Wext in the Rayleighian
in eqn (9).

(iv) It is important to note that OVP is a local principle that
can be used to find the most probable state only in the
immediate future (without additional constraints). To locate
the most probable paths that can take the system to the far
future under various constraints,60,87 we can divide the long
time interval (say, t � t0) into Nt sub-intervals with dt = (t � t0)/
Nt, then

P a; tja0; t0ð Þ ¼ lim
Nt!1

YNt�1

m¼1

ð
da
YNt�1

m¼0
P amþ1; tmþ1jam; tmð Þ

" #

/
ð
DaðtÞ exp �O½aðtÞ�

2kBT

� �
;

(10)

where O[a(t)] is called the Onsager–Machlup functional or
integral defined by

O �
ðt
t0

dt
1

2
zijð _ai � mik fkða; tÞÞð _aj � mjk fkða; tÞÞ

� �
; (11)

or equivalently, into the following quadratic form

O �
ðt
t0

dt
1

2
zij _ai � _a�i
	 


_aj � _a�j
� �� �

(12)

with _a�i ða; tÞ ¼ mikðaÞfkða; tÞ being the actual rates of the system
at state a and time t. Note that _a is defined by the time
derivative of the state variables a, while _a* is defined by the
force f (a,t) and depends only on the state variable a and time t.
The Onsager–Machlup integral is non-negative definite and
equals to zero (the minimum) only when _a equals to the actual
kinetic path, i.e., _a = _a*. Hence the variational principle can be
stated that nature chooses the kinetic path which minimizes
the Onsager–Machlup functional O[a(t)] with respect to the
state variables a(t). This variational principle is called
Onsager–Machlup variational principle (OMVP).63,68 In contrast
to OVP, a local principle that predicts the most probable state
in the immediate future, the OMVP is a global principle that
can determine the most probable path taking the system to the
far future under various constraints. For example, it can be
used to determine the long-time behaviors such as the steady-
states.63,68 It can also be used to locate the most probable
transition pathway that takes the system from one free energy
minimum to another.87,88

2.2 Direct variational methods for approximation solutions

The variational principles introduced previously can be used to
obtain thermodynamically-consistent dynamic equations as
well as matching boundary conditions. However, the resulting
equation systems are usually difficult to solve both analytically
and numerically. This subsection deals with some direct variational
methods of finding approximate solutions that are obtained
directly from above variational principles for the system dynamics
in both short and long time scales.63,68,76,89

Variational principles have been proposed in various fields
of physics and several variational methods have been developed

† It is interesting to mention that in active matter, the presence of active forces
and the breakdown of TRS can significantly change the statistical behaviors of the
system such as the distribution of a and barrier crossing kinetics. The dynamics
of downhill and uphill processes are very different even for passive systems, and
hence must be treated using their respective variational approaches. In this work,
we are interested in the active dynamics that would reduce to downhill processes
if the activity vanishes. However, the fluctuation effects can still be investigated in
a variational framework.46,86
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accordingly to find approximation solutions such as Ritz method
and the least-squares method.89 Recently, Doi developed a Ritz-
type variational method based on OVP76 by assuming that state
variables a(t) is a certain function of a small number of para-
meters denoted by a = (a1,a2,. . .), i.e., a(t) = a(a(t)). Then the rate
of the state variables _a can be written as

_ai ¼
X
m

@ai
@am

_am (13)

and the Rayleighian is then a function of the rates of parameters
R( :a). The dynamics of the system described by the temporal
evolution of the parameters a(t) is determined by minimizing R

with respect to :
a.

Similarly, direct variational method can also be developed
based on the OMVP to approximate the long time kinetic paths
or states of the system.68 We consider certain kinetic path
which involves a parameter set a(a(t)). The best guess for
the actual path is the path which gives the smallest value of
the Onsager–Machlup functional O[a(a(t))] with respect to the
parameter functions a(t). This variational method is similar to
the least-square method but with a target function that is more
physically meaningful based on physical principles.68,89

These direct variational methods are useful particularly
when we have an idea for the probable kinetic path and can
write down the functions a(a(t)). It has been applied success-
fully to many problems in soft matter dynamics. In this work,
we will show that these approximation methods can also be
used to study the dynamics of active soft matter.

2.3 Advantages of variational approaches

The above variational principles are equivalent to Onsagers
kinetic equations in eqn (8) with kinetic coefficients satisfying
Onsager’s reciprocal relations, but these variational principles
and the direct variational methods have several advantages to
investigate the dynamics of non-equilibrium systems as
follows.
� Scalar formulation. The variational principles involve only

physical quantities that can be defined without reference to a
particular set of generalized coordinates, namely the dissipation
function, free energy, and active work power. This formulation is
therefore automatically invariant with respect to the choice of
coordinates for the system, which allows us a great flexibility in
choosing state variables and rates.
� Thermodynamic consistency. The variational principles

incorporate the intrinsic structure of Onsagers theory of non-
equilibrium thermodynamics clearly. They provide compact
invariant ways of obtaining thermodynamically-consistent
dynamic equation systems where the pairs of rates and forces
are obtained automatically.
� Direct variational approximation tools. The direct Ritz-type

variational method of finding approximation solutions for the
system dynamics bypasses the derivation of the Euler–Lagrange
equations and goes directly from a variational statement of the
problem to the solution of the Euler–Lagrange equations. This
approximation method helps to pick up the most important
dynamic behaviors and to simplify the calculations significantly

from complicated partial differential equation systems to
simple ordinary differential equations. In addition, the direct
least-square-type variational method based on OMVP of mini-
mizing the Onsager–Machlup integral further optimizes the
search for more realistic kinetic paths and provides a new
method of studying long-time steady-state dynamics of the
system.

The above variational principles have been successfully
applied to the diffusion in electrolyte solutions by Onsager
himself in 1940s,57 and more recently applied to various soft
matter systems such as multiphase flows,58,69 electrorheological
fluids,70 colloid suspensions,80 polymer solutions,53,62,63 poly-
mer gels,39,63 liquid crystals,62,74 vesicles,81 membranes71–73 and
so on. This indicates that OVP is an important principle in soft
matter dynamics.62,63,68 In this work, we present its applications
to active soft matter dynamics that is mostly motivated by
biological applications.

Before ending this section, we would like to summarize the
general steps for applying OVP to the dynamics of active soft
matter for which the dynamic equations are not yet known or
still controversial.62,63

(i) Choose a set of coarse-grained, slow variables, a �
{a1,a2,. . .}, to describe the time evolution of the macroscopic
state of the system.

(ii) Construct the free energy function, F(a), and calculate the
rate of change of the free energy,

:
F( _a;a).

(iii) Construct the dissipation function, F( _a, _a), which is
quadratic in the rates/fluxes _a.

(iv) Find the work power done by the active forces,
:

Wa( _a;a),
based on the specific activity considered, and find the work
power done by some other external forces,

:
Wext( _a;a). The

external forces are usually applied at the system boundary
and do not arise locally from the consumption of chemical
energy of the system.

(v) Minimize the Rayleighian in eqn (9): R( _a;a) = F( _a, _a) +
:
F( _a;a) � :

Wa( _a;a) � :
Wext( _a;a), with respect to the rates/fluxes _a.

Note that some additional constraints on the system dynamics
may need to be imposed by using Lagrange multipliers.

Furthermore, if we have an idea about the most probable
kinetic path, then we can write down the slow variables a =
a(a(t)) as functions of a small number of parameters, a =
(a1,a2,. . .). We can follow the above steps and obtain the
Rayleighian as a function of :a and a as R( :a;a). The minimiza-
tion of R with respect to :

a will then provide an approximate
description for the active matter dynamics directly.

3 Applications 1: directional motion of
individual active units

Activity in biology or in some artificial active systems usually
arises from the consumption of ATP and the mechanochemical
cross-coupling, but sometimes activity appears simply as time-
dependent constraints in geometric shapes. In this section, we
consider the first applications of OVP to the directional motion
of an individual active unit as shown in Fig. 1: a molecular
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motor walking on a polar biofilament and a toy two-sphere
microswimmer swimming in a viscous fluid.

3.1 Molecular motors walking on biofilaments:
mechano-chemical cross-coupling

Molecular motor proteins are enzymes that bind adenosine
triphosphate (ATP) and catalyze its hydrolysis to adenosine
diphosphate (ADP) and inorganic phosphate (Pi):

90

ATP " ADP + Pi. (14)

The chemical energy released from this ATP hydrolysis is
partially converted into mechanical work or directional motion
of motors along some stiff biofilaments that are made of other
proteins. Animal cells in vivo contain over a hundred different
motor proteins, which can be classified into three different
families: myosins moving along actin filaments, kinesins and
dyneins moving along tubulin filaments. The underlying bio-
filaments are usually periodic and fairly rigid structures with a
period x B 10 nm. They are moreover polar or asymmetric, so
that one can define a ‘‘plus’’ end and a ‘‘minus’’ end. A given
motor always moves in the same deterministic direction:
myosin moves along actin filaments towards their plus end,
and kinesins and dyneins move along tubulin filaments towards
their plus and minus ends, respectively. Motor molecules play a
key role in cell contraction, cell division, intracellular transport,
and material transport along the axons of nerve cells, etc.90

In this subsection, we use OVP to formulate a thermo-
dynamic description in the linear (near-equilibrium) regime
for the directional motion of a translationary molecular motor

along a polar filament against an external force, as shown in
Fig. 1a. This Onsager-type description is pioneered by Kedem &
Caplan91 and extended by Chen & Hill.92 We take our thermo-
dynamic system to include the molecular motor and the
surrounding solution of ATP, ADP, and Pi. The system is
coupled to a heat reservoir and a work reservoir, which can
apply external forces on the motor, for example, by optical
tweezers, that is, optical trapping of a nano-probe attached to
the motor (see Fig. 1a). The states of the thermodynamic system
can be described by the average motor position x, the polarization
vector p (describing the polarity of the filament and assuming to
point from minus end to plus end), and the average number Na of
chemical components involved in ATP hydrolysis with a = ATP,
ADP, and Pi.

