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Growth of gas-filled penny-shaped cracks in
decompressed hydrogels†

Yansheng Zhang, Merlin A. Etzold and Adrien Lefauve *

We report that the decompression of soft brittle materials can lead to the growth of internal gas-filled

cracks. These cracks are oblate spheroids (‘penny shape’), whose major radius grows linearly in time,

irreversibly fracturing the surrounding material. Our optical measurements in hydrogels characterise and

quantify the three-dimensional crack geometry and growth rate. These results are in good agreement

with our analytical model coupling fracture mechanics and gas diffusion, and predicting the dependence

on the mechanical properties, gas diffusivity and super-saturation conditions (gas pressure, solubility,

temperature). Our results suggest a new potential mechanism for decompression sickness in scuba

diving and for indirect optical measurements of the fracture properties of hydrogels.

1 Introduction

It is well-known that dissolved gases can form bubbles follow-
ing a reduction in solubility caused by a reduction in ambient
pressure (decompression). This general phenomenon spans a
variety of materials (liquids and solids) and applications, ran-
ging from fizzy drinks (e.g. champagne1), industrial high-
pressure gas containers (cavitation damage of rubber seals2),
and volcanic eruptions (fragmentation of rising magma3). A
related phenomenon occurs in polymer networks saturated by
liquid–liquid mixtures. Liquid droplets may form within the
polymer following a reduction in miscibility caused by
temperature4–6 or composition,4 thus causing the polymer to
deform in order to accommodate the new phase. However, perhaps
the best-studied application of the gas–liquid phenomenon is the
decompression sickness experienced by human scuba‡ divers.
Gases breathed while at depth dissolve in body tissues (blood,
skin, muscles, joints, nerves, etc.) at concentrations exceeding
saturation at atmospheric pressure, and can form bubbles
upon resurfacing. These bubbles can, for inert gases (chiefly
N2) and under certain ‘extreme’ circumstances, grow numerous
and large enough to be painful, seriously pathological, and
even fatal (see ref. 7 Section 2.2 for a short review of the
complex pathophysiology).

Significant research and debate exist on the conditions
under which bubble populations can form and grow; in parti-
cular on the questions of bubble nucleation at liquid/solid

interfaces,8–10 the competition between perfusion and diffusion
in soft tissues,11–13 and the role of tissue elasticity.14,15 How-
ever, these studies have in common to assume that gas bubbles
are spherical in shape, and that when they grow in soft
materials, they do so by elastic (and therefore reversible)
deformation. These assumptions are broadly consistent with
the limited number of observations of small (t 1 mm) bubbles
in hydrogels mimicking artificial tissues.15,16 However, the
forced syringe injection of liquid17,18 or gas19 into hydrogels
is known to cause large (c 1 mm) cracks that are non-spherical
and that grow by irreversible fracture of the material.

In this paper we demonstrate and explain that the growth of
large, non-spherical, gas-filled cracks can also generically occur
as a result of decompression.

We study hydrogels super-saturated in dissolved CO2 by
swelling cross-linked polyacrylamide beads in carbonated water
at modest absolute pressures (E2–4 bar). Upon decompression
to atmospheric pressure, no gas-filled bubble or crack forms
spontaneously; instead we drop a hydrogel bead (weighing
E10 g) directly onto a solid surface (from a modest height
E0.1–1 m) in order to initiate or enlarge microscopic internal
fractures (invisible to the naked eye). For sufficiently high con-
centrations of dissolved gas (proportional to the gas pressure
during swelling) and impact heights, a number of gas-filled
cracks (typically one to five) start growing inside the bead.

What follows is illustrated in Fig. 1. The spherical hydrogel
bead is imaged almost fully immersed in water, against a high-
contrast grid background (the edge of the bead is outlined in
black). At time 32 s after impact, two millimetre-sized, circular
thin cracks are clearly visible near the centre of the bead. Until
time t = 82 s (second panel) these cracks grow independently of
one another at similar speeds (E2 mm radius gain in 50 s).
Until t = 132 s, these ‘penny-shaped’ (or ellipsoidal) cracks grow
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in increasing proximity, slightly distorting each other. Over the
next 10 s, they partially merge, before the ‘left’ crack deflates
after reaching and breaking through the surface of the bead. As
a result, the ‘right’ crack partially deflates as well, and both
cracks undergo a few oscillations in size before coming to a
relative rest. The whole process is evidently irreversible. The
corresponding movie is available as ESI.†

In the remainder of this paper, we focus on the more
elementary problem of the growth of a single gas-filled crack
in an apparently infinite elastic brittle material following
sudden decompression and impact.

