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Characterizing viscoelastic properties of synthetic
and natural fibers and their coatings with a
torsional pendulum
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Characterizing and understanding the viscoelastic mechanical properties of natural and synthetic fibers

is of great importance in many biological and industrial applications. Microscopic techniques such as

micro/nano indentation have been successfully employed in such efforts, yet these tests are often

challenging to perform on fibers and come with certain limitations in the interpretation of the obtained

results within the context of the macroscopic viscoelasticity in the fiber. Here we instead explore the

properties of a series of natural and synthetic fibers, using a freely-oscillating torsional pendulum. The

torsional oscillation of the damped mass-fiber system is precisely recorded with a simple HD video-

camera and an image processing algorithm is used to analyze the resulting videos. Analysis of the

processed images show a viscoelastic damped oscillatory response and a simple mechanical model

describes the amplitude decay of the oscillation data very well. The natural frequency of the oscillation

and the corresponding damping ratio can be extracted using a logarithmic decrement method and

directly connected to the bulk viscoelastic properties of the fiber. We further study the sensitivity of

these measurements to changes in the chemo-mechanical properties of the outer coating layers on one

of the synthetic fibers. To quantify the accuracy of our measurements with the torsional pendulum,

a complementary series of tests are also performed on a strain-controlled rheometer in both torsional

and tensile deformation modes.

1 Introduction

Thin flexible viscoelastic fibers play an essential role in many
different applications. Examples are abound in the textile and
cosmetics industries alongside natural and biological applica-
tions such as human hair, spider silk and mussel threads to list a
few examples where the mechanical properties of soft fibers are
of significant importance.1–10 In many natural or synthetic
fibers, such as human hair, a thin outer shell, also known as
the cuticle, is placed around the core of the fiber or cortex.11

Many cosmetic products or techniques that are used in processes
such as permanent waving, affect the overall behavior of human
hair by modifying the viscoelastic properties of the outer cuticle
layers.3 Similarly, in many applications in the textile industry
fibers are coated with a variety of protective polymer coatings.12

In many of these fiber coating processes there is a need to

quantify the effect of cuticle treatments or coating properties on
the overall mechanical behavior of the fiber. Many recent studies
on fibers such as human hair have focused on probing the
properties of the external cuticle layers with advanced techniques
such as AFM (atomic force microscopy).13 These methods can
report very accurate local microscopic measurements, but are
costly in their implementation and required expertise and are
inherently limited in providing macroscopic information on the
bulk viscoelastic properties of the whole fiber.

In order to accurately measure macroscopic mechanical pro-
perties of fibers several different methods have been developed
over the years. For example, when characterizing the properties of
human hair, different tests based on tension, bending and torsion
of a fiber have been pursued in the cosmetics industry.3 However,
as noted by Bogaty14 and Wolfram and Lindemann,11 results from
tension and bending tests of human hair are more sensitive to the
mechanical properties of the inner cortex of the fiber, while
torsion-based tests are more sensitive to the properties of the
outer cuticle layers. This may be due in part to differences in
material structure caused by the orientation of cells within the
cuticle and cortex of human hair respectively as proposed by
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Wolfram and Lindemann.11 However, as a result of the underlying
geometry and kinematics of deformation which we will discuss in
detail later, torsional measurements are inherently more sensitive
to the mechanical properties of the outer layers of a cylindrical
fiber. Thus, in the present study we focus on torsional measure-
ments for fiber characterization and revisit an established method
known as a torsional pendulum test.15 We show that data from
this simple test are directly connected to bulk viscoelastic proper-
ties of the fiber. Furthermore, by characterizing the systematic
change in torsional properties of a set of coated fibers, we show
that this method is indeed uniquely sensitive to mechanical
changes in the outermost surface layers of fiber. Finally, using
an appropriate theoretical framework, we demonstrate how to
quantify the effects of viscoelastic coatings on the macroscopic
mechanical behavior of the fiber.

1.1 Historical background

Torsion balances and pendulums have been used extensively
for precise measurements in an astonishingly diverse list of
scientific studies. Nearly one hundred different versions of the
torsional pendulum, all having the common feature of a test
mass suspended from a slender fiber, have been reported in
literature.16 In terms of historical background, it is possible
that the very first torsion balance was used as a compass or
‘‘sailing needle’’ in ancient China. Torsion balances were later
used by Charles Augustin de Coulomb, and independently by
John Michell, for detecting and measuring small forces.16,17

Later, Cavendish18 used a similar setup to determine ‘‘the
mean density of the earth’’ which is now interpreted as a value
for the gravitational constant G. Faraday and Pierre Curie also
benefited from the precision of a torsional balance in their
research on diamagnetism and discovery of the Curie tempera-
ture.19,20 The origin of success of this time-tested measurement
system rests on a simple principle. In many other force
measurement devices, weak signals compete with the back-
ground gravitational field. In a torsional pendulum however,
the gravitational force of the earth on the test body is orthogo-
nal to the plane in which the forcing signal of interest occurs,
thereby isolating the signal from gravitational perturbations
and allowing even weak forces to be measured systematically.
Even in current state-of-art measurements of minute forces,
this elegant principle has ensured that torsional balances and
pendulums remain relevant as a precise measurement tool.21

The torsional balance has also played a crucial role in
determining the mechanical properties of soft viscoelastic
materials.22 Boltzmann analyzed the damped torsional oscilla-
tions of thin piano wires and glass and silk fibers performed by
Streintz, Kohlrausch and Weber respectively.23–27 Early designs
of the ‘‘McMichael viscometer’’,28,29 used torsion balances to
accurately measure the torque response of materials under shear
deformations. Many other researchers have used torsional
balances in a similar manner or used the torsional pendulum
setup to directly characterize mechanical properties of different
filaments and fibers.1,30–35 More broadly, soft matter scientists
are still using torsion balances and pendulums today in their
studies of different viscoelastic materials.36,37

Many of the mentioned studies have focused on monofilament
fibers. However, Gillham and coworkers38–41 used torsional braid
analysis (TBA) in several studies to record the temporal evolution
of the viscoelastic properties in thermosetting polymers during
the curing process. In these studies, a fine fabric braid is saturated
with the test polymer liquid formulation. As the solution cured,
the researchers performed torsional pendulum measurements to
record the enhancement in the mechanical properties of the
braid, from which they qualitatively measured the mechanical
properties of the curing polymer. This technique has been used in
more recent studies by Kiran and Hassler42 to assess the thermal
transition in moduli of polymers when exposed to supercritical or
compressed fluids. Because of the unknown nature of the inter-
action between fibers and cured polymer in the braid assembly,
these tests provide qualitative measurements of the relative
rigidity (a measure of the change in the storage modulus) and
the relative damping (a measure of the change in the loss
modulus) of the curing systems.42

1.2 Principle of operation for a torsional pendulum test

A torsional pendulum consists of a disc or weight that is attached
to a vertically suspended slender test fiber in an axisymmetric
configuration. In a typical experiment, the disc is gently twisted to
an out-of-equilibrium position by the operator and then released.
The disc consequently goes through damped torsional oscillations
around its equilibrium position and oscillates at a fixed resonant
frequency. The oscillatory nature of this motion is a direct
indication of the torsional deformation that the fiber experiences.
The oscillatory response of the system arises from the dynamical
interchange between the kinetic energy of the oscillating disc and
the stored elastic energy in the twisted fiber. For an ideal elastic
fiber in a vacuum, in the absence of any source of energy
dissipation, the torsional pendulum should oscillate permanently
with a constant value of overall mechanical energy determined by
the initial angular rotation imposed. A vibrating mass-spring
system is an appropriate mechanical analogue for this hypothetical
dissipation-free condition.43 Similar to the mass-spring analogue,
the natural resonant frequency of the torsional pendulum
increases with the fiber elasticity and decreases with the moment
of inertia of the disc. Thus, keeping all other parameters constant,
a higher natural resonant frequency indicates a higher elastic
modulus of the fiber.

For fibers made of real non-idealized materials, the overall
system energy is constantly dissipated during the torsional
oscillations due to different sources of damping such as the
viscoelastic properties of the fiber and air friction acting on the
disc. For small discs oscillating in low viscosity media such as
air, the main source of energy dissipation stems from the
viscoelastic damping behavior of the materials from which
the fiber is constructed, and this is manifested as a gradual
decrease in the amplitude of oscillations until the pendulum
finally comes to rest at its original angular position. A faster or
slower decay indicates a respectively higher or lower rate of
viscous dissipation and, in the language of linear viscoelasti-
city, this decay rate of the oscillation amplitude is correlated
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with the effective loss modulus of the material that comprises
the fiber.