The reaction free energy for ATP hydrolysis takes the form of

Fr = Fr(NATP,NADP,NPi
), (15)

from which we find the rate of the change of free energy as4

_Fr ¼ �rDm: (16)

Here r � dx/dt is the reaction rate of ATP hydrolysis with x
being the reaction extent, dx � dNa/na = �dNATP = dNADP = dNPi

,
and na being the stoichiometric coefficients (negative for reac-
tants and positive for products, here nATP = �1, nADP = +1, and
nPi

= +1). Dm is the reaction affinity of ATP hydrolysis, given by

Dm � �
X
a

mana ¼ mATP � mADP � mPi ; (17)

which measures the free-energy change for the hydrolysis of
each ATP molecule. At chemical equilibrium Dm = 0, whereas it
is positive when ATP is in excess and negative when ADP is in
excess. Under in vivo conditions, ATP is usually in excess with
Dm 4 0; the reason may be that ATP has evolved as a biological
hydrotrope to keep biomolecules soluble at high concentrations
and subsequently used a the ‘‘energy currency’’ of the cell due to
its high energy phospho-diester bonds.93

The irreversible dynamics of the thermodynamic motor/
filament system is characterized by two rates: the reaction rate
r and the average motor velocity v = :

x. In the linear response
regime close to equilibrium, the dissipation function is a
quadratic function of the rates given by

F ¼ 1

2
Lr2 � lrp � vþ 1

2
zv2; (18)

and the rate of work done by the external force fext to the motor
is given by

:
Wext = fext�v. (19)

Here L and z are generalized friction coefficients, and l is the
mechanochemical coupling coefficient, which is nonzero only
if the filaments are polar and can be either positive or
negative.95 The positive-definiteness of the dissipation function
requires L,z 4 0 and Lz � l2 4 0. The degree of mechano-
chemical cross-coupling can be quantified by q � l=

ffiffiffiffiffiffi
Lz
p

(with
�1 o q o 1), as suggested by Kedem and Caplan.91

Fig. 1 Directional motion of individual active units. (a) A myosin motor
catalyzes ATP hydrolysis and converts the released chemical energy into
its directional motion on an actin filament94 toward the plus (barbed) end.
Meanwhile, an external force, fext, is applied on the myosin through optical
trapping of a nano-bead attached to the motor. (b) A toy two-sphere
microswimmer swims in viscous fluids. The body length, 2c(t), of
the microswimmer oscillates cyclically and the friction coefficient, z, is
asymmetric for forward motion (with smaller friction) and backward
motion (with larger friction), as shown in eqn (23). The front-back asym-
metry in friction is indicated by inclined thorns on the microspheres.
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Using the Rayleighian Rðr; vÞ ¼ _Fr þ F� _Wext in the
presence of the external force and eqn (16)–(19), we minimize
R with respect to r and v and obtain

Dm = Lr � lv, (20a)

fext = �lr + zv. (20b)

Here we have taken v and fext to be in parallel with p; a positive v
(or fext) means the motion of the motor (or the direction of the
external force) is along the direction of p, pointing toward plus
end as assumed. Note that the Onsager reciprocal relation for
mechanochemical cross-coupling is automatically satisfied.
Physically, eqn (20b) can be written as a balance equation fext +
fa + ffric = 0 for the external force fext, the active force fa = lr, and
the frictional force ffric = �zv.

To be specific, for the in vivo motion of myosin motors along
actin filaments, ATP is usually in excess with a constant Dm4 0
and myosin motor always move towards to the plus end
of the actin filament. Therefore, the load-free motor velocity

v0 ¼
q2

lð1� q2ÞDm (for fext = 0) must be positive (and hence l 4 0

and 0 o q o 1). In this case, we can identify the following four
regimes from eqn (20):

(i) For fext 4 0, we have v 4 0 and r 4 0 (hence fextv 4 0 and
rDm 4 0), the external force pulls the motor to the plus end.
Meanwhile, the excess ATP hydrolyzes and the chemical energy
is consumed to drive the motor along the same direction to the
plus end.

(ii) For small negative force fext o 0 and fext 4 fstall,v, we still
have v 4 0 and r 4 0 (hence fextv o 0 and rDm 4 0), the excess
ATP hydrolyzes and the released chemical energy is converted
into mechanical work. Here fstall,v = �lDm/L o 0 is called stall
force of myosin motion and when fext = fstall,v, the motor is
stationary with v = 0.

(iii) For fstall,r o fext o fstall,v, the moving direction of the
motor is reversed with v o 0 and hence fextv 4 0. That is, the
external force is doing positive work on the motor moving along
the plus end. However, we still have r 4 0 and hence rDm 4 0.
That is, the excess ATP hydrolyzes and the released chemical
energy also drives the motion the motor towards the same plus
end. Here fstall,r = �Dmz/l o 0 is called stall force of ATP
hydrolysis and when fext = fstall,r, the ATP hydrolysis is inhibited
with r = 0.

(iv) For fext o fstall,r o 0, we have v o 0 and r o 0, hence
fextv 4 0 and rDm o 0. That is, the external force is doing positive
work on the motor and produces ATP that is already in excess; the
system then works as an ATP pump.

Therefore, the motor/filament system is a reversible machine:
it can not only convert chemical energy into mechanical work,
but can also convert mechanical work into chemical energy. In
this work, we are particularly interested in the regime (ii), in
which ATP hydrolysis occurs spontaneously and the released
chemical energy is used to drive the system out of equilibrium
continuously.

Now let’s consider a practical limit at which the ATP hydro-
lysis rate r (or equivalently the active force fa = lr) is taken as a

given positive parameter that measures the activity of the system.
That is, the effect of mechanical forces on the ATP hydrolysis is
neglected and the rate of ATP hydrolysis is determined dom-
inantly by the chemical affinity as r EL�1Dm4 0. This leads to a
reduced description in which the position of the molecular
motor in directional motion becomes the only state variable,
while the amounts of the reactants and products in the ATP
hydrolysis are no longer involved. As a result, the Rayleighian
reduces to its extended form in eqn (9) as

R ¼ 1

2
zv2 � fav� fextv; (21)

in which
1

2
zv2 ¼ F is the dissipation function, fav =

:
Wa is the rate

of work done by the active force to the reduced system, and
fextv =

:
Wext is the rate of work done by the external force.

Minimizing this Rayleighian gives the force balance equation
�zv + fa + fext = 0.

Finally, we would like to point out that the results obtained
here from thermodynamic description for the motion of mole-
cular motors on polar filaments are completely independent of
any underlying microscopic mechanisms. However, the above
linear-response theory applies only to the linear regime near
equilibrium where Dm/kBT { 1 and fextx/kBT { 1 with x being
the typical molecular size of relevant proteins. In real life,
molecular motors mostly operate far from equilibrium (with
Dm B 10kBT) and the velocity v( fext,Dm) and the rate of
ATP consumption r( fext,Dm) are in general highly nonlinear.
Therefore, more specific models such as a minimal two-states
model for molecular motors should be constructed to arrive at a
more comprehensive understanding of the specificity and
robustness of the directional motion of motors in highly
fluctuating environment.95

3.2 A toy two-sphere microswimmer: active shape changes

Many animals and cells can actively change their shape in some
periodic or cyclic manner to migrate on frictional substrates or
swim in their surrounding viscous fluid environment.9,10,96–98

For example, snakes and some worms migrate on the ground by
generating body waves to change their shapes.96 Some bacteria
such as Escherichia coli, swims in fluids through bundling and
rotating their flagella as driven by rotary motors.9,10 Many types
of animal cells can also migrate on substrates by dramatic
periodical shape changes97 as primarily driven by their active
cellular cortex that consumes chemical energy. It is interesting
to note that in most of the cell migration driven by active shape
changes, the cell migration velocity shows highly nonlinear
dependence on the active force or the active shape-changing
velocity of the cell. This seems to go far beyond the linear-
response regime and be out of the scope of OVP. However, we
will show that OVP developed in the linear-response regime can
still be employed if we expand the set of state variables63

to include not only the center-of-mass position of the cell
but also the fast changing body length which describes the
shape change.
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Specifically, to show how periodic shape changes can gen-
erate directional self-propulsion, here we consider a toy micro-
swimmer that is composed of two microspheres99 as shown in
Fig. 1b. Let x1 and x2 denote the coordinates of these two
microspheres. Then the directional motion and the shape
changes of the microswimmer can be described by the temporal

evolution of the center-of-mass position xcðtÞ ¼
1

2
ðx1 þ x2Þ and

the half-body-length of the swimmer ‘ðtÞ ¼ 1

2
ðx2 � x1Þ, which are

taken as the two slow variables. The toy microswimmer can
actively change its shape by periodically changing its body length
(or the distance between the two spheres) 2c(t) as

c(t) = c0 + a sin(ot), (22)

where c0 is the half of the average body length of the micro-
swimmer, a and o are the amplitude and frequency of the
shape oscillations, respectively, and the shape-oscillation per-
iod is Tc = 2p/o.