Our objectives and outline are as follows. In Section 2 we
explain how we used optical measurements to accurately
measure the three-dimensional shape of a crack during its
growth. In Section 3 we derive a predictive model for the crack
shape and growth from first principles. In Section 4 we validate
this model with our experimental measurements, covering a
range of pressures and mechanical properties. In Section 5 we
discuss implications of our work and conclude.

2 Experiments
2.1 Protocol

Our experiments were conducted as follows.
First, bottled water was carbonised with pure CO2 using a

home soda maker, at variables absolute pressures in the range 2–
4 bar (the water was first chilled to reach the highest pressures).

Second, a few commercial-grade cross-linked polyacryla-
mide dry beads (Soil MoistTM, JRM Chemical, USA, as in
ref. 20) were swollen at room temperature with this carbonated
water in a sealed bottle for at least 48 hours.

Third, the seal cap was broken, and swapped with a pressure
gauge cap. The bottle was vigorously shaken in order to stabilise
the pressure of the small pocket of CO2 above the water, which
we take as the equilibrium ‘super-saturation’ pressure ps to
determine the dissolved gas concentration in the beads cs = khps

(where kh is Henry’s law solubility constant).§ The water

temperature inside the bottle was measured within 0.5 1C and
used as the representative experimental temperature T of the
hydrogel.

Fourth, a bead was taken out of the bottle, and its diameter,
mass, and elastic Young modulus E were measured. For the
latter we used the standard Hertz contact model and fitted the
force/displacement curve obtained by compressing the spheri-
cal bead between two rigid glass plates using an accurate
translation stage and balance (for more details about this
method, see the ESI,† Section 2). Inherent variability in the
polymer/water volume fraction among the beads caused a range
of E = 12–28 kPa, which we will use to our advantage in order to
validate our model in Section 4.

Fifth, directly afterwards, the bead was individually dropped
from E0.2 m onto a flat glass plate (as described in the
introduction).¶ The bead was then inspected by eye, and, if
no visible gas-filled crack had formed, it was dropped again
from incremental heights, until a single crack formed or two
cracks formed far enough from one another to remain largely
independent for sufficiently long times. If the crack was too
close to the surface of the bead, or if multiple cracks formed too
close to one another, the bead was discarded, another bead was
taken out of the bottle, and these steps were repeated.

Sixth, the ‘successful’ bead was swiftly positioned in a (non-
carbonated) water bath at the same temperature T as the bead.
Imaging started typically at t E 5–20 s (recorded from the
moment of the successful impact) and continued until the
crack reached the surface of the bead or became visibly
influenced by it.

2.2 Imaging

Image acquisition. Our imaging setup, sketched in Fig. 2a,
consisted of four mirrors arranged in a ‘theatre’ using a
3D-printed stand such that they are at 451 from the horizontal,
and at 451 from one another.

Fig. 1 Growth and interaction of two gas-filled cracks in a spherical bead of polyacrylamide hydrogel upon decompression from E2.5 bar absolute CO2

pressure to atmospheric pressure. The bead is held still and almost fully submerged in water (see blurred level on top) in order to highlight the gas-filled
cracks by refraction. The very faint refraction between bead and water corresponds to the edge of the bead, outlined in black.

§ The cap swap was necessary because the available pressure gauge fittings did
not provide a sufficiently good seal for 448 hours. Unfortunately this swap
caused the system to lose a small amount of CO2, which we corrected for as
described in the ESI,† Section 1.

¶ This impact proved necessary since cracks did not grow spontaneously upon
decompression in the range of pressures ps investigated here. However, pre-
liminary experiments in which the beads were heated well above room tempera-
ture proved that thermal shock could also be sufficient to initiate crack growth.
This method was not pursued in this work because of the need to carefully control
and measure temperature for the validation of our model.
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This allowed a single video camera, which had a top view of
these mirrors, to capture simultaneously four different and
complementary views of the growth of a single ‘isolated’ crack,
as shown in Fig. 2b. These four views were then combined
during image analysis to reconstruct the time-resolved, three-
dimensional geometry of the crack.

