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Single-chain nanoparticles (SCNPs) are ultrasoft objects obtained through purely intramolecular cross-

linking of single polymer chains. By means of computer simulations with implemented hydrodynamic

interactions, we investigate for the first time the effect of the shear flow on the structural and dynamic

properties of SCNPs in semidilute and concentrated solutions. We characterize the dependence of

several conformational and dynamic observables on the shear rate and the concentration, obtaining a

set of power-law scaling laws. The concentration has a very different effect on the shear rate

dependence of the former observables in SCNPs than in simple linear chains. Whereas for the latter the

scaling behaviour is marginally dependent on the concentration, two clearly different scaling regimes are

found for the SCNPs below and above the overlap concentration. At fixed shear rate SCNPs and linear

chains also respond very differently to crowding. Whereas, at moderate and high Weissenberg numbers

the linear chains swell, the SCNPs exhibit a complex non-monotonic behaviour. We suggest that these

findings are inherently related to the topological interactions preventing concatenation of the SCNPs,

which lead to less interpenetration than for linear chains, and to the limitation to stretching imposed by

the permanent cross-links in the SCNPs, which itself limits the ways to spatially arrange in the

shear flow.

1. Introduction

Single-chain nanoparticles (SCNPs) are synthesized through
purely intramolecular bonding of functionalized polymer
chains.1 These fully polymeric nano-objects are the basis of
the single-chain technology, a rapidly growing research area
due to the recent advances demonstrating their promising
application in fields so diverse as catalysis, drug delivery,
biosensing or nanocomposite design.2–10 Taking inspiration
from biological systems such as proteins or enzymes, it is a
long term goal to design SCNPs with precise control over the
chemical sequence and molecular architecture, high perfor-
mance and quick response to environmental changes. Most of
the current research on SCNPs is devoted to improve synthesis
routes and to the implementation of advanced functionalities
(catalytic, luminescence, etc.). The knowledge of their physical
properties has significantly improved in recent years. This is a

crucial question, since the functionality of SCNPs should be in
part related to their internal structure and dynamics (allowing,
e.g., for fast responses to changes in pH, or temperature, and
for adaptation to multiple substrates). Moreover, structure and
dynamics can be strongly altered in e.g., flow, confinement
or crowding conditions,11 which are ubiquitous in multiple
problems of practical interest, as e.g., diffusion in blood,
membranes or cell environments.

A series of investigations by simulations, small-angle X-ray
and neutron scattering12–15 have revealed that the molecular
topology of SCNPs obtained through conventional routes is far
from a compact, globular nano-object.16,17 In the usual good
solvent conditions of synthesis the linear precursors universally
adopt self-avoiding conformations.18 Such conformations
strongly promote bonding of reactive groups that are separated
by short contour distances, while those distant in the backbone
sequence are statistically far from each other in the real space.
Thus, the fraction of cross-links involving long loops is very low
(decaying as a power-law with the loop size) and insufficient to
fold the precursor into a compact object.12,19–23 For the same
molecular weight and fraction of reactive groups in the precursor,
the obtained SCNPs are topologically polydisperse12,19,21,23 but the
distribution of network topologies is largely dominated by sparse
structures.12,24

The particular internal structure of SCNPs, containing loops
and clusters of loops of different sizes, leads to a peculiar
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response in solution when the concentration is increased
above the overlap density and up to the melt state. Whereas
simple linear chains show a crossover from self-avoiding to
Gaussian conformations, SCNPs collapse to more compact
conformations15,24,25 that resemble those of the so-called
fractal or ‘crumpled’ globule26,27 and are characterized by loose
cores and outer protrusions. As a consequence of the topo-
logical interactions (loops cannot be concatenated without
bond breaking), the SCNPs in concentrated solutions and melts
show a weaker interpenetration than linear chains and some
microsegregation from neigbouring SCNPs, in close analogy to
the well-known case of ring polymers – a feature that has been
invoked to explain the formation of chromosome territories.28

The particular architecture of SCNPs also leads to a char-
acteristic response to flow. In a recent computational study29

we have investigated the effect of shear flow on the structural
and dynamic properties of isolated SCNPs (mimicking highly
dilute conditions). We have characterized the dependence
of several observables of interest (size, orientation, intrinsic
viscosity, etc.) on the applied shear rate. The obtained power-
laws have characteristic exponents that are clearly different
from those found in other architectures (linear chains, rings,
stars, dendrimers, combs, etc.29–40). Thus, SCNPs constitute a
novel class of macromolecules with a distinct response to shear.
Interestingly, this response is, at most, weakly dependent on the
specific topology of the SCNP, and it seems inherently related to
its network-like architecture.29

There is a vast literature on the conformations and intra-
molecular dynamics of polymeric systems under shear flow at
high dilution (experimental) or for isolated polymers (simula-
tions). The effect of shear flow on such properties in semidilute
and concentrated solutions have received less attention, though
some very detailed studies have been reported, including e.g.,
experiments in solutions of DNA and common polymers,41–43 and
simulations of flexible linear chains,44–47 end-functionalized
semiflexible linear chains,48 stars (simple,49,50 telechelic51 and
block copolymer52), and cluster-forming semiflexible rings.53,54

There is a broad interest in the characterization of the structure
and dynamics of complex macromolecules (stars, dendrimers,
nanogels, etc.) for which softness can be tuned (e.g., through the
number of branches or cross-linking degree). This interest includes
the case of crowded solutions in flow, because their use in related
applications is partially due to their architecture, which can be
deformed, functionalized and can encapsulate small molecules.