Measurement of the natural resonant frequency and oscilla-
tion decay rate can readily be performed through time domain
measurements (the resonant frequency and the decay rate are,
respectively, the inverse of the oscillation period and the decay
timescale). Consequently, the effective bulk viscoleastic proper-
ties of the fiber can be measured through quantification of the
different timescales involved in the time-periodic phenom-
enon, an aspect which has a certain practical benefit for our
measurements. Time is a quantity that can be measured with a
considerably higher degree of accuracy, compared to other
measurable quantities such as length or weight, a fact which
has also been a crucial element in solving well-known chal-
lenges such as the longitude problem in naval navigation.44

Thus, in the field of instrumentation and sensor design, it is
well known that one of the most accurate methods for measur-
ing many material quantities is by capturing the timescale of a
relevant dynamic system.45 The torsional pendulum setup also
benefits from this principle.

2 Experimental setup
2.1 Torsional pendulum

The different elements of our experimental setup are shown in
Fig. 1. The torsional pendulum setup consists of two laser-cut
acrylic discs connected to each other via the test fiber (Fig. 1(a
and b)). The top disk is fixed and the bottom disc is suspended
vertically from the fiber and free to oscillate. In our configu-
ration both discs are transparent and the bottom disc has a
radius of 1 cm and a thickness of 3 mm.† The test fiber
connects the two discs together and is carefully held in position
by gluing it into two hollow syringe needles that are fixed at the
centerpoint and aligned orthogonal to the plane of each disc.
The top disc is fixed onto a transparent stand attached to an
adjustable stage, shown in Fig. 1(c). The stage and the torsional
pendulum are placed into a home-made transparent humidity
chamber that is also made of acrylic. As indicated in Fig. 1(d), a
uniform LED light source illuminates the pendulum from the
top. A mirror is placed at a 45 degree angle below the chamber
to facilitate a horizontal view of the bottom of the free oscillat-
ing disc. To control the humidity of the chamber, saturated salt
solutions of different compositions and concentrations are
prepared and placed into the chamber alongside a humidity
sensor to accurately measure the local values of relative humidity.
Using a suitable volume of the saturated salt solution (B100 ml),
the chamber reaches a constant value of relative humidity in
about 10–20 minutes. The simplicity of the current design allows
the user to make several chambers and place different salts into
each of them which ensures that tests can be performed at

different values of local humidity as well as cyclic tests with
user-specified humidity variations. Furthermore, unlike conven-
tional rheometers or other mechanical test instrumentation, the
compact size of the torsional pendulum setup permits easy instal-
lation inside controlled temperature and humidity chambers.
To optically image the torsional oscillations of the free bottom
disc, we place two black dots on the disc using a pen. As shown
in Fig. 2(a), one dot is placed at the center (r = 0) and another at
an off-center position (0 o r o Rdisc). Using the LED illumina-
tion from above, the relative position of the shadows created by
the two dots can be observed through the 45 degree mirror
placed below the disc. As the disc oscillates, movies of the
angular displacement of the two dots are recorded at 30 frames
per second (FPS) using a Canon camera equipped with a Canon
EF 100 mm f/2.8 macro lens. We should emphasize that
similarly high-quality recordings can also be obtained with
the digital camera of a commercial cellphone and its built-in
optics.

The recorded movie provides the raw data for a typical test.
To quantify the angular rotation of the oscillating disc, we rely
on the recorded positions of the two dots. In an idealized
torsional oscillation, the disc only rotates around the center-
line (which is also the fiber axis) and consequently the center
dot should remain fixed in space as the other off-center dot
rotates around it. However, because of small imperfections
resulting from the manual release of the disc, it is almost
inevitable that the pendulum will also have some small transla-
tional vibration added to its rotational motion. However, since
the two dots on the rigid disc experience identical translational
displacements, we can remove their in-phase translational
motion by subtracting their spatial coordinates and thereby
determine the angular rotation of the disc. In other words,
following the position of the off-center dot relative to the center
dot enables us to cancel out systematic noise induced by
residual translational motion and isolate the key signal of
interest; i.e. angular displacements of the fiber/disc system.
This known benefit of the differential measurement principle is
widely used in the design of sensors.46

2.2 Image analysis

To quantify the angular position of the disc over time, we used
ImageJ (a Java-based image processing program that is distributed
in the public domain) to perform a simple analysis procedure. As
shown in Fig. 2, each frame of the recorded movie is processed as
a raw image in which the frame number represents the time label
for that specific configuration. Each image is converted to gray
scale and after adjusting the image contrast threshold we can
apply an edge-finding algorithm to remove most of the noise and
identify the boundaries of the two dots on the disc. Repeating
these steps for all images results in a binary image stack. Fig. 2(c)
shows a binary version of a single image with the two dots shown
as large filled white circles and smaller bright dots from optical
noise, which we filter out by applying a size threshold. The final
outcome, as shown in Fig. 2(d), is an empty frame with the two
dots as the only detectable objects. Next, the following procedure
is automatically repeated for every frame: (1) the spatial coordinates

† The light weight of the bottom disc, that is supported by the test fiber, leads to
negligible axial strains ezz o 10�3% in the fiber. Consequently, the weight of the
disc does not lead to significant axial deformations or variations in the cross-
sectional area along the fiber. Thus, in this limit of low axial tension the weight of
the disc does not affect our torsional measurements in any significant manner.
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of the two dots (denoted [x1, y1] and [x0, y0] for the off-center and
center dots respectively) are measured; (2) the position of the off-
center dot relative to the disc center (rp = (x1� x0)ex + (y1� y0)ey) is
recorded; and (3) using simple trigonometric relationships, the
angular position of the oscillating disc at each instant of time
y(t) = arctan[(y1 � y0)/(x1 � x0)] is extracted.

3 Results and analysis of the data

In a typical test, the measured angular position of the disc y(t)
oscillates around its initial equilibrium value �y. One can define
the difference between these two angles as a new variable W(t) �
y(t) � �y. Fig. 3(a) shows the temporal evolution of W(t) in a
torsional pendulum test performed on a single human hair
fiber. The oscillatory nature of the phenomenon is readily
apparent and the periodic spacing between the peaks indicates
a harmonic motion with a fixed natural resonant frequency on.
The decay in the amplitude of the measured angular position is
a direct indicator of viscous losses within the fiber. In fact a
semi-logarithmic plot of the data in Fig. 3(b) shows that the
amplitude decays in a well-defined exponential manner from
which a characteristic decay rate can easily be extracted. Moreover,
the apparent constant slope of a hypothetical line connecting the
oscillation peaks in Fig. 3(b) demonstrates that, similar to natural

resonance, the decay rate tvis
�1 also remains constant during the

experiment which results in a constant value of the logarithmic
decrement L which is defined as the natural log of the ratio of the
amplitudes of any two successive peaks log(Wi+1

max/W
i
max).

3.1 Damped harmonic oscillator

The qualitative similarity between the results of a torsional pendu-
lum test and a damped harmonic oscillator can be expanded into a
quantitative comparison through a simple mechanical analogue.
As shown in the inset image of Fig. 4, a typical damped harmonic
oscillator consists of a mass-spring-dashpot assembly that gives rise
to oscillations at a resonant frequency (through mass and spring
interaction) and also a viscous dissipation mechanism (through the
viscous dashpot). Replacing the usual displacement parameter in
this mechanical analogue (with units of length) to strain or
torsional deformation angles (both dimensionless) transforms the
spring constant to a modulus G [Pa], the dashpot coefficient to a
viscosity Z [Pa s] and the mass to an apparent or effective mass
M0 [kg m�1]. When the system is not over-damped, the solution for
the free vibration for this mechanical toy model is known to be an
exponentially decaying harmonic motion which is mathematically
described as:

W(t) = W0 exp(�t/tvis) sin(ont + f0) (1)

Fig. 1 Different elements of the experimental setup: (a and b) the torsional pendulum consists of a laser-cut acrylic base disc fixed at the top and a free
disc at the bottom. Each end of the test fiber of interest is glued into hollow syringe needles prefixed at the center-line of each disc. (c) The stationary top
disc is fixed on a transparent stand on a height adjustable stage. (d) The stage and the torsional pendulum are placed into a lab-made transparent
humidity chamber made of acrylic. A uniform LED light source illuminates the pendulum from the top. A 451 degree angled mirror is placed below the
chamber to facilitate a clear bottom view of the free disc by an external observer or camera.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 1

1:
15

:3
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sm02014a


4582 |  Soft Matter, 2021, 17, 4578–4593 This journal is © The Royal Society of Chemistry 2021

where W(t), on = [(G/M0) � (Z2/4M02)]1/2 and 1/tvis = Z/2M0 are
respectively the oscillation angle, natural resonant frequency of
the system and the viscous decay rate. The position and initial
phase angle are represented by W0 and f0 respectively. As shown
in Fig. 3 and 4, the torsional oscillation of most fibers show an
under-damped behavior which indicates that the damping ratio
is usually less than unity, x � Z

�
2
ffiffiffiffiffiffiffiffiffiffi
M0G
p� �

o 1 and consequently
the natural resonant frequency can be directly approximated as

on ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G=M0

p
. Proceeding with this simplifying approximation,

we can also find an approximate expression for the logarithmic
decrement L � ln[W(t + 2p/on)/W(t)] = 2p/(ontvis) C 2px.