A bright and high contrast colour background was displayed
by LCD screens placed directly across each mirror (see Fig. 2a).
To avoid undesirable reflections and loss of background bright-
ness, an octagonal water tank was used to immerse the bead
and mirrors.

Images were captured by an 8.3 MPixels video camera with
good depth of field and negligible parallax. The resulting
spatial resolution was 40 mm Pixel�1 (although the combination
of four views could achieve sub-pixel resolution). The frame rate
of 25 Frame s�1 was sufficient given our growth rates in the

range 0.5–4.5 Pixel s�1, corresponding to 0.02–0.18 Pixel
Frame�1.

Image analysis. The raw images were analysed according to
the following steps, summarised in Fig. 3.

The raw images (panel a) first underwent background sub-
traction (panel b), binarisation (panel c), and contour detection
(panel d).

These raw contours were invariably noisy, and were thus
filtered in two steps (panel e). In step 1, their convex hull was
computed, shrunk to 80% (shown in red shade), and any points
inside this region were discarded (shown in red). In step 2, two-
dimensional ellipses were fitted to the remaining points, and
the points furthest away from the fitted ellipse were in turn
discarded (shown in red). A further set of two-dimensional
ellipses were fitted to the final set of remaining points, which
were then centred based on this last two-dimensional fit

Fig. 2 (a) Experimental setup to capture four views at 451 of a single crack
growing inside the bead. The camera (not displayed here) is placed directly
over the bead. The water level (not displayed here) is such that the mirrors
are fully submersed, and the bead almost submersed, as in Fig. 1 (the bead
is not fully submersed to prevent it from floating). (b) Snapshot illustrating
the raw data obtained by the camera, ready for analysis in Fig. 3 (the edge
of the bead is outlined in black).

Fig. 3 Key steps of the image analysis, from (a) the acquisition of raw
images (four views at 451 angles) to (f) the three-dimensional ellipsoid best
fitting the crack (more details in the ESI,† Section 3).
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(this centering is crucial in order to ensure that all views have a
common origin for the next step).

Finally, a three-dimensional ellipsoid was fitted (panel f) by
minimising the distance between the four projections of this
ellipsoid (at 451) and the four sets of remaining points centred
on a common origin. Our choice of fitting a three-dimensional
ellipsoid to the crack was influenced by our observations (see
Fig. 1), as well as theoretical expectations (as will become clear
in Section 3.1). The adequacy of this choice is confirmed by the
excellent agreement between the two-dimensional projections
of the fitted ellipsoid and the four filtered contours (see panel f,
right hand side).

The absolute position of the crack within the bead could be
and was computed, but it is not discussed in this paper since we
focus exclusively on the crack geometry. More details about the
image acquisition and analysis are given in the ESI,† Section 3.

2.3 Qualitative observations

Fig. 4 shows the results obtained from image processing in a
typical experiment (quantitative results for this particular
experiment will be discussed in Section 4.1).

In panel a, we plot four snapshots (i = 1–4) of the three-
dimensional ellipsoid best fitting the crack geometry at t = iDt
where Dt = 24.5 s (for visualisation purposes, the ‘base’ of
successive cracks is arbitrarily set as the z = �3i plane). In panel
b, we reveal further details by plotting two-dimensional projec-
tions of the crack: a ‘top view’ (x–y plane) and a ‘side view’ (y–z
plane). These ellipses are plotted successively so that they
create a continuous spatio-temporal trace, whose edge allows
us to infer the growth rate (the four snapshots of panel a are
also highlighted in white in panel b for comparison).

First, we confirm the observations of Fig. 1 that the crack is
not spherical; it is circular but thin. In other words it has two
approximately equal major axes (here along x,y by convention)
and a much smaller minor axis (here along z).

Second, sets of straight dashed lines prove to be excellent
guides to the growth of the crack along its major axes (panel a
and top view in panel b), suggesting linear growth of the radius
in time. However, straight lines prove to be poor guides to the
growth of the crack along its minor axis (side view in panel b),
suggesting that the thickness grows with sub-linear scaling (the
growth slows down with time). In other words, the aspect ratio
is not conserved; the crack becomes relatively thinner
with time.