With this motivation in mind, in this article we investigate,
for the first time, the structural and dynamic properties of
crowded solutions of SCNPs under shear flow. We employ large-
scale simulations with implemented hydrodynamic interac-
tions, by using the same model as in the simulations of linear
chains by Huang et al.45 This choice allows us to critically
compare the response to shear flow in two simulated systems
(linear vs. SCNP) that, by construction, only differ in their
molecular architecture. In this way we discriminate the role
of the molecular architecture from other contributions (mass
polydispersity, solvent quality, chain stiffness, charges, etc.)
that are usually different in each experiment and can complicate

the interpretation of the results.43 We have characterized the
dependence of several conformational and dynamic observables
of the simulated SCNPs on the shear rate and the concentration.
We find that, when compared to simulations of simple linear
chains, SCNPs exhibit a very different response to shear and
crowding. Unlike in the simulations of linear chains, which
essentially show a single power-law dependence on the shear
rate, the SCNPs exhibit two distinct regimes with a crossover
around the overlap concentration. At fixed shear rate, the size of
the SCNPs shows a complex dependence on the concentration.
Whereas crowding at fixed moderate and high shear rate leads to
swelling of linear chains, the SCNPs may show both swelling and
shrinking, as well as reentrant behaviour. We suggest that these
findings are inherently related to the topological interactions
preventing concatenation of the SCNPs, which lead to less inter-
penetration than for linear chains, and to the limitations to
stretching imposed by the permanent cross-links in the SCNPs,
which itself limits the ways to spatially arrange in the shear flow.

2. Model and simulation details

The simulated SCNPs were based on the bead-spring model
with purely repulsive interactions,55 which mimicks implicit
good solvent conditions and capture the basic ingredients of
the system: monomer excluded volume, connectivity, and chain
uncrossability (which moreover prevents concatenation of the
permanent loops of the SCNPs). The SCNPs were generated
in our previous work29 through irreversible cross-linking of
isolated (mimicking the limit of high dilution) linear precursors
of N = 200 monomers, of which a 25% were reactive groups
randomly distributed along the chain contour, with the condi-
tion of not being consecutively placed to avoid trivial cross-links.
A total of 200 fully reacted SCNPs were used for the simulations
of the solutions. The generated SCNPs were topologically poly-
disperse. See typical equilibrium conformations of different
SCNPs at high dilution in Fig. S1 of the ESI,† sorted from lowest
to highest values of the asphericity paramemeter a0, which
quantifies deviations from spherical shape.29 Though some of
the SCNPs were relatively compact ‘nanogel-like’ networks, most
of them were sparse objects.29 Two kind of solutions were
investigated in the simulations reported here: (i) topologically
polydisperse, where different SCNPs were taken from the gene-
rated set and were placed in the simulation box, (ii) topologically
monodisperse, where all the SCNPs were replicas of the same
one. Three monodisperse solutions were investigated, formed by
SCNPs with a low, middle and high asphericity parameter, at the
extremes and center of the obtained distribution of equilibrium
asphericities,29 i.e., representative SCNPs of the most compact,
mean and sparsest architectures. In all cases the SCNPs
were initially placed in a large box by keeping intermolecular
distances that prevented violation of topological constraints
through accidental concatenations. After a short equilibration,
the box was very slowly compressed (rescaling the coordinates by
a factor 0.99 every 104 MD steps) to the dimensions required by
each selected shear rate and concentration.
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We will use the indices x, y, z to denote the directions of the
flow, gradient and vorticity, respectively (see setup in Fig. S2 in
the ESI†). After equilibration at zero shear, a linear shear profile
was imposed by Lees–Edwards boundary conditions.56 The
hydrodynamic interactions were implemented through the
multi-particle collision dynamics (MPCD) technique.57 Both the
interactions of the bead-spring model and the details of the
MPCD implementation are the same as in the simulations of
linear chains by Huang et al.,45 no bending or torsional barriers
are imposed and the only relevant difference between both
simulations is the molecular architecture (linear vs. SCNP).
When the studied observables (see below) reached steady states
(several millions MD steps after the compression run), accumu-
lation runs were performed and the generated configurations
were used in the analysis. To improve statistics, several
independent realizations of the box were simulated for each
couple of values of the shear rate and concentration. The number
of independent runs was higher in the polydisperse systems,
varying, for a same shear rate, between 20 at the lowest simulated
concentration and 5 at the highest one. The number of SCNPs in
the simulation box varied, respectively, between 8 and the full set
of 200. Further details about the bead-spring model, the genera-
tion of the SCNPs, and the simulation method can be found in
ref. 29. In what follows molecular sizes and number densities will
be given in units of s and s�3 respectively, where s is the bead
size and qualitatively represents a Kuhn kength.