The toy microswimmer subjected to the periodic shape
oscillations can achieve directional motion only when there
exists some mechanisms that break the front-back symmetry.
Here we consider an asymmetry in the viscous friction, defined
by fv = �z( :x) :x, in which the friction coefficient z( :x) depends on
the moving direction of each microsphere according to:

zð _xÞ ¼
zþ; if _x4 0

z�; if _xo 0

(
: (23)

The dynamics of the microswimmer is characterized by the
velocities (the rates), :x1 and :

x2, of the two spheres. To the leading
order in the two rates, the dissipation function is given by

Ft ¼
1

2
z1 _x1

2 þ 1

2
z2 _x2

2 ¼ 1

2
z1ðv� _‘Þ2 þ 1

2
z2ðvþ _‘Þ2; (24)

where v = :
xc is the center-of-mass velocity of the microswimmer,

z1 and z2 are the frictional coefficients given in eqn (23) that

depend on the signs of _x1 ¼ v� _‘ and _x2 ¼ vþ _‘, respectively.
Note that the dissipation function Ft is actually not quadratic in
dissipative rates any more but highly nonlinear; a highly non-
linear dissipation function has been discussed in classical
mechanics of particles before.100

In most microswimmers, it is natural to assume that there is
a clear separation of time scales between their shape oscillations
and the directional motion. The directional motion of the micro-
swimmer is usually much slower than its shape oscillations, i.e., c0/
v c Tc. We can, therefore, integrate out the relatively fast varying
variable, the half-body-length c(t), in one cycle of shape oscillation
and arrive at a time-averaged dissipation function of the slow

variable, the center-of-mass velocity v, by F ¼ 1

T‘

Ð T‘
0 Ftdt as

FðvÞ ¼ z� ð1�AysÞ v2 þ 1

2
a2o2


 �
� 3A

2p
v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2o2 � v2
p� �

; (25)

where ys ¼ 1� 1

p
arccosðv=aoÞ for |v| r ao and A = 1� z+/z� is a

dimensionless parameter measuring the degree of the front-back

asymmetry in the friction coefficients. Note that this dissipation
function is not quadratic but highly nonlinear in the rate v.
We can define the Rayleighian R(v) = F � F(v = 0) to
determine the time-averaged directional motion of the toy
microswimmer. Minimization of R(v) gives the cell migration
velocity v as a function of the active velocity ao of the periodic
shape change, and this function can be compared to experimental
observations. Furthermore, in the limit of small A, we have |v| {
ao and the Rayleighian can be approximated, to the leading
order, by

RðvÞ � 1

2
zeffv

2 � fa;effv; (26)

where zeff = z� + z+ is the effective frictional coefficient and fa;eff ¼
2ao
p
ðz� � zþÞ is a time-averaged effective active force that

drives the directional self-propulsion of the microswimmer.
Minimization of R gives the directional velocity of the
microswimmer as

v = fa,eff/zeff, (27)

which approaches v = aoA/p in the limit of weak asymmetry
with z+/z� - 1� or A - 0+.

We would like to give some remarks on the directional
motion of the toy two-sphere microswimmer as follows.

(i) Most dynamic behaviors of biological systems show strong
nonlinearity. For example, in the toy two-sphere microswimmer,
the swimmer migration velocity shows highly nonlinear depen-
dence on the active force or the active shape-changing velocity of
the swimmer. However, in many cases, OVP can still be employed
if we expand the set of slow state variables properly.63 For
example, here our set of slow variables includes not only the
center-of-mass position of the swimmer but also its fast-changing
body length.

(ii) The dissipation function is non-zero even for symmetric
microswimmers (with z = z� = z+) when there is no average

directional motion (i.e., v = 0): F0 ¼ Fðv ¼ 0Þ ¼ 1

2
za2o2. It arises

in the symmetric microswimmer from the viscous dissipation
due to the fast shape-oscillation in viscous fluids.

(iii) Similar to the walk of molecular motors in the previous
example, the active shape changes of microswimmers are also
driven by spontaneous ATP hydrolysis. Then the irreversible
dynamics of the microswimmer should be characterized by the
rate of ATP hydrolysis r in addition to the sphere velocities, :x1

and :
x2. The rate of the change of free energy is given in eqn (16)

by _Fr ¼ �rDm. The dissipation function is given, to the leading
order in the rates, by

Ft ¼
1

2
Lr2 � lr _x1 þ lr _x2 þ

1

2
z1 _x1

2 þ 1

2
z2 _x2

2: (28)

Also as mentioned in the previous example, in many practical
cases we can take a limit at which the ATP hydrolysis rate r and
hence the active force fa = lr is a given positive parameter.
This leads to a reduced description in which the dynamics
of the microswimmer is described only by the sphere velocities.
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In this case, the Rayleighian takes to the general form of
eqn (7) as

R ¼ 1

2
z1 _x1

2 þ 1

2
z2 _x2

2 � fa _x1 þ fa _x2; (29)

in which the first two terms compose the dissipation function
F( :x1, :x2), the last two terms compose the rate of work done by
the active forces to the system with

:
Wa = fa

:
x1+ (�fa) :x2.

Minimizing this Rayleighian with respect to :
x1 and :

x2 gives
the force balance equations for each sphere:

fa � z1
:
x1 = 0, �fa � z2

:
x2 = 0, (30)

respectively. Here the pair of active forces fa and �fa forms a
force dipole on the microswimmer. If the rate of the ATP
hydrolysis r is oscillating and the resulted active force fa = lr
takes the form of

fa ¼ �
2z�zþ
z� þ zþ

ao cosðotÞ; (31)

then it will drive a shape oscillation defined in eqn (22). Note
that the effective active force fa,eff in eqn (26) is not a simple
time-average of the oscillating active force fa in eqn (31), but is
the ‘‘net’’ active force that drives the directional motion of the
microswimmer.

Finally, we would like to point out that in our toy two-sphere
microswimmer, the two necessary conditions for a steady
directional motion are the active shape oscillations as the
energy input and the frictional asymmetry that breaks the
front-back symmetry. Similarly, for a long thin swimming
micro-filament, the hydrodynamic friction is anisotropic: it
experiences less friction when moving along its axis than
perpendicular to it. In this case, a cyclic beat pattern on
the filament will be able to drive directional propulsion in a
similar manner as in the above one-dimensional toy
microswimmer‡.

4 Applications 2: active polar fluid
models for collectives of active units

Let’s now consider an active fluid that includes collectives of
active units with anisotropic shapes and polarity such as rod-
like self-propelled colloids,3 rod-like bacteria,3,9,10 and the
active networks of stiff filaments in the cytoskeleton of living
cells.1,2 The constituting active units can assume chemical
energy to apply (extensile or contractile) dipole forces to their
surrounding inert environment that drive the system locally out
of equilibrium, as schematically shown in Fig. 2. Such active
fluids are in contrast to more familiar passive (inert) non-
equilibrium systems which are usually driven externally at their
boundaries.28

4.1 Active polar fluid regarded as a reactive fluid

Active fluids with polar constituent agents often show phase
separation (with coexisting dilute and dense phases) and

collective orientational or polar order (with collective alignment
on average).1,43 Such an active polar fluid can be viewed as a
reactive fluid where viscous flows and diffusion are closely
coupled with biochemical reactions.1,4 A generalized hydro-
dynamic theory has been developed to describe the dynamics
of such active polar fluids, phenomenologically based on
conservation laws and symmetry considerations,1,4 which is
in complete compatibility with micro-reversibility and Onsa-
ger’s reciprocal relations. This is in contrast to other methods
of modeling active polar fluids where some active (non-
equilibrium) terms are selectively added to the dynamical
equations for their passive counterparts to break
TRS.43,48,85,101 In these methods, the rates of biochemical
reactions in the active fluids are implicitly assumed to be
a constant that is independent of the surrounding
mechanical environment and simply determined by some pre-
set reaction affinity. In this case, the active terms arising from
biochemical reactions can not be derived from any free energy
or dissipation function, and hence can only be added in an
ad hoc manner.