3 Model

In this section we introduce an analytical model to account for
the above observations and provide quantitative predictions.
We establish the link between crack geometry and gas pressure
within the crack in Section 3.1, add the diffusion of gas into the
crack in Section 3.2, and finally deduce its temporal growth in
Section 3.3. The model is sketched in Fig. 5 and the key
constants and variables used in the remainder of the paper
are summarised in Table 1.

3.1 Fracture mechanics

Assumptions. Based on our previous observations, we
assume that the crack is growing purely through ‘mode I’
fracture, i.e. through opening of the surrounding material under
a tensile stress equal to the net pressure difference Dp(t) = pb(t)�
pa. The absolute gas pressure inside the crack is pb(t) and pa is

Fig. 4 Results of the image analysis showing (a) snapshots of the three-dimensional ellipsoids best fitting the crack (at t = 24.5, 49.0, 73.5, 98.0 s);
(b) continuous-time two-dimensional projections (ellipses) in the plane of the major axes (top view) and perpendicular to it (side view). The four
snapshots of (a) are highlighted in white in (b). The straight dashed lines show that linear growth in time is a good approximation along the major axes
(major radii) but not along the minor axis (thickness).
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the atmospheric pressure outside. The crack is assumed to be
axisymmetric (with cylindrical coordinates (r, z) centred on the
crack), and grows in a homogeneous, isotropic material with
Young modulus E and Poisson ratio n. The surrounding material
is assumed to be infinite, i.e. the crack remains sufficiently far
from the edge of the hydrogel bead such that it does not feel its
influence. The crack is also assumed to be sufficiently thin such
that the stress field at its boundary can be approximated by the
uniform axial tensile stress |szz| = Dp. We further assume that the
crack propagates slowly, in quasi-static mechanical equilibrium.

Geometry. The problem described by the above assumptions
was first solved in ref. 23 (although we prefer the more recent
and concise treatment in ref. 24 Section 3.6.2). The ‘penny-
shape’ crack solution is an axisymmetric8 ellipsoid of major

radius R(t) and width w(r,t) o R given by

wðr; tÞ ¼ 4ð1� n2Þ
pE

DpðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðtÞ � r2

q
: (1)

Mathematically, this ‘penny’-shaped crack is an oblate
spheroid (sketched in Fig. 5a and b). Since our hydrogel is
primarily made of (incompressible) water, we use n = 0.5
throughout the remainder of the paper.

Propagation. The stress field caused by the crack pressure
Dp and displacement R, w concentrates at the crack tip (r = R,
z = 0), which controls fracture propagation. Linear elastic
fracture mechanics uses the local stress intensity factor KI

(the subscript ‘I’ indicates ‘mode I’ fracture), which for this
penny-shape solution is equal to

KI ðtÞ ¼
2ffiffiffi
p
p DpðtÞ

ffiffiffiffiffiffiffiffiffi
RðtÞ

p
: (2)

The crack propagates when KI reaches the critical stress
intensity factor (or toughness) KIC, a material property.** This
quasi-static propagation criterion allows us to link, at all times,
crack pressure and radius as

KIðtÞ ¼ KIC ) DpðtÞ ¼
ffiffiffi
p
p

KIC

2
ffiffiffiffiffiffiffiffiffi
RðtÞ

p : (3)

Inserting (3) into (1), we link the crack geometry to the
mechanical properties

wðr; tÞ ¼ 3KIC

2
ffiffiffi
p
p

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðtÞ � r2

RðtÞ

s
: (4)

Volume. From (4), the volume of the crack is

VðtÞ ¼ 4p
3
wð0; tÞR2ðtÞ ¼ 2

ffiffiffi
p
p

KIC

E
R5=2ðtÞ: (5)

We recognise that this fundamental V(t) p R5/2(t) scaling
relation predicted for penny-shaped cracks can be equivalently
written as

VðtÞ ¼ 4p
3
‘1=2R5=2ðtÞ i:e: wð0; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
‘RðtÞ

p
: (6)

In other words, the maximum width (thickness) of the crack
is the geometric mean of R and c, the elasto-fracture length27 of
the material defined as

‘ ¼ wð0; tÞ2
RðtÞ ¼

9

4p
KIC

E

� �2

¼ 3

p
GC

E
; (7)

using either the critical stress intensity factor (toughness) KIC or
the critical strain energy release rate GC (see previous footnote).