If Rg = hRg
2i1/2 is the radius of gyration at equilibrium (zero

shear rate), we define the overlap density as r* = N(2Rg)�3, i.e.,
as the number density of a cube of size 2Rg containing the N
monomers of a SCNP.58 For the investigated SCNPs Rg = 7.4 and
r* = 0.062. For concentrations higher than r* the clouds of
monomers of the surrounding macromolecules enter in the cube,
distorting the conformations with respect to dilute conditions.
Linear chains and SCNPs experience a crossover to Gaussian and
crumpled globular conformations, respectively.15,24 In what fol-
lows the concentration of the solution, r = Nm/V, with Nm the total
number of monomers in the simulation box and V the volume of
the box, will be given in reduced units, r/r*. We explored
concentrations in the range 0.25 r r/r* r 6.24. The highest
concentration corresponds to a monomer density r = 0.38,
qualitatively corresponding to 300–400 mg mL�1.24 The SCNPs
are unentangled even at the highest concentration. For linear
chains of the same N = 200 in good solvent the concentration for
the onset of entanglements can be obtained as18 re E (Ne/N)3nF�1,
with Ne the entanglement length in the melt state and nF = 0.59
the Flory exponent. Since for the used bead-spring model Ne \

65,59,60 the entanglement concentration is re \ 0.42, which is
above the highest simulated concentration of SCNPs. For the
SCNPs, which are less penetrable than linear chains, a reduction
of entanglements with respect to their linear counterparts is
expected,61 so that their re will be even higher.

We investigate shear rates 5 � 10�5 r _g r 2 � 10�2 in the
simulation units.29 In the rest of the article the shear rates will
be given in units of the dimensionless Weissenberg number,
Wi = _gt, where t is the relaxation time at equilibrium and high
dilution r = 0. The value of t is determined from the decay of

the correlator of Rg.29 We find t E 104 as the mean value of the
polydisperse distribution, and t E 2 � 103, 104 and 8 � 104 for
the SCNPs with, respectively, low (a0 = 0.18), middle (a0 = 0.34)
and high (a0 = 0.47) asphericity parameter (values at _g = 0 and
high dilution)29 that we select for generating the topologically
monodisperse solutions. For low Weissenberg numbers Wi { 1
the characteristic time for intramolecular relaxation is much
shorter than the characteristic time of the shear flow, and the
conformations are weakly perturbed with respect to equili-
brium. For Wi c 1 the macromolecule cannot relax its con-
formations in the fast flow and is strongly elongated most of
the time, though it may experience more compact transient
conformations due to tumbling motion,29,62,63 where the poly-
mer contracts, flips around and extends again, with the head
and tail having switched sides.

3. Results

We start our analysis by characterizing static observables
adapted to the geometry of the shear flow. The panels (a–c) of
Fig. 1 show the Wi-dependence of the diagonal components Gmm

of the gyration tensor, along the flow (x), gradient (y) and
vorticity (z) directions, in the topologically polydisperse solu-
tions. The gyration tensor is computed as

Gmn ¼
1

N

XN
i¼1

ri;m � rcm;m
� �

ri;n � rcm;n
� �

; (1)

where ri,m and rcm,m are the m-th Cartesian components of the
position of monomer i and the center-of-mass of the SCNP
respectively. Each data set corresponds to a fixed value of the
normalized concentration r/r*, and the data have been normal-
ized by the values, G0

mm, at such a concentration and the lowest
simulated shear rate _g = 5 � 10�5. The panel (d) shows the
corresponding data sets for the Wi-dependence of the orienta-
tional resistance mG.64 This is defined as mG = Wi tan(2y) =
2WiGxy/(Gxx � Gyy), where y is the angle between the direction
of the largest eigenvector of the gyration tensor and the direc-
tion of the flow. Thus, for a fixed Wi lower values of mG mean
stronger alignment with the flow. In all panels each Wi has
been rescaled by a factor (in the range 1–3) to obtain the best
overlap of the data sets. This representation as a function of the
rescaled Weissenberg number (Wic) is made to highlight the
emergence of master curves and scaling behaviour.

A remarkable feature is observed in the components of the
gyration tensor: whereas at low and moderate shear rates a
single scaling is apparently observed, at high rates (Wi c 1) two
clearly different power-law scaling regimes are found for low
(r/r* { 1) and high (r/r* c 1) concentration. This observation is
rather different from that observed in analogous simulations of
linear chains.45,47 In such systems increasing the density even far
beyond the overlap concentration has, at most, a very weak effect in
the Wi-dependence of the Gmm components, which essentially keep
the power-laws found at dilute conditions. In the SCNPs the
crossover between the low and high concentration scaling regimes
takes place at concentrations of the order of the equilibrium
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overlap density, though the specific value changes with the com-
ponent of the gyration tensor. This is not surprising because
conformations stretch or shrink differently along the three direc-
tions and therefore effectively overlap at a different concentration
for each direction. The results in panels (a–c) reveal the strong
effect of crowding on the scaling of the SCNP size under shear.
However, crowding has little or no effect on the Wi-dependence of
the orientation in shear flow. As can be seen in Fig. 1d, data for mG

at all the concentrations are consistent with the same power law,
i.e., the orientation of the inertia ellipsoid reacts to shear in the
same way below and above the overlap concentration, irrespective
of the specific effect of crowding on the molecular size and shape.