In this subsection, we present an alternative derivation
of the generalized hydrodynamic model for an active polar
fluid that is regarded as a reactive fluid involving the ATP
hydrolysis/synthesis. In the next subsection, we will show that
in the same active polar fluid, if the effects of polarization
and flow on the ATP hydrolysis are negligible, then the rate of
ATP hydrolysis becomes a constant simply determined by the
preset constant chemical affinity Dm. The activities, driven by
the spontaneous ATP hydrolysis, are then represented by
local external non-conservative force fields that are added
as the active terms to the dynamic model of a passive
polar fluid.

To be specific, here we use OVP to derive a diffuse-interface
model for a droplet of active polar fluids moving on a solid
substrate, as schematically shown in Fig. 3a. The states of such
an active polar droplet can be described by the following slow
field variables: the scalar composition field f(r,t) (distinguish-
ing the coexisting passive isotropic phase from the active polar
phase), the polarization vector field p(r,t) (describing the aver-
age orientation of active polar agents), the average fluid velocity
field v(r,t), and the density field na(r,t) of chemical components
involved in ATP hydrolysis (eqn (14)) with a = ATP, ADP, and Pi.
For an active polar fluid that is confined between solid sub-
strates or flows at the solid surfaces, the total free energy

Fig. 2 Active stresses generated by active units: (a) extensile force dipoles
generated by the bacterial microswimmer, and (b) contractile force dipoles
generated by the actomyosin filament.

‡ Private communications with M. Doi.
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includes four contributions, F[f,p,na] = Ff + Fp + Fr + Fs, as
respectively given by

Ff f½ � ¼
ð
dr �1

2
af2 þ 1

4
af4 þ 1

2
KfðrfÞ2

� �
; (32a)

Fp f; p½ � ¼
ð
dr �1

2
b1ðfÞp2 þ

1

4
b2p

4 þ 1

2
KpðrpÞ2 þ cp � rf

� �
;

(32b)

Fr na½ � ¼
ð
drfrðnATP; nADP; nPiÞ; (32c)

Fs f; p½ � ¼
ð
dA asfþ

1

2
bsðp̂ � n̂Þ2

� �
: (32d)

Here Ff is the free energy for the two (isotropic and polar)
phase coexistence, in which a and the stiffness parameter Kf

are both constants. Fp is the free energy for polar liquid
crystallinity, in which for simplicity, we employ the approxi-
mation of one elastic constant37,102 Kp and we take b1(f) =�b0f
with b0 4 0 that controls the isotropic-to-polar phase transi-
tion: b1 o 0 in the polar phase (with f = 1) and b1 4 0 in the
isotropic phase (with f = �1). Note that the last cross-coupling
term in Fp represents the cases of perpendicular anchoring at
the isotropic-polar phase interfaces and defines the orientation
of p: if c 4 0, p points from polar phase to isotropic phase. Fr

is the reaction free energy for ATP hydrolysis: if dfr/dnATP 4 0
(that is, ATP is in excess), the forward ATP hydrolysis is
exergonic, occurs spontaneously, and can be used to drive the
changes in the motor configurations and generate mechanical
motion, resulting in active dipole forces on the the surrounding
passive polar fluids (see Fig. 2). In this case, the polar fluid will
never reach thermodynamic equilibrium states and will be
driven locally out of equilibrium by the active units or the
motors that consumes ATP. Fs is the surface energy at the

substrate surfaces (with as and bs being constants, and A being
the surface area), which characterizes the adhesion strength of
active units to the surface and the anchoring conditions for the
agent orientation. Note that such a free energy F will stabilize a
droplet of active polar phase (fC 1 and |p| C 1) in coexistence
with surrounding fluids of passive isotropic phase (fC �1 and
|p| C 0), or vice versa.43

The composition variable, f, is a conserved phase
parameter and its dynamics follows the following conservation
equation

qtf = �r�(fv + J). (33)

However, the polarization vector p is not conserved and its rate
of change is defined by :

p � qp/qt + v�rp. Furthermore, the
density fields na (with a = ATP, ADP, and P) are also not
conserved due to the presence of chemical reaction of ATP
hydrolysis or synthesis, and na follows the dynamic equation of
the form

qtna = �r�(nav) + rna. (34)

Here na is the stoichiometric coefficients (see the discussion
about ATP hydrolysis after eqn (16)). The reaction rate r � dx/dt
depends on the concentrations of all chemical components.
(This dependence is one of the constitutive relations to be
derived later from OVP and given in eqn (45c).) However, in the
present work, we do not intend to go into the specific expres-
sion of this concentration dependence because our purpose is
to show that accompanying the chemical reaction, a mechan-
ical force arises from the mechanochemical coupling as the
active force. It is also noted that the general dynamics of ATP
hydrolysis should be described by reaction-diffusion equations.
However, for simplicity, here we neglect the diffusion pro-
cesses, assuming that the density of each component is simply
advected by the flow and produced or consumed by the
chemical reaction.

Using eqn (33) and (34) and the definition of :p, we obtain
the change rate of free energy from eqn (32) as

_F ¼
ð
dr �ðr � reÞ � vþrmf � J � h � _p� Dmr
� �

þ
ð
dA L _fþH � _p� ðLrtfþHkrtpkÞ � vt
h i (35)

where re is the Ericksen stress tensor37,62,74 given by

re = �p̂I � Kfrfrf � Kprpkrpk � cprf, (36)

and re satisfies the generalized Gibbs–Duhem relation

�r � re ¼ frmf �rh � pþ
X
a

narma: (37)

Here p̂ ¼ �f̂ f � f̂ p � f̂ r þ fmf þ p � hþ
P
a
nama is the general-

ized pressure with f̂m (m = f, p, r) being the volume density of
free energy in eqn (32), ma � qfr/qna being the chemical
potential, and the reaction affinity, Dm, of ATP hydrolysis given
in eqn (17). The chemical potentials mf in the bulk and L at the

Fig. 3 A droplet containing a large number of active units on a solid
substrate. (a) A general two-phase diffuse-interface model of an active
droplet moving on solid substrates. A droplet of active polar phase is
stabilized to coexist with surrounding fluids of passive isotropic phase.
(b) Spreading of a thin active droplet on a solid substrate. Planar or
homogeneous anchoring condition is assumed at all bounding surfaces
with which the active units are in contact.
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solid surfaces are, respectively, given by

mf �
dF
df
¼ �aðf� f3Þ � Kfr2f� 1

2
b01p

2 � cr � p; (38)

L � as + Kfn̂�rf + cn̂�p, (39)

with b01 ¼ db1=df denoting the derivative of b1. The molecular
field h in the bulk and H at the solid surfaces are, respectively,
given by

h � �dF
dp
¼ b1p� b2p

3 þ Kpr2p� crf; (40)

H � bs p�n̂n̂ + Kpn̂�rp. (41)

The energy dissipation function F is a quadratic function of

three dissipative rates: the shear rate _e ¼ 1

2
rvþrvTð Þ, the rate

of change of polarization :
p, and the rate of ATP hydrolysis r.

These rates have the same time parity and from symmetry
considerations, F can be written into the following invariant
scalar form as62

F ¼
ð
dr

1

2
b1ð _e:ppÞ2 þ

1

2
b2 _e2 þ 1

2
b3ð _e � pÞ2 þ

1

2
b4P

2

�

þ b5 _e:Ppþ 1

2
b6r

2 þ b7rP � pþ b8rð _e:ppÞ þ
1

2
b9J

2

�

þ
ð
dA

1

2
b10 _f2 þ 1

2
b11ðvslipt Þ2

� �
;

(42)

where the frictional coefficients b1,. . .,b11 are constants and the
resulted frictional coefficient matrix, b, is positive definite. That
is, the diagonal coefficient terms in b are all positive, but the
off-diagonal coefficient terms that describe the cross-coupling
effects between two dissipative processes can be negative
(although some other inequality relations have to be satisfied
to keep the positive-definiteness of b). Note that the proper
dissipative rates that are present in F and associated with the
orientational dynamics of p is not :

p but the convected co-
rotational time derivative37,62,63,74 of p:

P � :
p � x 	 p = :

p + O�p, (43)

which characterizes the rotation of p relative to the rotation of

surrounding fluids with oi ¼
1

2
eijkOjk being the vorticity, and

Ojk ¼
1

2
@jvk � @kvj
	 


being the antisymmetric part of the velocity

gradient tensor. Moreover, for simplicity, we have neglected the
cross coupling among the transport of f, the dynamics of
polarization, and the ATP hydrolysis in the bulk fluid.
This coupling can represent the treadmilling dynamics of
the constituting components.103 We have also ignored the
possible dissipative relaxation processes associated with the
anchoring of p at the solid surfaces. In addition, we would
like to point out that the choice of dissipative rates in active
polar fluids is not unique.50,51 Another set of rates has been
taken by Marchetti et al.:1 the viscous stress rv (or the momen-
tum flux), r and P. In this case, the time parity of rv is different

from the other two rates r and P. A brief discussion about the
consequences of different choices of dissipative rates or ther-
modynamic fluxes on the symmetry of Onsager coupling matrix
and the applications of OVP has been presented in the Appen-
dix Section A.2.