Fig. 5 Model sketch. (a and b) Top and side view of the general crack
geometry. (c) Axial diffusion (along z) of the gas concentration between
the ‘far-field’ cs and the crack flat boundary cb E cs� Dc, the gas flux being
proportional to the gradient @c/@z at the growing boundary. (c) Principle of
the time integration of the diffusive flux during crack growth as explained
in (13)–(16). In (c and d) the bottom half of the crack z o 0 is implicit by
mirror symmetry.

8 This axisymmetry in isotropic materials is expected theoretically: the energy
derivation of ref. 25 (eqn (24)) shows that any crack base that is initially non-
circular will quickly become circular, even before the crack grows in thickness.

** Here we present the (local) stress intensity factor approach. In linear elasticity,
it is equivalent to the (global) energy approach, originally due to Griffith and
improved by Irwin, which considers that fracture occurs when the rate of release
per unit area of strain energy G stored in the surrounding material exceeds the
material’s critical value GC = 3KIC

2/(4E) (under incompressible, axisymmetric i.e.

plane strain conditions, see ref. 24 eqn (3.54) and ref. 26 eqn. (3.3)–(3.18)). Note
that the surface tension of water is negligible compared to GC.
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This penny-shaped crack geometry has been used exten-
sively, in particular in the geophysical literature on the hydrau-
lic fracturing of rocks.17,18,28

Validity. We note that (6) is only consistent with a penny
shape (oblate spheroid) provided that the minimum radius
considered is large enough

Rmin ¼ min
t

RðtÞ4 ‘: (8)

We interpret this as the main condition under which the
above fracture mechanics model is valid, and under which
‘large’ (R 4 c) gas-filled penny-shaped cracks are expected, as
opposed to the ‘small’ (R o c) spherical bubbles considered
elsewhere in the literature.8–15

3.2 Gas diffusion

We now add the diffusion of dissolved gas, as sketched in
Fig. 5c, to obtain a dynamical equation for the volume V(t) and
the radius R(t).

Assumptions. Far away from the crack, we assume that the
dissolved gas maintains a constant equilibrium molar concen-
tration cs = khps, where kh(T) is the Henry constant for the given
gas/liquid couple and temperature T (assumed constant and
uniform throughout), and ps is the constant ‘super-saturation’
pressure of the gas during the swelling of the hydrogel (because
we use pure CO2, this partial pressure is in fact the total
absolute pressure, and of course ps 4 pa). At the crack gas–
liquid boundary, the dissolved gas has concentration cb(t) =
khpb(t). We assume a constant cb E khpa, which is a good
approximation for our experiments (in other words the excess

pressure inside the crack Dp(t) is important for the deformation
but negligible for the diffusion).†† The diffusion of gas through
the liquid phase of the gel and towards the crack boundary is
assumed to be purely axial (along z), driven by the concen-
tration difference Dc = cs � cb E kh(ps � pa), with diffusivity D.
Inside the crack, we assume the ideal gas law with constant R.

Gas flux. We solve the one-dimensional diffusion equation
by similarity variables, approximating the boundary at z E 0
(consistent with the thin crack assumption in Section 3.1). We
find the following molar flux of gas per unit area, on either side
of the boundary:

@c

@t
¼ D

@2c

@z2

cð0; tÞ ¼ cb

cð1; tÞ ¼ cb þ Dc

9>>>>>=
>>>>>;
) D

@c

@z

����
����ð0; tÞ ¼ Dc

ffiffiffiffiffi
D

pt

r
: (9)

We convert the above molar flux of dissolved gas into the
following volume flux of ideal gas inside the crack:

DRT

pa

@c

@z

����
����ð0; tÞ ¼ RT

pa
Dc

ffiffiffiffiffi
D

pt

r
: (10)

Importantly, we note that it represents the flux per unit area
at a time t after this unit area was created.