Panels (a) and (b) of Fig. 2 show the Wi-dependence of the
rotational frequency oz and the viscosity Zp (polymer contribu-
tion), respectively, for the polydisperse solution. The rotational

frequency has been determined by using the relation ~L ¼ Jx!z,

where
-

L and J are the angular momentum and inertia tensor,
respectively. The polymer contribution to the viscosity is
obtained as Zp = sxy _g�1, where sxy is the xy-component of the
Kramers–Kirkwood stress tensor:66

smn ¼ �
1

2V

XN
i¼1
hri;mFi;ni: (2)

-

Fi is the total force exerted by the rest of the monomers on
the monomer i and m,n denote the Cartesian components.

It should be noted that the data of Zp reported here do not
include the collisional contribution from the stochastic
forces,67 and only account for the contribution of the conser-
vative forces. As in Fig. 1, each data set in Fig. 2 corresponds to
a fixed concentration, and the Weissenberg numbers are
rescaled to obtain the best overlap with the data for r/r* =
0.25. We find the same qualitative behaviour as for the compo-
nents of the gyration tensor: data at low Wi show the same
scaling, whereas at high Wi two different scaling regimes are
found, and the crossover between both regimes takes place
when r is increased above the overlap concentration. The
general trend for the diagonal components of the inertia tensor
and the rotational frequency is to follow a weaker dependence
on the shear rate at high concentrations (lower exponents).
Thus, in crowded solutions the same relative increase in the
shear rate is less efficient for the relative deformation of the
equilibrium conformations than at high dilution, suggesting
that deformation and rotation are hindered by the steric
interactions with the surrounding crowders. The polymer con-
tribution to the viscosity shows the opposite effect: increasing
the shear rate at high densities leads to a stronger reduction of
Zp. The number of side contacts at high concentration is large,
so that progressively stretching the SCNPs removes many more
contacts and is more efficient to reduce the viscosity than at
lower concentrations.

Data in Fig. 1 and 2 correspond to the topologically poly-
isperse solutions. Similar results (including the two scaling

Fig. 1 For the SCNPs in the polydisperse solutions, diagonal components of the inertia tensor (a–c) and orientational resistance (d) vs. the rescaled
Weissenberg number. Each data set corresponds to a fixed concentration (see legend). The components of the inertia tensor are normalized by their
values at their corresponding concentration and the lowest simulated shear rate. Dashed lines represent power laws.
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regimes below and above the overlap concentration) are found
in the three investigated monodisperse solutions, with just
quantitative changes in the values of the scaling exponents.
As an example, Fig. S3–S5 in the ESI† show the components of
the gyration tensor and the polymer viscosity vs. the Weissenberg
number for the monodisperse solutions at all the investigated
concentrations. Fig. S6 and S7 in the ESI,† show, for the
monodisperse solutions of SCNPs with low and high asphericity,
respectively, typical snapshots of the simulation box for different
concentrations and Weissenberg numbers. All the SCNPs in the
solution are represented. The color codes are assigned according
to the instantaneous value of Rg. The snapshots for the poly-
disperse systems (not shown) display similar features. As can be
seen, at high concentrations and moderate Wi the SCNPs main-
tain the structural characteristics found in equilibrium. As has
been shown in the equilibrium (_g = 0) simulations of ref. 24, due
to the topological interactions that prevent concatenation of the
loops the SCNPs adopt more compact conformations and are
less interpenetrated than linear chains. Regarding high values of
the concentration and Weissenberg number, Fig. S6 and S7
(ESI†) show microsegregation of SCNPs with stretched (blue)
and compressed (red) instantaneous configurations. It should be
noted that these SCNPs are topologically monodisperse, so these
conformations just originate from the molecular fluctuations
and mobility in the flow. The qualitative picture of such figures

sheds light on the origin of the two scaling regimes (at low and
high concentration) for the Wi-dependence of the size and
viscosity of the SCNPs, in contrast with the single scaling
behaviour (independent of the concentration) found for linear
chains.68 At high concentrations and in equilibrium (_g = 0) the
linear chains are strongly interpenetrated and their conforma-
tions are much less perturbed with respect to high dilution than
in the SCNPs.24 In the sheared solution, and for fixed Wi, the
linear chains at high concentration are still weakly perturbed
with respect to high dilution, since unlike in SCNPs, chain
stretching in the flow is not limited by permanent cross-links
and non-concatenability with loops of neighboring molecules. As
a consequence, for the linear chains crowding has no significant
effect in the Wi-dependence of the relative change of their
molecular size and viscosity. Crowding at a fixed Wi has a much
stronger effect in the ability of the SCNPs to stretch and to
spatially arrange in the shear flow, as will be discussed later,
leading to very different responses to shear below and above the
overlap concentration.