Then the Rayleighian is given by

R½v; J ; _p; r� ¼ _F½v; J ; _p; r� þ F½v; J ;P; r� �
ð
drpr � v; (44)

where the local incompressibility constraints, r�v = 0, have
been taken into account with the pressure p being the Lagrange
multiplier. Minimization of R[v, J, :p,r] with respect to the rates
gives the dynamic equations for two-phase active polar flows as

�rp + r�(re + rv + ra) = 0, (45a)

h = g1P + g2p� _e � ha, (45b)

Dm = �lp�P � ~zpp: _e + Lr, (45c)

together with the incompressibility condition r�v = 0, the
dynamic equations for f in eqn (33) and for na in eqn (34).
The stress tensors, re, rv, and ra, are, respectively, given by
eqn (36), and

rv = a1( _e:pp)pp + a2 pP + a3Pp + a4 _e + a5pp� _e + a6 _e�pp, (46a)

ra = �~zrpp, (46b)

with ai being the Leslie viscosity coefficients. Note that p̂ in re in
eqn (36) can be absorbed into p in eqn (45a) due to the
incompressibility of the active polar fluids. The active molecular
field ha is driven by ATP hydrolysis and is defined via

ha � lrp. (47)

The diffusion flux in eqn (33) is given by J = �Mrmf. Note that the
mechanochemical cross-coupling indicated in eqn (45) is similar
(although more complex) to eqn (20) for the mechano-
chemical coupling in the motor/filament system in Section 3.1.
The general discussions there about the reversible conversion of
chemical energy and mechanical work also apply here in active
polar fluids. We will also focus on the regime where ATP is in
excess and its hydrolysis occurs spontaneously and the released
chemical energy is used by the suspending active units to drive the
surrounding inert polar fluids out of equilibrium continuously.

Furthermore, from the minimization of R[v, J, :p,r], we can
also obtain the thermodynamically-consistent boundary condi-
tions at the solid surfaces that supplements the dynamic
equations in the bulk fluids:

qtf + vt�rtf = �GL(f,p), (48a)

bvslipt ¼ �n̂ � rv þ rað Þ � t̂þ L@tf; (48b)

together with the impermeability boundary conditions,

n̂�v = 0, n̂�J = 0, (48c)

and the equilibrium anchoring boundary condition,

H � bsp�n̂n̂ + Kpn̂�rp = 0. (48d)
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Here the subscript t denotes the tangential component in the
plane of the substrate. Note that the boundary condition for the
tangential velocity in eqn (48a) is similar to the generalized
Navier boundary condition (GNBC) formulated for immiscible
two-phase flows at solid surfaces.58 The frictional coefficient b
now depends on the adhesion strength of the active fluids on
the substrate surfaces.

The phenomenological coefficients in the above equation
systems are functions of the frictional coefficients bi in the
dissipation function F in eqn (42) as62

a1 ¼ b1; a2 ¼ �
1

2
b4 þ

1

2
b5; a3 ¼

1

2
b4 þ

1

2
b5; a4 ¼ b2;

a5 ¼
1

2
b3 �

1

2
b5; a6 ¼

1

2
b3 þ

1

2
b5; L ¼ b6; l ¼ �b7;

~z ¼ � b8; M ¼ b9
�1; G ¼ b10

�1; b ¼ b11;

(49)

with g1 = a3 � a2 and g2 = a6 � a5. Note that the Parodi relation
a2 + a3 = a6 � a5 and the symmetry of coefficients for cross-
coupling effects are all automatically satisfied.

4.2 Active polar fluid regarded as a passive polar fluid under
local external non-conservative fields

In the last part of Section 3.1, we have considered a practical and
useful limit at which the effect of mechanical forces on the ATP
hydrolysis can be neglected and the rate of ATP hydrolysis is
determined dominantly by the chemical affinity as a constant
parameter. Here we consider the same limit of the above general
dynamics of active polar fluids: the effects of polarization and flow
on the ATP hydrolysis are negligibly small, and the rate r in eqn (45c)
is constant and simply determined by the reaction affinity or the
change of reaction free energy, i.e., r E L�1Dm. In this case, the rate
of change of the free energy and the dissipation function reduce to

_F ¼
ð
dr �ðr � reÞ � vþrmf � J � h � _p
� �

þ
ð
dA L _fþH � _p� ðLrtfþHkrtpkÞ � vt
h i

;

(50)

~F ¼
ð
dr

1

2
b1ð _e:ppÞ2 þ

1

2
b2 _e2 þ 1

2
b3ð _e � pÞ2 þ

1

2
b4P

2

�

þ 1

2
b5 _e:Ppþ 1

2
b7rP � pþ

1

2
b8rð _e:ppÞ þ

1

2
b9J

2

�

þ
ð
dA

1

2
b10 _f2 þ 1

2
b11ðvslipt Þ2

� �
:

(51)

It is interesting to note that the two mechanochemical cross-coupling

terms (the two terms with coefficients b7 and b8) in ~F, parametrized

by the constant reaction rate r, can be rewritten as � _Wa,

� _Wa �
ð
dr

1

2
b7rP � pþ

1

2
b8rð _e:ppÞ

� �

¼
ð
dr ra:rv� ha � _p½ �; (52)

in which the active stress ra defined in eqn (46b) and the active
molecular field ha defined in eqn (47) now become

ra = �zpp, (53a)

ha = zhp, (53b)

with z � ~zL�1Dm and zh � lL�1Dm. The cross-coupling coeffi-
cients b7 and b8 (hence z and zh) can be either positive or
negative as long as they can preserve the positive definiteness
of the dissipation function. For example, negative and positive
values of z correspond to contractile and extensile active
stresses, respectively, as schematically shown in Fig. 2.

We would like to further point out that eqn (52) indicates
that in the limit of constant reaction rate of ATP hydrolysis, the
ATP-induced activity in the active polar fluid can be regarded
simply as some local non-conservative fields applied externally
on the passive polar fluid. The active characteristic of these
external fields is reflected in the fact that the active stress ra

and the active molecular field ha both depend on the local state
variable (the polarization), p. Furthermore, these active fields
driven by spontaneous ATP hydrolysis break the time-reversal
symmetry of the polar fluids.

It follows that according to the general form of eqn (7), the
Rayleighian in eqn (44) can be rewritten as

R½v; J ; _p� ¼ _F½v; J ; _p� þ F̂½v; J ;P� � _Wa �
ð
drpr � v: (54)

Here _Wa represents the work power done on the passive polar
fluids by the active stress ra and the active molecular field ha.

The dissipation function F̂ for the passive polar fluid is
given by

F̂ ¼
ð
dr

1

2
b1ð _e:ppÞ2 þ

1

2
b2 _e2 þ 1

2
b3ð _e � pÞ2 þ

1

2
b4P

2

�

þ 1

2
b5 _e:Ppþ 1

2
b9J

2

�
þ
ð
dA

1

2
b10 _f2 þ 1

2
b11ðvslipt Þ2

� �
:

(55)

Minimization of R gives the following simplified dynamic
equation system:

(i) The dynamic equations for v: the incompressibility con-
dition r�v = 0, the generalized Stokes’ equation in eqn (45a)
with the stress tensors re, rv, and ra, given in eqn (36), (46a),
and (53a), respectively;

(ii) The dynamic equation for f: the conservation equation
in eqn (33) with J = �Mrmf;

(iii) The dynamic equations for p:

P = g1
�1h � g1

�1g2p� _e + g1
�1ha, (56)

with the active molecular field ha given in eqn (53b) and the
passive molecular field h given in eqn (40);

(iv) The boundary conditions in eqn (48) still apply to the
present case.

We would like to point out that in Section 4.1, a complete
model is constructed to incorporate the chemical reaction and
explicitly describe the mechanochemical coupling. In this
description, the time-reversal symmetry (TRS) is preserved,
and so is Onsagers reciprocal relation (ORR) for mechano-
chemical coupling. In Section 4.2, the limit of constant reaction
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rate is taken, and a simplified model is obtained from the
complete one in Section 4.1. In this limit, the TRS is lost, and so
is ORR for mechanochemical coupling. However, the Parodi
relation for the cross coupling in the passive polar fluid is still
preserved.

Finally, we note that the dynamic equation system for two-
phase active polar flows on solid substrates is similar to that for
two-phase passive polar flows on solid substrates, but is sup-
plemented by some extra active terms (here the active stress ra

and the active molecular field ha) that break the TRS. This type
of diffuse-interface model has been solved numerically as a
minimal model for cell motility.49,104

5 Applications 3: dynamics of thin
active droplets on solid substrates

In this section, we consider a thin droplet of active polar fluids
moving on a solid substrate in a simple two dimensions (xz plane),
as schematically shown in Fig. 3b. The detailed dynamics of such a
droplet can be described by the full dynamic equation system that
is derived in the previous Section 4. However, here we present a
thin film description of the active droplet on solid substrates where
the lubrication approximation applies.101,102,105–107 In this case, the
shape of the droplet is described by its thickness h(x,t) in the
vertical z direction as a function of horizontal position x at time t, as
shown in Fig. 3b. The hydrodynamic velocity field and the average
orientation of the active polar filaments inside the two-dimensional
drop are represented by v(x,z,t) = (u,w), and the polarization vector
p(x,z,t), respectively. Similar problems have been studied by several
groups108–110 for thin films of passive liquid crystals, by Kitavtsev
et al.111 for thin films of active liquid crystals, by Sankararaman &
Ramaswamy105 for thin films of active polar fluids, and by Joanny &
Ramaswamy102 for thin drops of active polar fluids. Here we use
OVP to provide an alternative derivation of thin film equations for
active polar droplets and to find approximate scaling laws for the
spreading or dewetting of the droplet on solid substrate.