Table 1 Nomenclature used in the model. Some variables depend on the crack radial and axial coordinates (r,z) and/or on time t. In the last column
(value), we distinguish between direct experimental measurements and indirect estimations using these measurements together with model
assumptions. Note that the growth rate a is both measured and estimated, allowing for the model validation in Section 4. For conciseness, we denote
values of indirect interest by �. The values of kh, D within the gel are assumed to be identical to those in pure water, and their temperature dependence
near T = 298.15 K are obtained respectively from ref. 21 (p. 4488 and eqn (19)) and ref. 22 (pp. 6–261, after fitting)

Name Description/definition SI unit Value

pa Atmospheric pressure Pa 1.013 � 105

ps Partial gas pressure in vessel during the swelling of the hydrogel Pa Varied (2.3–4.1 � 105)
pb(t) Absolute pressure inside growing bubble (uniform) Pa —
Dp(t) Pressure in bubble relative to atmospheric = pb(t) � pa Pa —
R(t) Radius of the penny-shaped (spheroidal) crack (R { RN) m Measured (Fig. 4 and 6)
w(r,t) Width of the crack m Measured (Fig. 4)
A(t) Area of the crack m2 Measured (Fig. 4)
V(t) Volume of the crack m3 Measured (Fig. 6)
E Young modulus of the gel Pa Measured (Fig. 7)
n Poisson ratio of the gel — 0.5 (incompressible)
KI(t) Stress intensity factor at the crack tip (‘opening’ mode I loading) Pa m1/2 —
KIC Critical stress intensity factor (mode I), also called material toughness Pa m1/2 Estimated by V, R, E (Fig. 7)
GC Critical strain energy release rate (mode I) = 3KIC

2/(4E) Pa m Estimated by V, R, E (Fig. 7)
c Elasto-fracture length of the gel = 9KIC

2/(4pE2) = 3GC/(pE) m Estimated by V, R (Fig. 7)
R Ideal gas constant J K�1 mol�1 8.314
T Temperature during swelling of the gel and crack growth K Measured (295–299)
kh Henry’s solubility constant in water (here for CO2) mol m�3 Pa�1 3.4 � 10�4 exp{2400(T�1 – 298.15�1)}
D Diffusivity of the gas in water (here for CO2) m2 s�1 1.9 � 10�9+ 4.8 � 10�11(T – 298.15)
c(r,z,t) Dissolved gas concentration in the hydrogel, i.e. (r,|z|) 4 (R,w) mol m�3 —
cb(r,t) Dissolved gas concentration at the crack boundary = khpb(t) mol m�3 —
cs Dissolved gas concentration far from the crack = khps mol m�3 —
Dc Gas concentration difference driving the diffusion = kh(ps � pa) 4 0 mol m�3 —
S Non-dimensional super-saturation ‘strength’ = RTDc/pa — varied through ps (1.07–2.67)
a Growth rate of the crack radius = dR/dt m s�1 measured and estimated by D, S, c (Fig. 8)

†† We use (3) to estimate the maximum excess pressure inside the crack:

maxDpðtÞ � maxKIC=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minRðtÞ

p
� 450=

ffiffiffiffiffiffiffiffiffiffiffi
0:001
p

� 14 000 � 0:14pa using our

extreme experimental values (see Fig. 7b). At larger radii R(t) c 1 mm, assuming
Dp(t) { ps is very reasonable for the diffusion problem.
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As the crack grows, new area is continually created, such
that the instantaneous flux (10) across ‘new areas’ close to the
crack tip (r t R) is always higher than that across ‘old areas’
close to the centre (r E 0) as sketched in Fig. 5c.‡‡ For a unit
area created at t = 0, the total change in volume per unit area
after time t is thus given by the integral

RTDc
ffiffiffiffi
D
p

pa
ffiffiffi
p
p

ðt
0

1ffiffiffiffi
t 0
p dt 0 ¼

ffiffiffiffiffiffiffiffiffiffi
Deff t

p
; where Deff ¼ D

2RTDcffiffiffi
p
p

pa

� �2

:

(11)

We define the convenient effective diffusivity Deff, which can
also be expressed in terms of the non-dimensional ‘super-
saturation’ S that we define as

Deff ¼
4

p
DS2; where S ¼ RTDc

pa
¼ RTkh

ps � pa

pa
4 0: (12)

Time integration. To compute the total volume flux through
the growing crack area, it is helpful to consider the following
history, sketched in Fig. 5d:
� At t0 = 0 the area is A(t0) E 0 and the volume is V(t0) E 0.
� At t1 = dt (small) the crack surface is an infinitesimal disk

of area Aðt1Þ �
dA

dt
ðt0Þdt and the crack volume is

Vðt1Þ � 0þ Aðt1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deffðt1 � t0Þ

p
: (13)