Fig. 3 shows the gyration radius Rg and the orientational
resistance mG vs. the normalized concentration for the poly-
disperse solution. Fig. S8 in the ESI,† shows analogous results
for the components of the gyration tensor. In all cases each

Fig. 2 As Fig. 1 for the rotational frecuency scaled by _g�1 (a) and the
polymer contribution to the viscosity (b). The values of Z0

p are, from the
lowest to the highest concentration, 12, 26, 47, 131, 380 and 796 in units
of65 (mkBT)1/2s�2, with m the mass of a solvent particle.

Fig. 3 For the SCNPs in the polydisperse solutions, gyration radius (a) and
orientational resistance (b) vs. the concentration. Each data set corre-
sponds to a fixed Weissenberg number (see legend) and is normalized by
the value (R0

g, m0
G) at its corresponding Wi and concentration r/r* = 0.25.

Dashed lines represent power laws.

This journal is The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 2223�2233 | 2227
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data set corresponds to a fixed value of the Weissenberg
number, and it is normalized by its corresponding value (R0

g,
m0

G, G0
mm) at r/r* = 0.25. For any fixed Weissenberg number,

increasing the concentration leads to a reduction of the orien-
tational resistance mG, i.e., the SCNPs tend to be more aligned
with the flow as the solution becomes more crowded. The data
for Rg in Fig. 3a reveals a more complex behaviour. As expected,
increasing the concentration of the solution above the overlap
density leads, in equilibrium (Wi = 0), to shrinking of the
SCNPs. This behaviour is still found in the weakly and moder-
ately sheared solutions (Wi r 1), though a much weaker
shrinking is observed as Wi is increased. For 1 r Wi r 20
the concentration has essentially no effect: adding more SCNPs
to the sheared solution, even up to r/r* B 6, does not change
the molecular size, or even leads to some weak swelling. Unlike
at lower shear rates, the SCNPs are, in average, sufficiently
elongated to fill the space without significant contact with their
neighbours even at high concentrations, and their size is
unaltered with respect to high dilution. This effect is partially
reversed by further increasing the shear rate, for which a non-
monotonic dependence of the molecular size on the concen-
tration is found. At Wi 4 20 adding more SCNPs to the solution
leads to shrinking (with a stronger effect for higher Wi), but the
SCNPs start to swell if the concentration is further increased.

Since the radius of gyration is given by Rg
2 = Gxx + Gyy + Gzz,

one expects that the scenario displayed in Fig. 3a for the SCNPs
elongated under shear flow essentially comes from the largely
dominant x-contribution of the gyration tensor. This is con-
firmed by panel (a) of Fig. S8 (ESI†), where Gxx shows all the
qualitative trends found for Rg. On the contrary, the component
along the gradient direction, Gyy, monotonically shrinks with
increasing concentration for all the Weissenberg numbers,
which is consistent with the stronger alignment with the flow
reflected in the behaviour of the orientational resistance
(Fig. 3b). Crowding at low and moderate Wi shrinks the
molecular size along the vorticity direction z, as can be seen
for Gzz in panel (c) or Fig. S8 (ESI†). At high Wi the behaviour is
non-monotonic, the SCNPs initially swell along the z-direction
and above some concentration they start to shrink. As can be
seen in panels (a) and (c) of Fig. S8 (ESI†), Gxx and Gzz at fixed Wi
qualitatively show opposite dependences on the concentration.
Thus, increasing the concentration at fixed shear rate both leads
to a stronger alignment with the flow and a redistribution of the
monomers within the SCNP, through stretching along one of the
x,z-directions and shrinking along the other one.

It is worth mentioning that the emerging scenario displayed
in Fig. 3a is not related to a complex interplay of contributions
of the different molecular topologies present in the poly-
disperse solution, each of them responding in a different way
to crowding under shear. Fig. S9 in the ESI† shows the corres-
ponding results for the topologically monodisperse solutions.
For the three (low, middle and high) asphericities investigated
the same qualitative scenario is found and the differences are
only quantitative. Not surprisingly, the most deformable SCNPs,
i.e., those with the highest asphericity and most sparse struc-
tures, are more affected by crowding the solution (note the

highest exponent in the approximate scaling Rg B r�a at Wi =
200 in Fig. S9, ESI†).