Blue dots in Fig. 4 show the measured angular positions
from a torsional pendulum test performed on a single human

hair (straight Caucasian type with a diameter of 66 mm). A fit of
the proposed solution (eqn (1)) to the data is shown by a dashed
line. The fit is the under-damped solution and clearly captures
the entire dynamics of the oscillatory motion. While the initial
angular position and phase angle (W0, f0) are set by the initial
conditions of the test and can vary for a single fiber from one
test to another, the values of natural resonant frequency and
viscous decay rate (on, 1/tvis) represent the intrinsic aspects of
the resonance phenomenon and remain unchanged for a specific
test fiber. Furthermore, as the simple mechanical model of a mass-
spring-dashpot system suggests, the numerical values of these two
fitting constants (on, 1/tvis) are connected to the intrinsic elasticity
G and viscous dissipation Z in the model.

The fact that the dynamics of a torsional pendulum formed
with a natural fiber such as human hair can be modeled by a
simple damped harmonic oscillator indicates that a direct one-
to-one connection can be made between the real system and the

Fig. 2 Details of the image analysis: (a) each frame of the recorded movie
is extracted as a raw image. (b) Two black dots are placed on the free
bottom disc (one at the center r = 0 of the disc and a second dot in an off-
center position 0 o r o Rdisc). The spatial coordinates of these two dots
determine the angular position of the off-center dot at any given time.
(c) Using ImageJ each frame of the movie is converted into a binary image
in which the two dots are seen as the two largest white circles. The smaller
dots are noise that can be filtered out based on their size. (d) A cleaned
image frame shows only the position of the two dots. Repeating this
process for each frame, we record the spatial coordinates of the two dots
in each frame and determine the torsional angle y(t).

Fig. 3 Output data from a recorded oscillation test: the angular position of the free disc W(t)� y(t)� �y versus time in (a) linear–linear and (b) log-linear plots.

Fig. 4 Blue dots show the angular position of the free disc versus time in a
torsional pendulum test performed on a human hair fiber (straight Cau-
casian type with a diameter of 66 mm). The dashed black line represents a
theoretical fit of the damped harmonic solution (eqn (1)) to the data
W0 = 2.23, 1/tvis = 0.011 s�1, on = 0.559 s�1, f0 = 2.152. Two important
oscillation parameters on and 1/tvis are the two fitting parameters that set
the oscillation frequency and damping rate respectively. The analogous
mechanical model to this damped harmonic oscillator is shown in the inset
drawing.
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corresponding mechanical model. The inertia of the oscillating
disc is captured through the apparent mass M0 and the viscoelastic
properties of the test fiber set the values of the spring and dashpot
parameters G and Z in the model.

It is noteworthy to mention that one can also use an
alternative approach based on the Laplace transform of the
measured data. Similar ideas have been investigated in the analysis
of creep-ringing phenomena.47 Important model variables, natural
resonant frequency and viscous decay rate, are directly related to
the locus of the corresponding poles in Laplace space. However,
Laplace transform of measured discrete data can also lead to
numerical errors.48,49 Consequently, in this study we relied on
the theoretical solution for the damped harmonic oscillator in
the time domain to directly fit experimentally measured data-
points and obtain values of model variables.

To quantitatively measure the viscoelastic properties of the
fiber through the torsional pendulum tests, we need to establish a
direct relationship between the model variables and the physical
and geometrical parameters of the test.

3.2 Measuring the viscoelastic moduli

To connect the measured parameters in a torsional pendulum
test of a fiber to its underlying viscoelastic properties, we need a
rational framework that addresses the nature of the constitutive
relationships for the material within the fiber. We assume that
the fiber is made of a homogeneous material and the deforma-
tions within the material are small enough to remain in the
linear domain.‡ We provide solutions for the torsion of a
homogeneous cylindrical fiber assuming different constitutive
relationships for the material within the fiber. This enables us
to connect the measured parameters (on, 1/tvis) to viscoelastic
properties such as the frequency-dependent elastic modulus
G0(on), and loss modulus G00(on). By assuming a circular cross-
section, we benefit from existing analytical solutions for the
torsion of circular fibers.50,51 This is a fairly accurate assump-
tion for the monofilament fibers that were used in this study.
It is also known that the cross-sections of thin human hair fibers,
similar to the samples studied in the paper, are approximately
circular.52 However, many industrial and natural fibers such as
rectangular optical fibers and thicker human hair threads have non-
circular cross-sections.52 For these non-circular cases, one can use
an analysis similar to the one presented in this paper but with extra
attention to both geometrical factors and out-of-plane warping of
the non-circular cross-section.50,51,53 Corresponding correction
factors for different cross-section geometries (e.g. square,51

rectangle54 and ellipse53) and details of the modified analysis
are reported in the literature.50,51,53,54

3.2.1 Elastic solids. In purely torsional deformations of a
cylindrical fiber the net torque T, calculated about the axis of
the fiber, is constant along its axis and has the same value in
each circular cross-section of the fiber. Assuming isotropic
material properties and using symmetry arguments one can
show that each circular cross-section rotates as a rigid material
plane about the axis of the cylinder, denoted by z in polar

coordinate system. In each cross-section the deformations and
consequently shear strains vary linearly with radial position
gzy = rqj/qz where qj/qz, the angle of twist per unit length, is
constant along the fiber.§ The twist angle varies linearly from
jz=0 = 0 at the fixed end to a constant value jz=L = W(t) at the free
end of the fiber. For linear deformations, the resulting internal
shear stress also varies linearly with the radial position in each
cross-section szy = Grqj/qz; where G is the shear elastic modulus
of the material. The net torque is generated from the internal

shear stress distribution in each cross-section T ¼
ÐR
0 szy2pr

2dr ¼
G pR4

�
2

� �
@j
�
@z. In a cylindrical geometry with a uniform con-

stant cross-section diameter D = 2R, the internal torque in each
cross section T = G(pD4/32)W/L is linearly proportional to both the
twist angle W (which is the measured quantity in a torsional test)
and the modulus of the material G (which is the parameter we
seek to measure). This enables us to reorganize the equation of
motion and write it in the form of conservation of angular
momentum for the disc:

M0d
2W
dt2
þ GW ¼ 0 (2)

where M0 = 32IL/(pD4). Since Rfiber/Rdisc r 1/100, the moment of
inertia of the fiber is negligible compared to the disc and I is
approximated by the corresponding value for the disc alone I C
Idisc. Comparing this equation of motion (eqn (2)) with our
mechanical vibration model (inset drawing in Fig. 4), we conclude

that for a fiber made of a purely elastic solid on ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD4G=ð32ILÞ

p
and 1/tvis = 0. Thus, by recording the oscillatory response of a
torsional pendulum and finding the natural resonant frequency
on through fitting consecutive peaks (as shown in Fig. 4), we can
directly connect the measured natural resonant frequency to the
shear elastic modulus of the material:

G ¼M0on
2 ¼ 32IL

pD4
on

2: (3)

All the geometrical factors such as length L and diameter D of the
fiber along with the moment of inertia for the disc I C Idisc are
known parameters which provide the value of the lumped para-
meter M0 = 32IL/(pD4) as a pre-factor that connects the frequency
measurements to the shear modulus of the material. As discussed
before, the assumption of a purely elastic constitutive relationship
for the material is an ideal case for which there is no dissipation
in the mechanical energy and consequently yields a zero value for
the viscous decay rate 1/tvis = 0. Real materials, however, show
viscous dissipation and we now provide a solution of the torsion
problem for viscoelastic solids assuming a simple Kelvin–Voigt
constitutive relationship which includes both elastic and viscous
effects.

3.2.2 Viscoelastic Kelvin–Voigt solid. The Kelvin–Voigt con-
stitutive model, which is widely used for describing the material
response of viscoelastic solids, is a two-element model

‡ The torsional strain is small because R(y0 � �y)/L { 1 for long fibers.