� At t2 = 2dt the cumulative flux through the ‘old’ area A1

slowly increases (thicker arrow in Fig. 5d), while we now have
an additional flux through the ‘new’ infinitesimal annulus of

area A2 �
dA

dt
ðt1Þdt: The total volume is thus given by

Vðt2Þ � 0þ Aðt1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deffðt2 � t0Þ

p
þ Aðt2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deffðt2 � t1Þ

p
: (14)

� At ti = idt, we generalise this sum by mathematical
induction

VðtiÞ �
ffiffiffiffiffiffiffiffi
Deff

p Xi
j¼0

dA

dt
ðtjÞdt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti � tj�1

p
: (15)

Note that ti stays constant in the sum over tj.
In the limit dt - 0 we recover the following convolution

integral

VðtÞ ¼
ffiffiffiffiffiffiffiffi
Deff

p ðt
0

dA

dt 0
ðt 0Þ

ffiffiffiffiffiffiffiffiffiffiffi
t� t 0
p

dt 0: (16)

3.3 Deducing the growth dynamics

We now assume that the crack grows with power law R(t) = atn,
and we seek the growth rate a and exponent n.

Combining the V–R scaling relation of fracture mechanics
(6), the total area A = 2pR2 (thin crack), and the gas diffusion

history (16), we find

VðtÞ ¼ 4p
3
‘1=2R5=2ðtÞ

¼ Deff
1=2

ðt
0

4pRðt 0ÞdR
dt
ðt 0Þðt� t 0Þ1=2dt 0 (17)

Using the power law ansatz, we find

a5=2 ¼ 3a2nDeff
1=2‘�1=2t2n�2

ð1
0

u2n�1ð1� uÞ1=2du: (18)

Since a is independent of t, the last equation requires n = 1,
thus our model predicts linear growth

R(t) = at. (19)

By evaluating the integral in (18) as = 4/15 we find the
growth rate

a ¼ 16

25
Deff‘

�1 ¼ 64

25p
S2D‘�1: (20)

We conclude that the growth rate is given analytically by the
dimensional speed Dc�1 (gas diffusivity/material elasto-fracture
length), modulated by S2 (square of the non-dimensional super-
saturation), and a pre-factor E0.81. This is the main result of
our model.

Note that the time scaling of diffusion-driven cracks (dV/dt
p t3/2 and R p t) differs from that of fluid-driven cracks
created by a constant injection rate (dV/dt = const. and R p

t2/5 in the toughness-dominated limit).17,18

Validity. We now re-examine our assumption in (9) that the
diffusion in the gel is primarily axial, despite the presence of radial
gradients @c=@ra0 due to the crack growth history (see Fig. 5c).
The full two-dimensional axisymmetric diffusion problem does not
admit an analytical solution because it requires mixed boundary
conditions at z = 0 (fixed c = cb for r o R and no flux for @c=@z ¼ 0

for r 4 R by symmetry) as well as moving boundaries R(t) = at.
However, by a simple advection–diffusion scaling argument we

consider the ratio of maximum length-scales achieved by advection

at and diffusion
ffiffiffiffiffiffi
Dt
p

where t is the total experimental run time.

The resulting Péclet number is Pe ¼ ðat=
ffiffiffiffiffiffi
Dt
p

Þ2 ¼ aRmax=D (in
terms of maximum crack radius achieved Rmax = R(t)). Using our
experimental values (discussed later), we find a range of Pe E 40–
800, which is indeed high enough (c1) to neglect radial gradients.

Numerical solutions of the full problem confirmed that even
for values as low as Pe = 15 (corresponding to a crack growth
slower and longer than in any of our experiments) purely axial
diffusion under-estimates the actual final gas flux across the crack
boundary by less than 1%. For more details on these scaling
arguments and numerical solutions, see the ESI,† Section 4.

Using (19) we recast this Pe c 1 validity condition of purely
axial diffusion as

Rmax c cS�2 (21)

In other words, the maximum radius achieved by the crack
must greatly exceed cS�2, otherwise radial diffusion will notice-
ably reduce the gas flux, and therefore the pre-factor in (20).

‡‡ This creates a radial gradient in the gas concentration c(r,z,t) inside the gel,
which we neglected (this is validated later in Section 3.3).
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4 Results and model validation

We now turn to experimental results to validate the model,
which can be summarised by four equations only: the shape of
the crack (6); the relation between shape and mechanical
properties (7); the linear growth of its radius (19); and the
dependence of the growth rate on system parameters (20). We
examine (6) and (19) in Section 4.1, (7) in Section 4.2, and (20)
in Section 4.3.