Further insight on the microscopic origin of the complex
dependence of the SCNP size on concentration and shear rate
can be obtained by analyzing their intramolecular correlations.
Fig. 4 shows the real space distance r(s) = hr2(s)i1/2 vs. the
contour distance s in equilibrium (Wi = 0)15 and for Wi = 20 and
200. By labelling the monomers as i = 1,2,. . .,N according to
their position in the linear backbone of the precursor, the
contour distance is defined as s = |i � j|, and the real distance
is just r ¼ j~ri �~rj j. The quantity r(s) provides insight on the
conformational statistics of the SCNPs, through the exponent n
of the scaling law r(s) B sn. It should be noted that the
investigated SCNPs with N = 200 are not large enough to
develop a well-defined power law regime over a broad s-range.
Moreover a significant fraction of SCNPs have some long loop
of countour length N/2 o l o N.24 Obviously, by moving
forward along the contour of such a loop the real distance
r(s) will stop growing at some point when the path starts to go
back to the origin. The presence of SCNPs containing such long
loops rationalizes the observed flattening of r(s) at large s. At
short scales (s o 10) the SCNPs in equilibrium (Wi = 0, panel
(a)) show a scaling exponent n B 0.6 similar to the Flory
exponent for self-avoiding walks, indicating that at such scales
the SCNPs effectively behave as linear chains with excluded
volume interactions. The effect of the cross-links on the scaling
of r(s) becomes evident at larger distances. In dilute conditions
(r/r* = 0.25) at equilibrium (Wi = 0) an exponent n B 0.5 is
observed. This is similar to the exponent expected for linear
chains in y-solvent conditions (n = 1/2), where only local
compaction occurs and the large-scale statistics is that of a
random-walk.18 In the case of SCNPs in the simulated good
solvent conditions this local compaction is mediated by a
majority of permanent cross-links between reactive groups
close in the chain contour.12,24 By increasing the concentration
above the overlap density a crossover to a lower exponent n B
0.35 is observed. This is rather different from the well-know
transition in linear chains from the Flory (nF = 0.59) to the
Gaussian value (n = 1/2).18 The exponent found for the SCNPs in
crowded solutions in equilibrium is similar to the value n = 1/3
for fractal globules.26,27 It should be noted that this is very
different from the compact globular structure adopted by linear
chains collapsed in bad solvent, for which polymer paths
connecting two points of the spherical surface keep Gaussian
scaling n = 1/2. Rather the fractal globule is a mathematical
idealization to describe objects with loose cores and outer
protrusions where globular structures are present at all (local
and global) scales.27

Results in Fig. 4b for relatively high Weissenberg numbers
(Wi = 20) show, that in contrast to the equilibrium case, the
chain statistics of the SCNPs is almost unaffected by the
concentration. This is consistent with the very weak effect
observed in the molecular size (see data for Wi = 20 in
Fig. 3a). The exponent n = 0.63 indicates that the typical
conformations are more elongated than self-avoiding random
walks (nF = 0.59) but still very far from straight rods (nR = 1).
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At the highest investigated Weissenberg number (Wi = 200),
rod-like conformations are approached at high dilution
(n B 0.8). Unlike for the case Wi = 20, the concentration has
a strong effect on the conformations of the SCNPs. Concomitant
and consistently with the shrinking found in the gyration
radius (see data for Wi = 200 in Fig. 3a), the increase of the
concentration above the overlap density leads to lower effective
exponents n \ 0.6.

Fig. 5 shows the rotational frequency and polymer contribu-
tion to the viscosity vs. the concentration in the polydisperse
solution. Each data set corresponds to a fixed Weissenberg
number, and data are normalized by the value (o0

z,Z0
p) at that Wi

and r=r� ¼ 0:25. The concentration dependence of oz at the

different fixed values of Wi shows a good correlation with the
z-component of the gyration tensor (Fig. S8c, ESI†). Thus,
swelling along the z-direction combined with the concomitant
shrinking in the xy-plane (Fig. S8a and b, ESI†) seems to
facilitate rotations of the SCNPs around the vorticity axis.
Rotations are instead hindered when swelling and shrinking
occur along the x and z-direction, respectively. As expected, the
polymer contribution to the viscosity (Fig. 5b) is just propor-
tional to the concentration for r� r�. At low and moderate
values of Wi it shows, around the overlap density, a crossover
from the linear to a power-law dependence, Zp B rx. The
exponent at Wi t 1 is x = 1.5, which is intermediate between
the values for linear chains in equilibrium and semidilute
solution at good (x = 1.3) and y-solvent (x = 2) conditions.18

No significant crossover in the concentration dependence of
the viscosity is found for the largest Weissenberg numbers
Wi \ 100, for which a quasi-linear dependence x = 0.95 is
found. Similar results for Zp are found in the topologically
monodisperse solutions (see Fig. S10 in the ESI†).

The trends in the observed exponents can be rationalized
by a rough scaling argument for unentangled semidilute
solutions.18 For macromolecular objects scaling as R B Nn,
with R and N their size and number of monomers respectively,
their overlap concentration scales as r� � NR�3 � N1�3n . Since
above the overlap concentration Zp � ðr=r�Þx, then we have

Zp B rxN(3n�1)x. In semidilute conditions the hydrodynamic

Fig. 4 For the SCNPs in polydisperse solutions, real vs. intramolecular
contour distance at fixed Weissenberg numbers Wi = 0 (a), Wi = 20 (b) and
Wi = 200 (c). Each data set corresponds to a concentration (see legends).
Dashed lines represent approximate power laws.