§ We assume that in the limit of small strains and twist angles the extensional
strains all vanish. This may not be true for strongly rubber-like elastic materials
that are also undergoing large nonlinear strains due to the Poynting effect. See for
example ref. 55 and 56.
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consisting of a spring (with constant modulus G) and a dashpot
(with constant viscosity Z) in parallel to each other. Since the two
elements are arranged in parallel they experience identical
strains but the overall stress is divided between them. The
resulting dynamic mechanical response predicted by the
model in small amplitude oscillatory deformations is a
constant elastic modulus G0(o) = G and a linearly increasing
loss modulus G00(o) = Zo. During torsional deformations of a
viscoelastic fiber made of a Kelvin–Voigt solid, similar to the
elastic case studied above, both shear strain and strain-rate vary
linearly with the radial position in each cross section gzy = rqj/qz

and _gzy = rq _j/qz respectively where ½ �
�
� @½ �=@t. Similarly, the

twist angle per unit length and its time derivative are constant
along the axis of the cylindrical fiber, qj/qz = W(t)/L and

@ _j
.
@z ¼ _WðtÞ

.
L. The resulting shear stress distribution and

net torque in each cross-section are respectively szy ¼ GrW=Lþ

Zr _W
.
L and T ¼ G pD4

�
32

� �
W=Lþ Z pD4

�
32

� �
_W
.
L; in each case

the overall value is the sum of an elastic and a viscous
contribution. Reorganizing terms, we can write the overall
equation of motion for the disc:

M0d
2W
dt2
þ Z

dW
dt
þ GW ¼ 0 (4)

where, similar to the elastic case, M0 = 32IdiscL/(pD4). We now
connect back to the mass-spring-dashpot analogy and conclude
that for a Kelvin–Voigt viscoelastic solid, if the damping ratio is

smaller than unity, on ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD4G= 32IdiscLð Þ

p
and 1/tvis = pD4Z/

(64IdiscL). In a freely oscillating torsional pendulum test, these
expressions enable us to use the measured values of natural
resonant frequency on and viscous decay rate 1/tvis and calculate
the viscoelastic response of the material based on Kelvin–Voigt
model parameters G and Z:

G0 onð Þ ¼ G ¼M0on
2 ¼ 32IdiscL

pD4
on

2 (5a)

G00 onð Þ ¼ Zon ¼ 2M0 1

tvis
on ¼

64IdiscL

pD4

1

tvis
on (5b)

Thus, for a viscoelastic fiber that follows the Kelvin–Voigt model
the two material parameters, characterizing the storage and
dissipation of energy (G and Z respectively), set the entire linear
viscoelastic behavior of the material and their corresponding
values at frequency on are directly found by measuring the
natural resonant frequency and viscous decay rate in a single
torsional oscillation test. Since we assume that the Kelvin–Voigt
model is valid, we can predict values of G0 and G00 at all
frequencies using the constitutive relationship which shows that
G0(o) = G 8 o and G00(o) = Zo = G00(on)�(o/on) 8 o. In other words,
by using eqn (5a) and (5b), we determine the viscoelastic moduli
of the fiber not only at the local natural resonant frequency
where G0(on) = M0on

2 and G00(on) = 2M0on(1/tvis), but also at any
arbitrary frequency o. This is a direct result of the underlying
assumption that the viscoelastic material in the fiber is char-
acterized through a Kelvin–Voigt constitutive model.

It is important to emphasize that not all fibers will be
described by the Kelvin–Voigt model and we seek to develop a
rheometric protocol that does not make any a priori constitutive
assumptions about the nature of the viscoelastic behavior of
the material that the fiber is composed of. Thus, it is essential
to develop a rational framework for analyzing the experimental
results obtained from a given fiber that is composed of a
general viscoelastic solid with no a priori assumption regarding
the underlying constitutive equation.

3.2.3 General viscoelastic solid. To calculate the corres-
ponding viscoelastic properties for a fiber made of a general
viscoelastic solid, we need to derive an equation of motion in
the torsional oscillations of the disc which is similar to eqn (4).
Many early measurements of viscoelastic properties of different
solid-like materials were based on free-oscillation techniques
similar to the torsional pendulum test.15,30,31,33,34,57 Results
from these studies often showed a dominant resonant behavior
in free vibration with a characteristic under-damped oscillatory
response. The dominance of a single natural resonant fre-
quency on in the response of these solid-like materials sug-
gested that the behavior of the material during a free vibration
test can be characterized by its local values of the elastic and
loss moduli at the resonant frequency (i.e. G0(on) and G00(on)).
This leads to the following lumped parameter approximation
for the equation of motion of an oscillating mass:15,57–59

M0d
2W
dt2
þ G00ðonÞ

on

dW
dt
þ G0ðonÞW ¼ 0 (6)

where M0 is again the apparent mass in the dynamics of the free-
vibration (which is 32IdiscL/(pD4) for the torsional pendulum test).
The dynamics of the motion, in the frequency domain, are
localized around the natural resonant frequency, consequently
the local viscoelastic moduli (G0(on) and G00(on)) approximate the
elastic and viscous contribution of the material. However, we
emphasize that, as noted by other studies,58–61 eqn (6) is not exact
and can not be used without further justification for a general
viscoelastic solid. In writing eqn (6) we assume that the dynamic
moduli define the constitutive relationship between stress and
strain; which is only strictly true for purely sinusoidal deforma-
tions and stresses.59 The bounding exponential decay envelope
clearly apparent in Fig. 2 and 4 indicate the presence of additional
timescales in the system response. This issue was a significant
difficulty in performing early measurements of viscoelastic
properties59,62 and it seemed as if ‘‘experiments using damped
vibrations cannot give direct information about dynamical
mechanical properties which are only defined for undamped
sinusoidal oscillations’’.61 However, Struik61 noted that despite
the ‘‘approximate’’ nature of eqn (6) the value of the measured
moduli for many solid viscoelastic materials in free-vibration tests
using this approximation were surprisingly accurate. Motivated by
this surprising observation, he performed a theoretical study on
the free-vibration test of a general viscoelastic solid with only two
assumptions for the mechanical relaxation of the material.
The first assumption is the validity of Boltzmann’s superposition
principle and the second is a positive discrete relaxation spec-
trum for the material. The latter assumption is justified from
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irreversible thermodynamics arguments.62 Taking the Laplace
transform of the exact equation of motion, with stresses
calculated from the corresponding strain history through
Boltzmann’s superposition integral, Struik found an analytical
solution for the free-vibration problem of a general viscoelastic
material as a sum of a finite-length series. Using Taylor series
expansions in Laplace and Fourier space, he also showed that
the measured moduli, extracted from a local analysis based on
an equation such as eqn (6), are not equal to the exact values
and the relative measurement errors scale as:

G0ðonÞmeasured � G0ðonÞ
G0ðonÞ

’ �ðL=2pÞd lnG
00ðoÞ

d lno

����
on

(7a)

G00ðonÞmeasured � G00ðonÞ
G00ðonÞ

’ ðL=2pÞd lnG
0ðoÞ

d lno

����
on

(7b)

where L is the measured logarithmic decrement in the
damped oscillatory response. As discussed before, for most
viscoelastic solids the free-vibration response is underdamped
and consequently L o 1. In this limit we can also approximate
the logarithmic decrement by 2p/(ontvis) and show that
L/p C tan d(on).61 Thus, as discussed by Struik,61 eqn (7a)
and (7b) clearly show that for solid-like viscoelastic materials
(which have small values of tan d o 1) the relative errors in
measurements are negligible. The relative errors are also sub-
stantially smaller for ranges of resonance frequencies over
which the viscoelastic moduli look relatively flat on a log–log
scale. This is true for many fiber samples, as shown for example
in Fig. 5(b and d). The viscoelastic moduli look flat for typical
test fibers and, as indicated in eqn (7a) and (7b) this observa-
tion, combined with the small values of tan d guarantee low
values of error in our measurements of viscoelastic moduli.

The findings embodied in eqn (7a) and (7b)61 rationalize the
observed accuracy in free-oscillation measurements performed
on viscoelastic solids (which were often based on analysis based
on an approximate equation of motion such as eqn (6)). As
Markovitz59 notes, it appears that when the system loss is
sufficiently small, the exact and approximate solutions are
experimentally indistinguishable. Knowing that for all the
tested fibers (and for many other natural and industrial materials)
the fibrous samples have dominantly solid-like characteristics
where tand r 0.2–0.3, we also use the approximate analysis for
our torsional free-vibration measurements which guarantees an
upper bound for our errors below 10–15%. Using eqn (6), similar
to our analysis for the Kelvin–Voigt model, we deduce that for the

damped oscillation torsion test, on ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ðonÞ=M0

p
and

1=tvis ¼ G00ðonÞ= 2M0onð Þ. Thus, for a long thin fiber composed
of a general viscoelastic solid, measuring the natural resonant
frequency on and the viscous decay rate 1/tvis enables us to find
the values of viscoelastic moduli at the natural resonant
frequency:

G0 onð Þ ¼M0on
2 ¼ 32IdiscL

pD4
on

2 (8a)

G00ðonÞ ¼ 2M0 1

tvis
on ¼

64IdiscL

pD4

1

tvis
on (8b)

These results look similar to the expressions provided for a
Kelvin–Voigt model (eqn (5a) and (5b)). However, we emphasize
that in deriving the final expressions for a general linear
viscoelastic solid (eqn (8a) and (8b)) we did not assume any
specific constitutive equation and the only assumption behind
our approximations was that the fiber material has a solid-like
viscoelastic nature with a relatively low value of tan d(on) and
that the deformation remains small enough to be in the linear
viscoelastic limit. Without any prior knowledge about the fiber,
the validity of the mentioned assumption can be checked from
direct inspection of the measured logarithmic decrement
L C p tan d(on) during a torsional free-vibration test.