5.1 Thin film equations for active polar fluids

We firstly use OVP to derive the thin film equations for a thin
active polar droplet moving on a solid substrate. To be specific
and simple, we make several assumptions as follows.

(i) The active fluid is incompressible, satisfying the incom-
pressibility condition,r�v = qxu + qzw = 0, from which we get the
local mass conservation equation for the evolution of film
height as

@thþ @x
ðh
0

udz ¼ 0: (57)

Here and in the following, we use qa to denote the partial
derivatives with respect to the variable a such as time t,
coordinates x and z.

(ii) The lubrication approximation66,77,112,113 is applied to the
thin-film dynamics of the active polar droplet on the solid
substrate. In the long-wave limit, the characteristic film thickness
h0 is much smaller than the length scale R0 for variations in the x

direction, i.e., h0/R0 { 1. It follows that the film thickness varies
slowly in space with |qxh| { 1. Given h0/R0 { 1 and r�v = 0, we
obtain that the flow velocity v is approximately along the x
direction with w { u.

(iii) The equilibrium contact angle of the droplet ye is very
small such that Young’s equation is approximated as

cos ye ¼
gSG � gSL

g
� 1� 1

2
ye2; (58)

where g is fluid–gas surface tension, gSG solid–gas surface
tension, and gSL solid–fluid surface tension.

(iv) We only consider droplet dynamics with left-right symmetry
and the droplet shape is mainly determined by its interfacial energy
and the effects of nematic elastic energy can be neglected. This
arises when the characteristic thickness of the droplet is much
larger than hK B Kp/g with Kp being the elastic constant defined in
eqn (32b). Then the total energy functional of the droplet is given by

F½h;R� � 2g
ðR
0

dx 1þ 1

2
@xhð Þ2

� �
þ 2ðgSL � gSGÞR;

� g
ðR
0

dx ye2 þ @xhð Þ2
h i

;

(59)

where R is half of the contact length of the droplet with the solid
substrate. The rate of change of the total energy is easily
obtained as

_F½@th; _R� ¼
ðR
0

dx �2g@x2h
� �

@thþ g ye2 � @xhð Þ2
h i

x¼R
_R; (60)

where we have used the identity qth +
:
Rqxh = 0 (obtained from

h(x = R(t),t) = 0) at the contact line x = R.
(v) The active filaments inside the droplet lack a head–tail

polarity, that is, p and �p are equivalent, but they can show
average nematic alignment. Furthermore, in the case of thin
active droplets, the z dependence of p = (px,pz) is determined by
the equilibrium equations,

qz
2px = qz

2pz = 0, (61)

which are obtained from the minimization of nematic elastic

energy, Fp ¼
Ð
dxdz

1

2
Kp ð@zpxÞ2 þ ð@zpzÞ2
� �

, similarly as defined

in eqn (32b) under the approximation of one elastic constant,
Kp, and fixed magnitude of p.

(vi) We assume the planar anchoring conditions at any
bounding surfaces with which the active filaments are in
contact, that is, the polarization vector p is parallel to the
tangent direction of all the bounding surfaces. Here we then
have: p = x̂ at z = 0 and p = ŝ E (1,qxh) at the free surface z = h, in
which x̂ is the unit vector along the x-direction and ŝ is the unit
tangent vector of the free surface of the droplet. This anchoring
boundary condition is mainly motivated by the stress-fiber
structure in adherent cells2 and by the experimental
observations114 on thin films of amoeboid cells, in which the
cells lie in the plane of the glass slide on which they spread and
form nematic liquid-crystal structures. The planar anchoring
conditions at the free surface have been employed in many
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previous works.98,102,105,106 In contrast, in our diffuse-interface
model of active polar droplets in Section 4, we have assumed
planar anchoring condition at the solid surface but perpendi-
cular anchoring condition at the free interface, which mimics
the orientation of actin filaments in the lamellipodium of
migrating cells. Such anchoring boundary conditions have also
been used in many previous works.43,49,101,104

Then based on the assumptions in (v) and the planar
anchoring conditions in (vi), we can solve the polarization
vector p from eqn (61) independently of the flow velocity v for
a given drop profile h(x,t) and obtain102,105

px E 1, pz E (z/h)qxh. (62)

(vii) We consider only the dynamic limit of active polar
fluids discussed in Section 4.2, at which the effects of polariza-
tion and flow on the ATP hydrolysis are negligibly small, and
the rate r E L�1Dm is a constant parameter. In this case, the
active stress ra = �zpp in eqn (53a) is only a function of
the local polarization vector p and it breaks the TRS, driving
the system out of equilibrium locally. The work power done by
ra on the thin droplet is approximated to the leading order as

Wa½u� ¼
ðR
0

dx

ðh
0

dz 2zpxpz@zuþ 2zpx2@xu
� �

: (63)

(viii) Using the lubrication approximation, the dissipation
functional is given to the leading order by66,77,112,113

F½u; _R� ¼
ðR
0

dx

ðh
0

dz Z @zuð Þ2
h i

þ zcl _R2: (64)

Here we have neglected the dissipation from the fluid slip at the
solid surface (away from the contact line). The first term in F
represents the usual hydrodynamic viscous dissipation under the
lubrication approximation with Z being the shear viscosity of the
fluid. The second term represents the extra energy dissipation
associated with the dynamics near the contact line region,77,112

which can be very complex for the suspension droplets of active
filaments.101 The phenomenological parameter zcl is the frictional
coefficient at the contact line, which is infinitely large for a pinned
contact line, and is zero for a freely moving contact line.

From the above discussions, we then obtain the Rayleighian as

R½u;w; @th; _R� ¼ _F½@th; _R� þ F½u; _R� � _Wa½u�

�
ð
dxdz p @xuþ @zwð Þ½ �; (65)

where p is the pressure (a Lagrange multiplier) that imposes the
incompressibility constraint. Minimizing R with respect to the
rates, u, w, qth, and

:
R, give a closed dynamic equation system for

the thin droplets moving on solid substrates as follows. In the bulk,
the dynamic equations are

Z@z2u� @xp�
z
h
@xh ¼ 0; (66a)

qz p = 0, (66b)

which are supplemented with the no-slip condition u = 0 at the
solid surface z = 0, the boundary conditions at the free surface z = h:

p(x,h,t) = p0 � gqx
2h, (67a)

Zqzu|z=h = 0, (67b)

and the boundary conditions at the contact line x = R and z = 0:

zcl _R ¼ g
2

@xhð Þ2�ye2
h i

: (68)

Here p0 is the pressure in the surrounding gas; we have also
used the impermeability condition w = 0 at the solid surface
z = 0, and the kinematic boundary condition w = qth + uqxh at
the free surface z = h.

As in the classical problems of thin film fluids,66,107,115 the
solution of the above closed equation system gives a parabolic
profile for u(x,z,t) in the form of

uðx; z; tÞ ¼ �g
Z
@x

3hþ z
Zh
@xh


 �
z2

2
� zh


 �
; (69)

from which we find the thickness-averaged velocity �u � 1

h

Ð h
0dzu as

�u ¼ h2

3Z
g@x3h� zh�1@xh
	 


: (70)

Substituting eqn (70) into the mass conservation eqn (57), one
obtains the thin film equation for active droplets:

@thþ
1

3Z
@x gh3@x3h� zh2@xh
	 


¼ 0; (71)

which is supplemented with the boundary condition (68) at the
contact line x = R(t). The static solutions of this thin film equation
yield the steady-state shape of the active droplet and the dynamic
scaling properties of the solutions lead to the spreading or
dewetting laws for the active droplet.32,33

We would like to comment and compare our model for the
thin active droplets on solid substrates with other models in the
literature101,102,106 as follows.

(i) In comparison to the thin-film model by Joanny &
Ramaswamy,102 we have neglected the effect of nematic elastic
energy in determining the droplet shape. As a result, our thin
film equation is a limiting case of their model when the droplet
thickness is much larger than hK B Kp/g as discussed above near
eqn (59). However, if hK is not very small, our boundary condi-
tion (68) in the vicinity of the contact line with hK 4 h B 0 may
be problematic and elastic contributions have to be included.