Fig. 5 As Fig. 3 for the rotational frequency (a) and the polymer con-
tribution to the viscosity (b).
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interactions are screened beyond the mesh size and, as afore-
mentioned, we have simulated SCNPs that are unentangled
even at the highest investigated concentrations. As a conse-
quence of both conditions the viscosity should scale in a linear
Rouse-like fashion18 with the macromolecular mass, Zp B N.
Therefore the exponents x and n are related as (3n � 1)x = 1.
According to this relation, the exponents for the viscosity x =
1.5, 1.1, 0.95 found at the representative values Wi = 1, 20, 200
should originate from exponents for the molecular size n =
0.56,0.64 and 0.68, respectively. These values are in good
agreement with the analysis of r(s), which gives n = 0.52 for
Wi = 1 (not shown) and n = 0.63 and 0.66 for Wi = 20 and 200,
respectively (Fig. 4). Still, this agreement should be taken with
some caution due to the uncertainties in the determination of
the n-values.

4. Discussion

The complex behaviour of the concentration dependence of the
size and viscosity of the SCNPs is inherent to their molecular
architecture. Fig. S11 in the ESI† shows the corresponding
results for semidilute of solutions of linear chains under shear
(data from ref. 45, see SI for details). As expected, in equili-
brium (Wi = 0) crowding leads to shrinking. However, once the
Weissenberg number is sufficiently high (Wi 4 2) the linear
chains swell by increasing the concentration. Unlike in the
SCNPs, no reentrant behaviour is observed, and should not be
found at higher Wi. Though the swelling ratio Rg/Rg0 at the
highest investigated Wi E 2400 is lower than at moderate Wi’s,
it should be noted that at such a high Wi swelling is just limited
by the fact that the linear chains at high dilution are already
close to rod-like objects and cannot be stretched much more.
Increasing the concentration has a weaker effect on the viscos-
ity of the sheared solutions of linear chains (Fig. S11b, ESI†)
than in those made of SCNPs. According to the proposed
relation (3n � 1)x = 1 (see above), the observed exponents x =
1.2 (low concentration, low Wi) and 0.8 (high concentration,
high Wi) correspond to values n = 0.61 and 0.75, respectively.
This is consistent with the limits of self-avoiding random walk
(nF = 0.59) and rod (nR = 1) that should be approached in the
former regimes.

We propose a tentative explanation for the very different
trends observed for SCNPs and linear chains in Fig. 3a and Fig.
S8a (ESI†). When Wi is high and the polymers are stretched,
they respond to an increase of the concentration by further
stretching. This mechanism is favoured because the ‘pseudo-
nematic’ ordering that emerges in the dense solution of
stretched polymers leads to a gain in vibrational (through side
oscillations) and translational entropy, which compensates the
loss of intramolecular (conformational) entropy induced by the
stretching. This effect persists in the case of linear chains if the
concentration is further increased because there are no limita-
tions for stretching up to the limit of rod-like conformations.
Moreover tumbling motions in the shear flow are not hindered
by neigbouring chains, since they can be performed by sliding

one piece of the linear chain over the other without thickening
significantly the cross-section. However, in the case of the
SCNPs stretching at high Wi is limited by their network-like
architecture (25% of cross-linking in the investigated systems),
and beyond some concentration they will not be able to further
stretch without violating topological constraints (loop concate-
nation). Because of this limitation, SCNPs have a larger cross-
section in the flow than linear chains, and tumbling cycles of
the SCNPs involve adopting transient conformations that are
relatively compact (see right bottom panels in Fig. S6 and S7,
ESI†). These conformations coexist, even in the topologically
monodisperse solutions, with the elongated ones, hindering
the extension of the latter (particularly through the non-
concatenability of their respective loops) and leading, in aver-
age, to smaller molecular sizes than at lower concentration.

The presence of transient compact conformations of SCNPs
across the solution and at all times is illustrated in Movies
M1–M3 in the ESI,† which show the dynamics of the mono-
disperse solution with middle asphericity, at Wi = 200 and
r=r� ¼ 3:74. The SCNPs are colored according to their instan-
taneous values of Rg as in Fig. S6 and S7 (ESI†). Movie M1 (ESI†)
displays all the SCNPs in the solution. Movie M2 (ESI†) shows,
for the sake of clarity, only the SCNPs whose instantaneous
position of the center-of-mass is within a fixed slice perpendi-
cular to the z-axis and of width Dz = 10. Movie M3 shows the
trajectory of a selected SCNP. The big beads in M3 are the
couple of monomers of this SCNP that are, in average, most
distant in the real space, and are depicted in different colors to
highlight the tumbling motion.