3.3 Torsional measurements performed on test fibers

We now apply these analytical tools on recorded data from a
series of torsional pendulum tests which were performed on
two different fibers. We calculate the corresponding values of
viscoelastic properties and compare our torsional pendulum
measurements with results from standard rheological tests that
were performed on the same fibers.

3.3.1 Description of the test fibers and the rheometer.
A segment of a commercial fishing line (Trilene XTFS4-15) with
diameter D = 2R = 200 mm and length L = 6.2 cm was cut and
used as a test fiber. This synthetic sample is a homogeneous
monofilament strand made of poly(vinylidene fluoride). We
also performed a series of tests on strands of Caucasian human
hair (provided by L’Oreál). Torsional pendulum measurements
were carried out on a segment of Caucasian human hair with
average diameter D = 2R = 66 mm and length L = 7.4 cm.
In addition to the torsional pendulum experiments, we also
performed a series of complementary mechanical tests on a
strain-controlled rheometer (ARES-G2 from TA Instruments).

3.3.2 Rheological test protocols. As with any linear system
identification problem, we can also measure linear viscoelastic
properties of the fiber by directly imposing a time-varying input
linear deformation signal with a sufficiently small strain amplitude
and recording the resisting stress/torque output signal of the fiber.
This is the basis of a wide range of rheometric test protocols used for
studying different materials.63 In a commercial strain-controlled
rheometer the material is confined between two test fixtures (e.g. it
is often sandwiched between two circular plates). One of the test
fixtures is mounted on a motor which applies the deformation and
the other fixture is connected to a torque transducer. The user
applies a small deformation to the material as an input strain signal
g(t) and simultaneously records the output stress response s(t)
through torque measurements. Assuming a linear response is
confirmed, the ratio of these two signals in the Fourier domain
determines the linear viscoelastic moduli of the material:63

G�ðoÞ ¼ ~sðoÞ
~gðoÞ; (9)

where G*(o) is the complex modulus of the bulk material
under investigation and the tilde indicates the Fourier transform.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 7
/3

0/
20

25
 1

1:
15

:3
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sm02014a


4586 |  Soft Matter, 2021, 17, 4578–4593 This journal is © The Royal Society of Chemistry 2021

The elastic and loss moduli, G0 and G00, can subsequently be
extracted as the real and imaginary part of the complex modulus,
i.e., G0(o) = <{G*(o)}, G00(o) = I{G*(o)}. While this technique is
often used for liquid samples or disc-like solid/gel samples, the
exact same principles apply to high aspect ratio geometries such
as fibers or strands. Indeed many early studies used this technique
in characterizing the mechanical properties of different synthetic
and natural fibers.14,33

The input strain signal can be of any functional form as long
as deformations are bounded within the linear range. However,
most studies have used a discrete frequency protocol which, for
measuring moduli at each individual frequency oi, uses a
monochromatic sinusoidal deformation signal g(t) =g0 sin(oit).
To calculate the moduli, we can either use eqn (12) or decom-
pose the phase-shifted output stress signal into in-phase
s0(t) = G0(oi)g(t) and out-of-phase s00(t) = G00(oi) _g(t) components.

Apart from the simplicity of implementation, this method is
also more accurate than many other signals due to the known
benefits of noise filtering in the spectral domain.64 However,
the minimum measurement time ti for obtaining data at an
individual frequency is ti = 2p/oi and consequently the overall
test duration for completing a frequency sweep over a range of
individual frequencies can add up to become a relatively large
value. This can be problematic specifically for time-evolving or
‘‘mutating’’ materials (such as a drying coating on a fiber)
where rapid measurements of moduli values that are changing
systematically with time is crucial. Thus, we also performed a
series of tests with a novel input strain signal that is based on
exponential chirps, i.e., sine sweeps with constant amplitude
and an instantaneous frequency that increases exponentially in
time. As Geri and coworkers65 have recently shown, chirp
signals suffer from spectral leakage and despite their ability

Fig. 5 (a) Torsional pendulum free oscillation data for a Trilene XTFS4-15 fishing line fiber (diameter 2R = 200 mm) made of poly(vinylidene fluoride). The
inset shows the calculated values of on and 1/tvis from six different tests on the fishing line fiber. (b) An oscillatory torsion test performed on the same
fishing line fiber mounted on an ARES strain-controlled rheometer. The filled and hollow circles show, respectively, the elastic and loss moduli from a
discrete frequency sweep test. The filled and hollow squares show, respectively, the calculated elastic and loss moduli from a single test performed with
an OWCh (Optimally Windowed Chirp) signal with B3 s duration. The filled and hollow triangles show the results from the torsional pendulum
measurement (plotted in (a)) at the natural oscillation frequency of the fiber-pendulum assembly (on). (c) Torsional pendulum underdamped oscillation
data for a human hair (diameter 2R = 66 mm) measured at temperature T = 25 1C and relative humidity RH = 45%. (d) An oscillatory torsion test performed
on the same hair fiber mounted on an ARES strain-controlled rheometer. The filled and hollow circles show respectively the elastic and loss moduli from
a discrete frequency sweep test. The filled and hollow squares show respectively the calculated elastic and loss moduli from a single test performed with
an OWCh (Optimally Windowed Chirp) signal with B14 s duration. The filled and hollow triangles show the results from the torsional pendulum
measurement (plotted in (c)) at the given natural oscillation frequency of the fiber-pendulum (on).
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to provide rapid measurements of the system response, the
final reported values of moduli can be inaccurate. To circumvent
this issue and to minimize the spectral leakage error, Geri and
coworkers superposed a smooth window function onto the input
signal and reduced the leakage error significantly.65,66 Inspired
from their study, we also used this new test protocol known as the
Optimally Windowed Chirp (OWCh) signal in our measurements.

The test fibers are attached to acrylic discs in the torsional
pendulum setup. The dimensions of these discs were chosen
such that we can also mount them on the ARES rheometer with
conventional fixtures. Both discrete frequency and OWCh signal
protocols were used in our torsional measurements on the ARES-
G2 rheometer and the amplitude of angular oscillations for the
rotating disc, in both protocols, is chosen in a manner that the
strain amplitude is g0 = RW0/L = 0.3%. In the following section we
provide a quantitative comparison between the results from
different measurements: free-vibration tests with the torsional
pendulum setup and torsional tests on the rheometer using
either discrete frequency or OWCh signal protocols.

3.3.3 Results from different techniques. For both test
fibers, the torsional pendulum tests were performed in room
temperature and humidity conditions (25 1C and 45% relative
humidity). As discussed earlier, the free oscillation of each fiber
is recorded with a camera and the sequence of images are
analyzed to develop the underdamped torsional response.
Fig. 5(a and c) show respectively the resulting oscillation
profiles for the fishing line and the human hair fiber. As shown
in the inset plot of Fig. 5(a), the measured values of natural
resonant frequency and viscous decay rate do not depend on
initial test conditions and remain unchanged for the same fiber
during multiple different tests. Based on the measured values
of oscillation parameters (on, tvis), we calculate the viscoelastic
moduli of the fiber at the natural resonant frequency
(G0(on),G00(on)) through eqn (8a) and (8b). The filled and open
triangles, in Fig. 5(b and d), respectively show the calculated
storage and loss moduli from the torsional pendulum tests for
both fibers. Results from torsional tests performed under
forced oscillation conditions on the rheometers are also pre-
sented in Fig. 5(b and d) for the fishing line and the human
hair respectively. It is clear that, for both fibers, the results from
discrete oscillatory frequency tests (circles) and OWCh signal
protocols (squares) agree with each other over a wide range of
frequencies. Furthermore, at the resonance frequencies, both
of these measurements are in good agreement with the values
of the storage and loss moduli computed from unforced oscilla-
tion tests with the torsional pendulum. Vinogradov and
Holloway67 have measured the Young’s modulus of PVDF fibers
and reported an approximate value of EPVDF C 2.4–2.7 GPa,
which, assuming a Poisson ratio of 0.5, corresponds to an
approximate elastic shear modulus of GPVDF B 8 � 108–9 � 108

Pa. This reported value is very close to the values of G0

measured in our studies on the PVDF fishing line (see
Fig. 5(b)). Similarly, Wolfram and Albrecht have measured the
torsional properties of hair fibers with different thicknesses at a
relative humidity of 65% and reported an approximate torsional
modulus of GHair

0(o = 0.9 rad s�1) C 1� 109 Pa and a logarithmic

increment of L C 0.17 which corresponds to a phase angle given
by tan d C L/p C 0.05. Knowing that our measurements of
human hair properties were performed in a less humid environ-
ment, we expect a slightly higher value for elastic modulus and a
slightly lower value for the loss tangent which agrees well with
our reported values of G0(o = 0.9 rad s�1) C 3 � 109 Pa and
tand(o = 0.9 rad s�1) C 0.03 in Fig. 5(d).