(ii) In the thin-film model by Loisy et al.,106 the flows inside
the active droplets are induced by the winding of the polarization
field. This winding introduces a dramatic change in the orienta-
tion of the polarization p along the thickness z-direction:

y � z

h

op
2

, in which y is the angle of p relative to the x-axis and

o is an integer winding number that counts the number of
quarter turns of p across the drop height. In comparison, in the
present work, we have not considered such internal polarization
winding and the orientation of p varies along z as y B pz/px E
(z/h)qxh (see eqn (62)). Such difference in the variation of p
orientation leads to the difference in the final form of thin film
equation between the present work and that by Loisy et al.106
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(iii) In the recent work by Trinschek et al.,101 the authors
have proposed a more complete model for active polar droplets,
which is similar to our model presented in Section 4 but have
introduced one additional active contribution from the tread-
milling or self-propulsion of active units in the direction of
their polarization. Using their more complete free energy, we
can still apply our variational approach and the lubrication
approximation to study the more complicated thin film
dynamics by following similar methods that we have done for
thin films of binary mixtures before.66

5.2 Spreading laws for thin active fluid droplets

Now we consider the spreading dynamics of thin active droplets
on solid substrates. We do not try to solve the thin film eqn (71)
directly, but use OVP as an approximation method to solve the
scaling laws for the droplet spreading.

We assume that the height profile of the droplet h(x,t) is
given by a parabolic function

hðx; tÞ ¼ 1

2
yðtÞRðtÞ 1� x2

R2


 �
; (72a)

and the velocity u(x,z,t) inside the droplet takes the following
parabolic profile along the z-direction as

uðx; z; tÞ ¼ �u0ðx; tÞ
z2

2h2
� z

h


 �
: (72b)

The reason of choosing these function forms is apparent if we
compare eqn (72b) with the velocity profile in eqn (69), and
remember that the equilibrium shape of a thin droplet takes the
form of eqn (72a) with y(t) = ye being the equilibrium contact angle
and R(t) = Re being (half of) the contact length between the droplet
and the solid substrate at equilibrium. Note that y(t) defined from
the parabolic height profile in eqn (72a) is the apparent contact
angle interpolated away from the microscopic contact line, which is
different from the contact angle y = |qxh| defined in the previous
subsection locally in the close vicinity of the contact line.

To achieve an approximate description of the droplet
dynamics, the time-dependent parameters y(t), R(t), and u0(x,t)
must be determined by OVP. However, note that these parameters
are not independent. Firstly, from the conservation of the droplet

area (or mass), A0, that is, A0 ¼ 2
ÐRðtÞ
0

dxhðx; tÞ ¼ const:, we have

2

3
yðtÞRðtÞ2 ¼ A0: (73)

Secondly, from the mass conservation eqn (57) for droplet height,
we obtain

�u � 1

h

ðh
0

dzuðx; z; tÞ ¼ �1
h

d

dt

ðx
0

dx0hðx0; tÞ: (74)

Substituting the approximate profile of h(x,t) and u(x,z,t) in
eqn (72) into eqn (74) we obtain

u0ðx; tÞ ¼ 3x
_RðtÞ
RðtÞ: (75)

Therefore, the dynamics of the droplet can be described by one
time-dependent parameter and here we take R(t).

Substituting the droplet profile h(x,t) in eqn (72a) into
eqn (59), we obtain the total free energy

F½h;R� ¼ g ye2Rþ
3A0

2

4R3


 �
; (76)

from which we find the rate of change of the total energy as

_F½ _R� ¼ g ye2 �
9A0

2

4R4


 �
_R: (77)

Similarly, we find the energy dissipation function F as

F½ _R� ¼ CZR2

A0

_R2 þ zcl _R2; (78)

and the work power done by active stress, ra, as

_Wa½ _R� ¼ zA0

R
_R; (79)

which are obtained by substituting the approximate profile of
h(x,t) and u(x,z,t) in eqn (72) into the dissipation function in
eqn (64) and the active work power function in eqn (63),
respectively. Here C � 2[ln(2R/e) � 2] and e is the molecular
cutoff length that is introduced to remove the divergence in the
energy dissipation near the contact line.

Then from eqn (77)–(79), we obtain the Rayleighian

R½ _R� ¼ _Fþ F� _Wa. Minimizing R with respect to
:
R gives

the following evolution equation

1þ kclð Þtact _R ¼ signðzÞ A0
2

2CR3
þ
A0

1
2y y2 � ye2
	 


3Ckactye3
: (80)

Here sign(z) is the sign function of z with sign(z) = +1 for
extensile active units and sign(z) = �1 for contractile active
units as shown in Fig. 2. The contact angle y is a function of R
as given by eqn (73). The dimensionless parameter kcl � zcl/
zhydro is a material parameter determined by the droplet and
the substrate, which can be treated as a constant and char-
acterizes the importance of the additional friction zcl near
the contact line relative to the normal hydrodynamic friction
zhydro = 3CZ/2y in the bulk fluids of the droplet. Two time scales
are introduced and defined as

tact �
Z
jzj; trel �

ZA0
1=2

gye3
: (81)

The time tact represents the characteristic time for the droplet
to reach steady-state motion driven by active stresses, and trel

represents the relaxation time needed for the droplet to reach
the equilibrium contact angle ye. The dimensionless parameter
kact defined by

kact �
trel
tact

(82)

characterizes the strength of activity in the active fluids. If kact is
small, the equilibration of the droplet shape and contact angle
is very fast and the droplet spreading is mainly driven by
surface energy. On the other hand, if kact is large, the activity
is strong and the activity-driven droplet motion is much faster
than the energy-driven equilibration of the droplet, that is,
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the droplet spreading is mainly driven by active stress and a
large capillary-number flow will be induced.

Particularly, for kact { 1, the first term on the right-hand
side of eqn (80) can be ignored, and the evolution equation for
R becomes

1þ kclð Þtrel _R ¼
A0

1
2y y2 � ye2
	 

3Cye3

; (83)

which gives (for ye - 0) the classical Tanner’s spreading law for
two-dimensional droplets:32–34

RðtÞ 
 A0
1=2 t

trel


 �1=7

¼ gA0
3t

Z


 �1=7

: (84)

On the other hand, if kact c 1, the second term on the right-hand
side of eqn (80) can be ignored, and the equation becomes

1þ kclð Þtact _R ¼ signðzÞ A0
2

2CR3
; (85)

from which we obtain the spreading law (or dewetting law from very
small initial contact angle) predicted by Joanny & Ramaswamy102 for
two-dimensional droplets of extensile active units with sign(z) = +1
(or of contractile active units with sign(z) = �1):

RðtÞ 
 A0
1=2 t

tact


 �1=4

¼ jzjA0
2t

Z


 �1=4

: (86)

Note that as mentioned by Joanny & Ramaswamy,102 the effects
of activity on the droplet spreading enter at the same order in
gradients as those of gravity, but with a different dependence on
the film height. Furthermore, similar dynamic equation as eqn (80)
for thin droplets on solid substrates has been obtained in a very
different scenario where evaporation occurs at the free surface of
the droplet.77 The effects of activity on the droplet spreading enter
at the same order as those of evaporation, but with a different
dependence on the droplet radius or contact length.

In addition, the formulation and calculations presented
here can be readily extended to the thin-film dynamics of
three-dimensional droplets on solid substrates, particularly
for the spreading dynamics of a droplet with cylindrical sym-
metry. Furthermore, the effects of nematic energy on the
spreading dynamics can also be considered by including
nematic elastic energy,102 which takes the simple form of

Fp ¼
Ð
dx

1

2
Kp ð@xhÞ2=h
� �

.

6 Conclusions

Onsagers variational principle (OVP) has recently become an
indispensable and powerful tool in the study of the nonlinear
and nonequilibrium phenomena of many inert soft matter
systems, such as liquid droplets, colloid suspensions, nematic
liquid crystals, polymer gels, and surfactants, etc. In this work,
we present a simple extension of OVP for the dynamic modeling
of active soft matter such as suspensions of bacteria and
aggregates of animal cells. In this extended OVP, the active
forces generated locally by individual active units are treated as

non-conservative forces that cannot be derived from any free
energy and dissipation functions. We then apply this extended
form of OVP to three representative active matter problems,
which are motivated by the biology of bacteria and animal cells.
We show that OVP can not only help to formulate
thermodynamically-consistent models, but can also be used
to find approximate solutions for the emergent structures and
complex dynamics of active soft matter.

The first application of OVP presented in Section 3 is about
the directional motion of individual active units: a molecular
motor walking on a stiff biofilament and a toy two-sphere
microswimmer moving in a viscous fluid. In the motor/filament
system, we consider the mechanochemical cross-coupling which
indicates that the system is a reversible machine: it can not only
convert chemical energy into mechanical work, but can also
convert mechanical work into chemical energy. In the toy
microswimmer, we show how directional self-propulsion can
be generated by cyclic body-shape oscillations together with
front-back asymmetry in hydrodynamic friction. It is shown that
mechanochemical cross-coupling in biological systems can be
considered in Onsager’s framework of non-equilibrium thermo-
dynamics. Activity and the broken time reversal symmetry in
active matter are basically resulted from the persistent consump-
tion and conversion of chemical energy, released during sponta-
neous ATP hydrolysis, into motion or mechanical work.

The second application presented in Section 4 is about the
two-phase hydrodynamics for a droplet of active polar fluids,
which is composed of suspending contractile or extensile active
units such as bacteria, actomyosin units, and animal cells. We
use OVP to formulate a diffuse-interface model for an active
polar droplet moving on a solid substrate. This hydrodynamic
model is thermodynamically consistent in both hydrodynamic
equations in the bulk fluid and matching boundary conditions
at the solid surface.