More insight about the reduction of the SCNP size by
increasing the concentration at high Wi can be obtained by
analyzing the distribution of instantaneous configurations and
characterizing the tumbling dynamics. Fig. 6 shows the dis-
tribution of the instantaneous values of the x-component of the
gyration tensor, Gxx, at fixed Wi = 200 in the monodisperse
solutions of low, middle and high asphericity. As can be seen,
crowding leads to a higher presence of the least elongated
conformations (low Gxx), and in particular breaks the flat
distribution (expected for well-defined tumbling motion) found
at low concentration for the sparse SCNPs (panels (b) and (c)).
Fig. 7 shows the cross-correlator Cxy of the x- and y-components
of the gyration tensor for the monodisperse solutions with
middle asphericity, at Wi = 2,20 and 100. The correlator is
calculated as

CxyðtÞ ¼
dGxxð0ÞdGyyðtÞ
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dGxx

2ð0Þh i dGyy
2ð0Þ

� �q ; (3)

where dGmm = Gmm � hGmmi is the fluctuation of Gmm around its
mean value hGmmi. The correlator Cxy(t) is a useful observable for
detecting tumbling dynamics in the motion of polymers under
shear flow. Tumbling is manifested as negative anti-correlation
peaks.37,46 These are found in Fig. 7, confirming the presence
of tumbling. However, for high Weissenberg numbers the
intensity of the peaks decays by increasing the concentration,
showing that crowding has the effect of reducing the
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contribution of tumbling to the motion of the SCNPs. This
observation, together with that of Fig. 6, shows that transient

compact conformations at high Wi have a longer lifetime when
the solution becomes more crowded, which hinders stretching
of the most elongated ones and leads to the shrinking of the
SCNP mean size at high Wi observed in Fig. 3 and Fig. S6 (ESI†).
Still, at high Wi the monotonic shrinking with increasing
crowding stops above some concentration, and reentrant
behaviour is observed. The reason why the SCNPs start to swell
at that point is not clear. It might be related with the micro-
segregation into domains of low and high instantaneous values
of Rg (Fig. S6 and S7, ESI†). The development of these domains
at high values of both Wi and r may facilitate filling the space
through stretching of the most elongated conformations in
their respective domains, leading to the observed swelling.

5. Conclusions

In summary, we have investigated for the first time the effect of
the shear flow on the structural and dynamic properties of
SCNPs in crowded solutions. We have characterized the depen-
dence of several conformational and dynamic observables on
the shear rate and the concentration. The emerging physical
scenario exhibits remarkable differences with those of topolo-
gically simple objects such as linear chains. Such differences
originate from the particular architecture of the SCNPs, since
we have implemented the same interactions as in previous
simulations works for linear chains.45 Thus, we have discrimi-
nated the specific role of the molecular architecture from other
contributions (mass polydispersity, chain stiffness, solvent
quality, charges, etc.) that are usually different in each experi-
ment and can complicate the interpretation of the behaviour in
flow. Whereas in simulations of linear chains45 the shear-rate
dependence of structural and dynamic properties is marginally
dependent on the concentration, two clearly different scaling
regimes are found for the SCNPs below and above the overlap
concentration. Furthermore, crowding the solutions of SCNPs
at fixed shear rate leads to a complex non-monotonic scenario
for the molecular size, in contrast to the case of linear chains,
for which increasing the concentration at moderate or high
shear rate always leads to swelling. The fractal globular con-
formations adopted by the SCNPs in equilibrium, originating
from the topological interactions that reduce interpenetrability
in comparison with linear chains, have their counterpart in the
strongly sheared solutions as transient compact conformations,
which hinder the stretching of the most elongated ones. These
compact conformations naturally arise from the cross-linked
character of the SCNPs, which limit their maximum extension
far below the rod-like limit, and have a longer lifetime at high
concentration due to partial suppression of tumbling. This
effect, together with the lower penetrability of the SCNPs arising
from the topological interactions (non-concatenation of loops),
may be at the origin of the rather different response to shear and
crowding of solutions of SCNPs with respect to solutions of
simple linear chains.

Beyond the consequences on the field of non-linear rheology
of complex macromolecules, our system may have applications

Fig. 6 Distribution of instantaneous x-components of the inertia tensor
for the monodisperse solutions, at high Weissenberg number Wi = 200, of
SCNPs with equilibrium asphericities a0 = 0.18 (a), 0.34 (b) and 0.47 (c).
Each data set corresponds to a value of the concentration (see legend).

Fig. 7 Cross-correlator Cxy(t) for the monodisperse solutions of SCNPs
with middle asphericity a0 = 0.34, at Weissenberg numbers Wi = 2, 20 and
100 (panels (a), (b) and (c), respectively). Each data set corresponds to a
fixed value of the concentration (see legend).
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as a simple model of intrinsically disordered proteins (IDPs) in
shear flow. SANS experiments and equilibrium simulations
have revealed some structural similarities between IDPs and
SCNPs.24 Though SCNPs lack of the ordered regions present in
IDPs, they still contain weakly deformable compact domains
connected by flexible strands, suggesting that SCNPs in con-
centrated solutions can be used as model systems, free of
specific interactions, to shed light on the effect of excluded
volume on IDPs in crowded environments. IDPs should share
more analogies with SCNPs in shear flow than in equilibrium:
shear may break69 the ordered domains of IDPs (this order
being absent in SCNPs), which in equilibrium are stabilized
through physical interactions (hydrogen bonds, electrostatic,
assembly of hydrophobic groups, etc.), whereas the common
ingredient with the SCNPs, i.e., the chemical ‘cross-links’
mediating loops in the IDP backbone (such as disulfide bonds)
will remain.
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