These results confirm that we can use conventional rheo-
meters to measure the viscoelastic properties of thin biological
fibers such as human hair. Simple calculations show that even
for a thin fiber R C 66 mm the modulus of the material within
the hair fiber is large enough that linear oscillations with
amplitude g0 C 0.3% generate torque signals with amplitudes
as high as 3 mN m. This torque level is B60 times higher than
the reported values for the minimum torque limit of a strain-
controlled rheometer such as the ARES-G2.¶

The fact that results from a simple free-vibration test agree
well with measurements from more sophisticated rheometer-
based techniques is a promising indicator for future applica-
tions. It is of course true that with a torsional pendulum
measurement we only probe the viscoelastic properties at the
resonant frequency which can be varied by the radius or density
of the disc. However the practical simplicity and low cost of a
pendulum test can not be matched by any conventional rheo-
meter or mechanical analyzer. This can be particularly useful for
tests on biomaterial samples where necessary field measure-
ments may not have the luxury of access to conventional
rheometers. Regarding torsional measurements with the rhe-
ometer, we should also point out that while a discrete frequency
sweep took around 30 minutes to gather the data over the
measured range of frequencies, the OWCh protocol took only
14 s to obtain accurate measurements over a comparable range
of frequencies. This feature of compact time-varying signals such
as chirps in system identification is of great future utility for tests
on time-varying or mutating material systems such as gelling,
drying and or crosslinking coatings on fibers.

3.4 Viscoelastic properties of fiber coatings

Viscoelastic coatings are commonly applied to many synthetic
and natural fibers. Measuring the effective bulk properties of
the viscoelastic coatings and quantifying their contributions to
changes in the overall mechanical properties of the coated fiber
assembly is crucial in many different applications. An impor-
tant aspect of torsional deformations is the fact that stresses
from the outer shell regions in each circular cross-section of the
fiber contribute more to the net torque than stresses from the
internal core of the fiber. This means that for fibers with radial
gradients in material properties torsional measurements are
more sensitive to the viscoelastic properties of the outer layers
than the inner ones. Torsional measurements in a coated fiber
assembly are therefore strongly affected by the coating properties
which provides a convenient platform for systematic characteriza-
tion of the coating properties. Based on this simple idea, we first
revisit some of the geometrical features of our torsional pendulum

¶ https://www.tainstruments.com/ares-g2/.
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tests and then apply them to our analysis of free vibration
measurements for fibers that were coated with viscoelastic
hydrogels.

As eqn (8a) and (8b) show, in calculating the effective
viscoelastic properties from the measured torsional oscillation
parameters we have a strong dependency on the diameter of the
fiber that scales as BD�4. Different viscoelastic coatings corres-
ponding to different chemical formulations can thus lead to a
very large change in the effective viscoelastic response of the
entire fiber-disc torsional pendulum system. To understand
these changes, we seek to define appropriate new metrics that
can quantify the overall contribution of the coating to the
mechanical properties of the entire coated fiber assembly. By
rearranging geometrical terms in eqn (8a) and (8b) we define
two measures of the overall mechanical energy exchange in a
fiber undergoing damped torsional oscillations:

E � D

L

� �2

D2L
� �

G0 onð Þ ¼ 32Idisc

p
on

2 (10a)

V � D

L

� �2

D2L
� �

G00 onð Þ ¼ 64Idisc

p
1

tvis
on (10b)

where E and V are, respectively, defined as scales for the stored
elastic energy and the viscously-dissipated energy in a fiber
during damped free oscillation. These new measures can be
directly connected to the measured parameters of the oscilla-
tion test, namely the natural resonant frequency and viscous
decay rate. The parameters defined in eqn (10) are essentially
products of a geometrical aspect ratio (D/L)2 with the cylindrical
volume of the fiber D2L and the corresponding storage (elastic)
or loss (viscous) moduli of the fiber and any surface coating.
The fact that the viscoelastic modulus of a material can also be
expressed as an energy density indicates that these proposed
definitions provide us with appropriate scales for the different
contributions to the total energy balance within the fiber
during damped torsional vibration. Thus, these new energy-
based metrics are helpful for quantifying and discriminating
between viscoelastic contributions of fiber coatings in many
situations where thin coatings, with different chemical compo-
sition but similar thicknesses, are applied on identical fibers.

3.4.1 Calcium alginate coatings. In order to demonstrate
the application of torsional pendulum measurements in quan-
tifying viscoelastic properties of thin fiber coatings, we per-
formed tests using three different hydrogel coatings that were
applied to three initially identical segments of a fishing line
(i.e. fibers with same values D and L). The hydrogel coatings are
calcium alginate gels that were made by a two step dip-coating
process on the fiber. First we dip-coated the fiber with a
concentrated alginate solution and then passed the fiber
through a reservoir of CaCl2 solution (1 M). Three different
alginate solutions were prepared by dissolving different con-
centrations (8%, 6% and 4 wt%) of sodium alginate (NaALG
CAS: 9005-38-3 purchased from Sigma Aldrich) in DI water.
Separate rheological measurements were performed on these
fully hydrated alginate gels that are not shown here. After

exposure to CaCl2 and gelation, the plateau shear modulus Gp

of fully hydrated alginate gels increases monotonically with
alginate concentration (Gp(4%) = 0.20 MPa, Gp(6%) = 0.42 MPa,
and Gp(8%) = 0.65 MPa). Three identical fibers (PVDF fishing
line with diameter D0 = 2R0 = 200 mm) were coated with these
three different hydrogels and left to dry in air at room tem-
perature for one hour.8 The final measured coating thickness
of the dried hydrogel coatings is 11 mm for all three different
alginate coatings.

3.4.2 Tensile tests and torsional pendulum experiments.
Before coating, a torsional pendulum test was performed on
each test fiber. After dip coating, the coated fiber was again
tested using the torsional pendulum setup. Subsequently the
coated fiber-disc assembly was mounted on the ARES-G2 rhe-
ometer and a tensile test was performed on the coated fiber.
The coated fiber was stretched within the linear limit of
elongational strains. A second tensile test was also performed
after the removal of the coating. This enabled us to record the
tensile and torsional behavior of the fiber both with, and
without, the viscoelastic hydrogel coating.

Fig. 6(a and b) show the changes in each of the effective
storage and dissipation energy measures, defined by eqn (10a)
and (10b), between the coated and uncoated fibers for all three
alginate coatings. It is clear that, for similar coating thick-
nesses, both the stored elastic energy and viscously dissipated
energy V increase with the concentration of alginate in
solution (plotted in Fig. 6(a)) and consequently with the visco-
elastic shear moduli of the alginate coating material (plotted in
Fig. 6(b)). For each hydrogel coating, the values of the complex
modulus were measured separately in a hydrated state on the
rheometer over a wide range of frequencies and corresponding
values at the resonant frequency G1,Hyd

00(on), G1,Hyd
0(on) are

used in Fig. 6(b).** As expected, increasing the concentration of
alginate leads to larger values of the viscoelastic moduli in the
final coating. As Fig. 6(b) shows, the enhancement of the overall
viscoelastic energy measures for the coated fibers are linearly
proportional to the viscoelastic moduli of the coating. In
Section 5.1 of Appendix A we develop a simple 2 layer core/
shell analytical model and show that the enhancement in these
energy measures for a uniformly coated fiber depend on both
the viscoelastic modulus and the thickness of the coating. For
thin coatings (t { R0), normalized values of these enhance-
ments can be approximated by (see Section 5.1 and eqn (20a)
and (20b)):

DE
E0
’ 4t

R0

G01;DryðonÞ
G00ðonÞ

(11a)

DV
V0
’ 4t

R0

G001;DryðonÞ
G000ðonÞ

: (11b)

8 Since the coatings were very thin, we can anticipate that the hydrogels lose most
of their water content and dry significantly. We also expect that the drying process
is very similar for all three tested coatings.
** A disc-shaped hydrogel sample was prepared inside a Petri-dish bath of CaCl2

mounted on the rheometer and shear-oscillatory measurements were performed
on the hydrogel in the fully hydrated condition using a plate–plate configuration.
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where t and R0 are the coating thickness and the radius of the
uncoated fiber respectively. Viscoelastic properties of the dried
coating and the core fiber material are represented by
ðG01;Dry;G

00
1;DryÞ and ðG00;G000Þ respectively. The suggested approxi-

mation of our analytical model and the observed trend in
energy measures can be also understood with a simple physical
argument based on the relative scales of viscoelastic energies
involved. For an uncoated fiber the viscoelastic energy measures
(per unit length) scale as the cross-sectional area multiplied by the
respective viscoelastic moduli; i.e. E0=L � G00ðonÞR0

2 and

V0=L � G000ðonÞR0
2. Similarly, the incremental viscoelastic energies

in the thin coating (per unit length) scale as DE=L � G01ðonÞR0t

and DV=L � G001ðonÞR0t. Thus the normalized values of enhance-
ments in viscoelastic energy measures scale as DE=E0 �
ðt=R0ÞG01ðonÞ=G00ðonÞ and DV=V0 � ðt=R0ÞG001ðonÞ=G000ðonÞ.