The third application presented in Section 5 is about the
motion of a thin active polar droplet on a solid substrate in two
dimensions. Using the lubrication approximation, we firstly
apply OVP to derive the classical thin film equation that has
been obtained previously. We then use OVP as an approxi-
mation tool to find two scaling laws for the spreading (or
dewetting) of the thin active droplet in the respective limits of
negligible activity and strong activity. It is interesting to note
that the reduced equation obtained for the spreading (or
dewetting) dynamics of thin active droplets takes a similar
form as that has been obtained previously for the dewetting
dynamics of an evaporating droplet on solid substrates.

Below we make a few general remarks and outlook.
(i) Near-equilibrium assumption of OVP. OVP is proposed in

Onsager’s linear-response framework of non-equilibrium thermo-
dynamics, which is based on the near-equilibrium assumption.
However, biological systems are usually far away from equili-
brium. Therefore, the validity and the range of the OVP applica-
tions should be and can only be justified by solving real biological
problems and comparing with quantitative experiments.1,4

(ii) Relationships between OVP/OMVP and other approaches
in nonequilibrium thermodynamics. Following the pioneering
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works of Onsager, there have been various approaches devel-
oped for nonequilibrium thermodynamics. In particular, there
have been various variational principles formulated for the
study of irreversible processes.116 More recently, the general
equation for non-equilibrium reversible-irreversible coupling
(GENERIC) formalism has been proposed as an extension of
Hamiltonian’s formalism of classical mechanics to nonequili-
brium thermodynamic systems with both reversible and irre-
versible dynamics.117 However, a general discussion on the
relationships among the various approaches is beyond the
scope of this work.

(iii) Applications of Onsager–Machlup variational principle
(OMVP). In the end of Section 2.1, we have mentioned that Onsager
and Machlup60 introduced OMVP in their study of the statistical
fluctuations of kinetic paths in the framework of Langevin equa-
tion. They have shown that the most probable kinetic path over a
certain long-time period is determined by the minimization of a
time integral, i.e., the Onsager–Machlup integral in eqn (12).
Recently, Doi et al.68 proposed that OMVP can be used to approx-
imate the long-time dynamics of nonequilibrium systems. How-
ever, in this work, we have not given applications of using OMVP to
find approximate solutions for long-time behaviors such as steady
states. We mention two potential applications of OMVP as follows:
the steady-state for the wave propagation and sustained oscillations
observed in migrating cells;29–31 the steady-state (spontaneous)
retraction dynamics of an injured axon118 or a laser-cutting
stress-fiber bundle in adherent cells.119

(iv) Applications of OVP and OMVP to more specific biological
problems. The applications considered in this work are mostly toy
models or simplified models of mostly theoretical interests. We
are now trying to apply the extended form of OVP to more specific
biological problems such as cell spreading, cell curvotaxis, wound
closure, tissue folding, and so on. However, in these real systems,
we usually need to involve many more complex active processes16

in addition to active forces and cyclic body-shape oscillations,
such as tensional homeostasis,2 cell division and apoptosis,13

topological cell rearrangements,16 memory effects.1,17

In summary, the variational method proposed in this work
about incorporating biochemical activity into OVP will help to
construct thermodynamically-consistent models and to find
approximate dynamic solutions in active soft matter. Particu-
larly, this will help to deepen our understanding of the emer-
gent structure and dynamic behaviors of real in vivo biological
systems such as bacteria suspensions, individual animal cells
and cell aggregates (or tissues).1,2,13
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A Some additional notes on the choice
of thermodynamic fluxes and forces

In Onsager’s theory of non-equilibrium thermodynamics, the
choice of thermodynamic fluxes and forces is not unique.50,51

For example, for active polar fluids, two different sets of fluxes
and forces can be chosen as follows:

(i) Fluxes are chosen to be r, P, _e (or the flow velocity v) and
the corresponding forces are Dm, h, rv, respectively, as taken in
Section 4 of this work. Here all the three fluxes have the same
time parity.

(ii) Fluxes are chosen to be r, P, rv (the momentum flux) and
the corresponding forces are Dm, h, _e, respectively, as taken by
Marchetti et al.1 Here the time parity of the flux rv is different
from the other two fluxes r and P. Furthermore, note that in
this case, the new pair of flux rv and force _e is a swap of the pair
of flux _e and force rv in the first choice (i).

The symmetry of Onsager matrix coupling fluxes and forces
depends on the time parity (i.e., the time-reversal signature) of
the fluxes:1,50 the Onsager coupling matrix is symmetric for
fluxes of the same time parity and is antisymmetric for fluxes of
opposite time parity. Therefore, for the first choice (i) with
fluxes of the same time parity, the Onsager coupling matrix is
symmetric. In comparison, for the second choice (ii), the cross-
coupling coefficients between the flux rv and the flux r or
between the flux rv and the flux P are both antisymmetric as
shown in Marchetti et al.1

Given the non-unique choice of flux–force pairs, we will
make some general discussions in this Appendix about the
consequences of different choices of thermodynamic fluxes and
forces.

A.1 Changes in the symmetry of Onsager coupling matrix by
swapping some of fluxes and forces

We discuss the changes in the symmetry of Onsager coupling
matrix when we swap some of fluxes with forces, as in the above
two choices of force–flux pairs in active polar fluids. To this
end, let’s consider two pairs of fluxes and forces: _a1 and X1, _a2

and X2. Suppose that the two fluxes _a1 and _a2 have the same
time parity, and hence the two forces X1 and X2 also have the
same time parity but opposite to that of the corresponding
fluxes. In this case, the linear force–flux relations are then
given by:

X1 ¼ L11 _a1 þ L12 _a2;
X2 ¼ L21 _a1 þ L22 _a2;

(A1)

in which the Onsager coupling matrix Lij is symmetric and
positive definiteness, that is, L12 = L21, L11, L22 4 0, and L11L22�
L12

2 4 0.
If alternatively, we swap X2 with _a2, that is, we choose the

fluxes to be _a1 and X2, and the corresponding forces are X1 and
_a2. Then the time parities of the two fluxes _a1 and X2 are now
different. In this case, the linear force–flux relations become

X1 ¼ ~L11 _a1 þ ~L12X2;
_a2 ¼ ~L21 _a1 þ ~L22X2

(A2)

in which L̃11 = (L11L22 � L12
2)/L22, L̃12 = L12/L22, L̃21 = �L21/L22,

L̃22 = 1/L22. Note that now L̃21 = �L̃12, that is, the Onsager
coupling matrix L̃ij is antisymmetric. From this simple example,
we show that although there exists some flexibility in choosing
fluxes and forces, we can safely use the time parity of the
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chosen fluxes to determine the symmetry of the Onsager
coupling matrix in the linear force–flux relations.

A.2 Onsager’s variational principle for thermodynamic fluxes
of different time parities

Suppose that there are two sets of slow state variables, a and b

and they have opposite time parity. Then the free energy is
F(a,b) and the rate of change of the free energy is given by

_F ¼ �Xi _ai � Yi
_bi; (A3)

in which _a and _b are two fluxes, and

Xi � � qF/qai, Yi � � qF/qbi (A4)

are the corresponding conjugate forces. Since a and b have
opposite time parities, then the time parities of _a and _b, and that
of X and Y are both opposite, respectively. In this case, we can
decompose the two forces into reactive and dissipative parts as

X = Xd + X r, Y = Yd + Y r. (A5)

Here Xd and Yd arise from dissipative couplings that can be
derived from dissipation function, while X r and Y r derive from
reactive couplings:

Xr
i ¼ L

ab
ij

_bj ; Yr
i ¼ L

ba
ij _aj (A6)

with the friction matrix Labij = �Lbaji being antisymmetric. The
reactive couplings do not contribute to dissipation and there-
fore can not be derived from dissipation functions. Substituting
eqn (A5) into the rate of change of the free energy in eqn (A3),
using eqn (A6) and Labij = �Lbaji , we obtain

_F ¼ �Xd
i _ai � Yd

i
_bi: (A7)

The dissipation function is given by

F ¼ 1

2
Laa
ij _ai _aj þ

1

2
Lbb
ij

_bi _bj (A8)

with the friction matrix Laaij = Laaji and Lbbij = Lbbji being symmetric.
Using eqn (A5)–(A8) and minimizing the Rayleighian

R½ _a; _b� ¼ _Fþ F, we obtain

Xi ¼ Laa
ij _aj þ Lab

ij
_bj

Yi ¼ L
ba
ij _aj þ L

bb
ij

_bj

(A9)

or equivalently by taking the inverse:

_ai ¼ Raa
ij Xj þ R

ab
ij Yj

_bi ¼ Rba
ij Xj þ Rbb

ij Yj ;
(A10)

where the mobility matrix R is the inverse of the friction matrix
L. Note that only the dissipative part of the thermodynamic
forces can be considered and derived from the minimization of
the Rayleighian, which is simply because the reactive forces
don’t contribute to the dissipation function and the Rayleighian.
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