Knowing that the viscoelastic moduli of the alginate coatings
are larger in the dried state compared to their corresponding
values in the fully hydrated state, these approximations
(eqn (11a) and (11b)) can also be rewritten as:

DE
E0
’ ce

4t

R0

G01;HydðonÞ
G00ðonÞ

(12a)

DV
V0
’ cv

4t

R0

G00
1;Hyd
ðonÞ

G000ðonÞ
: (12b)

where ce ¼ G01;Dry=G
0
1;Hyd and cv ¼ G001;Dry=G

00
1;Hyd are the drying

coefficients for the elastic storage modulus and the viscous loss
modulus respectively. As shown in Fig. 6(b), these approximations

successfully fit the measured data with drying coefficients
ce = 1092 and cv = 557 used as fitting parameters. Thus, simple
torsional pendulum measurements can readily measure the
incremental changes in the viscoelastic properties of fibers
coated with a thin film, as well as the systematic changes
resulting from increasing the polymer concentration in the
coating.

We also performed a series of tensile tests on all the fibers,
both with and without the hydrogel coatings. In each test, we
stretched the fiber slowly and recorded the axial force versus the
stretched length of the fiber. Nominal values of the engineering
strain and stress are calculated based on the initial length L0

and cross-sectional area A0 of the uncoated fiber. All the tensile
tests were stopped before maximum axial strain values of
ez C DL/L0 r 3% to ensure that we did not cause any
irreversible plastic nonlinear deformations. This was also
checked by elastic unloading of the fibers. The effective elastic
tensile modulus of the fiber Eeff was calculated by linear
regression to the measured stress–strain curve. Since, for all
cases, the engineering stresses are calculated based on the
cross-section of the uncoated fiber, the effective tensile mod-
ulus of the coated fiber should clearly be higher than the
corresponding value for the uncoated fiber. Similarly, we use
the measured values of natural resonant frequency from tor-
sional pendulum tests and, using eqn (8a), calculate the shear
modulus Geff

0(on) of the coated and uncoated fibers based on
the geometrical dimensions of the uncoated fiber. This enables
us to measure the relative increase in the apparent tensile and
torsional moduli due to the coating regardless of its hydration

Fig. 6 (a and b) Results of torsional pendulum tests done on identical Trilene XTFS4-15 fishing line fibers (uncoated diameter 2R0 = 200 mm) made of
poly(vinylidene fluoride) coated with three different alginate hydrogel coatings. Measurements represent both the uncoated and the coated fibers where
three different alginate coatings with initial alginate concentrations of 4, 6 and 8 wt% in solution were used. In (a) we show the increase of both the stored
elastic energy and viscoelastically dissipated energy V in the coated fiber combination versus the concentration of the alginate hydrogel coating
solution. Panel (b) shows the normalized incremental change in the viscoelastic energy measures of the coated fiber assembly versus the measured shear
viscoelastic moduli of the alginate hydrogel (measured on the rheometer in a fully hydrated state in a water bath) normalized by the viscoelastic moduli

G00;G
00
0

� �
of the uncoated fiber. Filled red and blue open triangles represent measures for stored elastic energy and viscoelastically dissipated energy

respectively. Dashed lines show the corresponding predictions of the theoretical model as described by eqn (12a) and (12b). (c) The apparent increase in
the torsional shear modulus DG0ðonÞ=G00ðonÞ (filled magenta circles) and the increment in the tensile elastic modulus DE/E0 (filled cyan squares) measured

respectively by the torsional pendulum and tensile tests. Dashed lines show the corresponding predictions of the theoretical model as described by
eqn (13a) and (13b).
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state or the axial uniformity of the coating. Fig. 6(c) shows the
relative increase for both the elastic tensile modulus DE/E0 =
[Eeff � E0]/E0 (measured from the tensile test) and elastic shear
modulus DG0ðonÞ=G00ðonÞ ¼ ½G0effðonÞ � G00ðonÞ�=G00ðonÞ (mea-
sured from the torsional pendulum test) where the data is
normalized based on the tensile and shear moduli of the
uncoated fiber, E0 and G00ðonÞ respectively.

As expected, Fig. 6(c) shows that the relative amplification in
both apparent tensile and shear moduli for the coated fiber
assembly increases with the modulus (and concentration) of
the alginate hydrogel coating. However, for all three coatings,
the torsional pendulum measurements show a higher relative
increase in the effective shear modulus of the coated fiber than
the relative increase measured in the apparent tensile modulus.
It is thus clear that torsional oscillation measurements are
indeed more sensitive than tensile tests in quantifying the
effective incremental mechanical contributions of a thin visco-
elastic coating applied to a thin fiber. As discussed in Sections
A.1 and A.2 of Appendix A, this is a direct consequence of the
difference in the geometrical scaling of the incremental stress
contributions, across the fiber’s cross-section, during a torsion
or tension test. In tension, the stresses sum uniformly, over the
entire cross-section of the fiber, to balance the applied axial
load whereas in torsion the stresses from the outer regions
contribute more to the net resistive torque exerted by the fiber.
Thus, when compared to tensile tests, torsional measurements
show higher sensitivity to the properties of the outer layers such
as coatings. In fact one can do an explicit analysis for a
cylindrical fiber with initial radius R0 and shear and tensile
moduli G0 and E0 that has a uniform coating applied (with
shear and tensile moduli G�1 ¼ G01 þ iG001 and E1 respectively)
that increases the radius from R0 to R1. For such a fiber the
apparent shear modulus, which can be measured in a torsional
test, increases by DG0ðonÞ ¼ G01ðonÞ ðR1=R0Þ4 � 1

	 

while the

apparent tensile modulus increases by DE = E1[(R1/R0)2 � 1].
For a thin coating where t = (R1 � R0) { R0 we can approximate
these analytic expressions at leading order as
DG01ðonÞ=G00ðonÞ ’ ð4t=R0Þ½G01ðonÞ=G00ðonÞ� and DE/E1 C (2t/
R0)[E1/E0] suggesting that the torsional measurements are at
least twice as sensitive to the coating properties of a thin
coating when contrasted with tensile measurements. Fig. 6(c)
shows a similar trend; for all of the tested coatings the torsional
measurements are a factor of two more sensitive to the coating
properties than the tensile tests. Knowing that both the shear
and tensile moduli in the fully dried coating are larger than
their corresponding values in the hydrated state (i.e.
½G01;Dry;E1;Dry� ¼ ce½G01;Hyd;E1;Hyd� with ce c 1) we provide an

analytical approximation for the increase in the effective values
of measured shear and tensile moduli:

DG0ðonÞ
G0ðonÞ

¼ G0eff � G00
G00

’ ce
4t

R0

G01;HydðonÞ
G00ðonÞ

(13a)

DE
E0
¼ Eeff � E0

E0
’ ce

2t

R0

G01;HydðonÞ
G00ðonÞ

: (13b)

Fig. 6(c) shows that these analytical asymptotic predictions
agree very well with our measurements. We have consistently
used a value of ce = 1092 for the drying coefficient that is
identical to the value determined from the model fits to
measured data in Fig. 6(b). Both the analytical approximations
and the measured data indicate that the apparent shear
moduli measured in torsion is a factor of two more sensitive
to coating properties than the tensile moduli measured in a
tension test.

We also emphasize that an additional critical aspect of a
viscoelastic coating is its contribution to the dynamic pro-
perties of the fiber. In contrast to an axial tension test, a free
oscillation test also provides direct insight into the changes to
the energy dissipating properties of the fiber through the
value of tvis measured for the coated fiber. Furthermore,
a torsional pendulum apparatus can also probe the dynamic
properties of the fiber at different frequencies by using
different discs with varying moments of inertia to vary on.
This however is not the case for a tensile test where the test is
often performed at quasi-static stretch rates. We note that a
dynamic tensile test such as DMA (Dynamic Mechanical
Analysis) can also report both tensile storage and loss moduli
E 0 and E00. However, in addition to being more expensive than
a torsion pendulum setup they also show less sensitivity to
coating properties than torsional measurement due to the
geometrical factor calculated above. Furthermore, humidity,
temperature and pH can all change the properties of the
coatings applied to different fibers and thus affect the overall
viscous dissipation. Unlike conventional tensile tests, a
torsional pendulum measurement can quantify these effects
with a simple and low-cost test.

4 Conclusions

Free torsional oscillations have been used extensively for char-
acterizing viscoelastic properties of different fiber materials. In
this paper we applied this technique to measure mechanical
properties of both synthetic and natural fibers and the changes
induced by thin polymer coatings. The simplicity of the setup
and the data acquisition process makes this measurement
technique readily accessible for researchers from a wide variety
of different backgrounds and industries such as textile, cos-
metics, biology and engineering. We also presented a rational
framework that describes how the measured parameters in a
damped torsional oscillation test are connected to the under-
lying viscoelastic properties of the fiber. Using both natural and
synthetic fibers we measured the dynamic viscoelastic moduli and
showed that our torsional pendulum results agree with direct
torsional measurements performed on a strain-controlled rheo-
meter. The high numerical values of the slopes of the linear
relationships shown in Fig. 6(b and c) illustrate the high
sensitivity of the technique to application of thin viscoelastic
coatings even when the modulus of the coating is smaller than
that of the primary fiber. Finally we showed that for fibers with
thin applied coatings, torsional measurements are more
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sensitive to the viscoelastic properties of the coating. As a proof
of concept, for a test fiber coated with three different alginate
hydrogels, we showed that the torsional pendulum measure-
ments are at least twice as sensitive to the coating properties
as tensile mechanical measurements. Viscoelastic properties of
soft fibers and coatings play a key role in many biological
and industrial processes and the experimental and analytical
framework outlined in this study can help researchers in
characterizing the effective changes to viscoelastic material
characterization of coated fibers using simple and accurate
measurements.

Conflicts of interest

There are no conflicts to declare.

Appendix A: viscoelastic response of a
coated fiber in torsional oscillations
and axial deformations

In this appendix we consider a coated fiber that has a visco-
elastic core with uniform radius R0 and spatially uniform
complex viscoelastic modulus G�0ðoÞ ¼ G00ðoÞ þ iG000ðoÞ through-
out its length L. We assume that a uniform coating with
thickness t covers the core from R0 to R1 = R0 + t. The coating
material is also characterized through its own complex viscoe-
lastic modulus G�1ðoÞ ¼ G01ðoÞ þ iG001ðoÞ. As shown in Fig. 7, the
optically measured profile of a typical fishing line fiber before
and after the coating verifies the assumption of uniform coating
thickness along the length of the fiber.

A.1 Torsional oscillations

As shown in the main text, the time-evolving value of the overall
torque T(t) remains constant throughout the fiber and is

balanced by the geometrical distribution of viscoelastic stresses
in each cross-section. Thus for a coated fiber:

TðtÞ ¼
ðR0

0

G0 r
@j
@z

� �
2pr2drþ

ðR1

R0

G1 r
@j
@z

� �
2pr2dr

þ
ðR0

0

Z0 r
@ _j
@z

� �
2pr2drþ

ðR1

R0

Z1 r
@ _j
@z

� �
2pr2dr:

(14)

where the modulus values are set by the elastic moduli at the
resonant frequency G0 ¼ G00ðonÞ, G1 ¼ G01ðonÞ, and similarly
the viscosity values are proportional to the loss moduli of each
material at the resonant frequency Z0 ¼ G000ðonÞ=on,
Z1 ¼ G001ðonÞ=on. We use separation of variables to describe
the twist angle as a product of two separable spatial and
temporal functions f(z, t) = f (z)g(t). Consequently, we write
the balance of torque in each cross-section as:

4TðtÞ
2p

¼ df

dz
R0

4 G0gðtÞ þ Z0
dg

dt

� �
þ R1

4 � R0
4

� �
G1gðtÞ þ Z1

dg

dt

� � �
;

(15)

which suggests that a constant value of torque requires a
constant value for df/dz along the length of the fiber. This
indicates that, similar to the studied case of a single uniform
fiber, for a uniformly coated fiber the twist angle varies linearly
from jz=0 = 0 at the fixed end to jz=L = W(t) at the free end of the
fiber. This enables us to find a simplified expression for the
value of torque in the coated fiber:

TðtÞ ¼ Geff
WðtÞ
L

R0
4 þ Zeff

_WðtÞ
L

R0
4 (16)

where the effective viscoelastic properties are set by the viscoe-
lastic and geometrical properties of the coated fiber:

Geff ¼ G00ðonÞ 1þ G01ðonÞ
G00ðonÞ

1þ t

R0

� �4

�1
" #( )

(17a)

Zeff ¼
G000ðonÞ
on

1þ G001ðonÞ
G000ðonÞ

1þ t

R0

� �4

�1
" #( )

: (17b)

By rearranging terms and writing an overall equation of motion
for the disc we find that both the resonant frequency and the
viscous decay rate of the coated fiber (on and 1/tvis) are
enhanced significantly when compared to their corresponding
values for the uncoated fiber (on(0) and 1/tvis(0)):

on ¼ onð0Þ 1þ G01ðonÞ
G00ðonÞ

1þ t

R0

� �4

�1
" #( )1=2

(18a)

1

tvis
¼ 1

tvisð0Þ
1þ G01ðonÞ

G00ðonÞ
1þ t

R0

� �4

�1
" #( )1=2

: (18b)

Using the definition of the overall mechanical energy measures
in a torsionally oscillating fiber (eqn (10)), we can also provide

Fig. 7 Measured profile of the commercial fishing line (Trilene XTFS4-15)
with diameter D0 = 2R0 = 200 mm and length L = 6.2 cm without (gray
data) and with (green data) a dried hydrogel alginate coating. Solid lines
show the mean values calculated based on the average over the entire
length of the fiber. The variation in coating thickness is less than 10 mm
along the whole length of the fiber.
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new expressions for the enhancement of stored elastic energy
and the viscously-dissipated energy in the coated fiber:

DE
E0
¼

on
2 � onð0Þ

2

onð0Þ
2

¼ G01ðonÞ
G00ðonÞ

1þ t

R0

� �4

�1
" #

(19a)

DV
V0
¼
ðon=tvisÞ � ðon=tvisÞð0Þ

ðon=tvisÞð0Þ

¼ G001ðonÞ
G000ðonÞ

1þ t

R0

� �4

�1
" # (19b)

which in the limit of t/R0 { 1 (thin coatings) can be
approximated as:

DE
E0
’ 4t

R0

G01ðonÞ
G00ðonÞ

(20a)

DV
V0
’ 4t

R0

G001ðonÞ
G000ðonÞ

: (20b)

A similar approximation for the viscoelastic moduli suggests
that the effective elastic modulus of a coated fiber is larger than
the uncoated fiber by

DG0ðonÞ
G00ðonÞ

¼ G0effðonÞ � G00ðonÞ
G00ðonÞ

’ 4t

R0

G01ðonÞ
G00ðonÞ

: (21)

This shows that in a torsional test the measured elastic modulus of
the coated fiber is enhanced by both the ratio of the elastic moduli of
the coating and the initial fiberG01ðonÞ=G00ðonÞ and also by four times
the geometrical ratio of coating thickness over core radius 4t/R0.

A.2 Axial deformations

We now perform a similar analysis for the coated fiber in axial
deformations during a linear tensile test. The axial force F is
constant throughout the length of the fiber and is balanced
with the spatial distribution of tensile stresses in each circular
cross-section of the coated fiber:

F ¼
ðR0

0

E0ezz2prdrþ
ðR1

R0

E1ezz2prdr (22)

where E0 and E1 are the values of elastic Young’s moduli for the
core and the coating material respectively and ezz is the axial
component of the strain tensor. This expression for axial
loading can be simplified into

F

pR0
2
¼ Eeffezz (23)

where

Eeff ¼ E0 1þ E1

E0
1þ t

R0

� �2

�1
" #( )

: (24)

The measured value of the effective elastic Young’s modulus
Eeff is thus enhanced in the coated fiber by a factor of

DE
E0
¼ Eeff � E0

E0
¼ 1þ t

R0

� �2

�1
" #

E1

E0
(25)

which can be approximated by DE/E0 C (2t/R0)(E1/E0) for thin
coatings (t/R0 { 1). Thus, if the Poisson ratio is similar between
the coating and the core material we can approximate the
enhanced value of the tensile modulus (Young’s modulus) by

DE
E0
¼ Eeff � E0

E0
’ 2t

R0

G01
G00
: (26)

This approximation shows that in axial elongation during a
tensile test, similar to torsional deformations, the measured
Young’s modulus of the coated fiber is enhanced by a factor
that combines both material and geometrical properties. Simi-
larly, this factor is set by the ratio of the elastic moduli of the
two materials G01ðonÞ=G00ðonÞ. However, the geometrical ratio
2t/R0 is reduced by a factor of two compared to the torsional
analysis leading to eqn (21).
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