4.1 Crack shape and linear growth

To illustrate our analysis of the data, we focus in this section on
a single representative experiment (identical to that of Section
2.3 and Fig. 4).

R–t scaling. In Fig. 6a we plot the crack radius against time,
using two different measures. In orange we plot the mean and
spread between the minimum and the maximum radii obtained
from the four raw two-dimensional contours (see Fig. 3d). The
small spread indicates that all views give a consistent measure of
the largest dimension of the crack (i.e. the radius R). In black we
plot the mean and spread of the two major radii of the final
three-dimensional ellipsoid fitted to these four contours (see
Fig. 3f). The small spread between these two radii confirm that
the crack is very nearly axisymmetric (i.e. spheroidal), as
assumed in the model.

Both measures of the radius are in good agreement and grow
linearly to a very good approximation (as anticipated in Fig. 4),
which validates the key model eqn (19). Linear fits (dashed lines)
give similar growth rates a = 0.0410 mm s�1 (from here on quoted
using the more direct ‘orange’ contour data, but within a few
percents of the ‘black’ ellipsoid data). In this and other experi-
ments, the standard error of the linear fit is typically negligible
(o0.1%), such that we consider this measured a virtually exact.
We defer the comparison between this value and that predicted
by the model in (20) to Section 4.3, because the predicted a will
suffer from errors in S and c that we have not yet addressed.

From the intercept of the fit R(t = 0) E 0.4 mm we conjecture
that, immediately upon impact, the radius was o0.4 mm and
grew more rapidly than at (i.e. sub-linear in time). However,
more detailed observations would be needed to clarify the early-
time behaviour, which falls outside the scope of this paper.

V–R scaling. In Fig. 6b we plot the crack volume against
radius during the same interval of time t = 18–98 s. We use the
volume of the three-dimensional ellipsoid and the mean radius
along its two major axis (also shown in black in panel a). We
also use the high temporal resolution of our data to provide
‘sub-pixel’ error estimates to V and R. We do so by computing
and plotting the average and standard deviation across E1 s
time windows (corresponding to 12 frames, after analysing only
every second frame) with 50% overlap between successive
windows. Across each such time windows, this crack grows
only by E1 Pixel in radius, such that any observed variability in
V and R can be chiefly attributed to random noise in the image
analysis (shown as error bars).

We see that the crack geometry closely follows the penny
shape scaling V p R2.5 assumed in the model, since the best

power law fit gives an exponent 2.54. This is typical of our
other experiments, which had an average exponent 2.55
with standard deviation 0.12. This validates the key model
eqn (6).

c Value. The intercept of the fit, V(R = 1 mm) = 1.23 mm3,
provides a first straightforward optical measurement of the
elasto-fracture length of the material c = {(3 � 1.23)/(4p)}2 E
0.0862 mm (assuming the V p R2.5 scaling). More rigorously,

we apply (6) directly to all the data and plot ‘ ¼ 3

4p
V

R2:5

� �2

(shown in the inset in blue). The mean value across the full
range of R is c = 0.0931 mm (solid line), and the standard
deviation is 0.0044 mm = 4.7% of the mean (dashed lines).
Henceforth we take these values as the measured c and its error
(the error being primarily caused by apparent deviation from
the exact scaling V p R2.5).

Fig. 6 Validation of the crack shape and linear growth in a representative
experiment. (a) R–t scaling using the four ‘raw’ 2D contours (in orange) and
the two major radii of the 3D ellipsoids (in black), and their respective linear
fits. (b) V–t scaling (log–log scale) using the 3D ellipsoids, and its power
law fit. Here R is taken as the mean of the two major radii (black symbols in
(a)). The symbols and error bars represent the mean and standard deviation
over 12 successive frames in which the crack radius grows by less than 1
Pixel. In the inset (in blue) we plot the corresponding values of c; the solid
and dashed lines represent the mean and standard deviation over the
range of R.
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4.2 Mechanical properties

In Fig. 7 we present results from 70 independent experiments
in which c was measured from R(t), V(t) data as explained in the
previous section, E was measured as explained in Section 2.1
(and ESI,† Section 2), and KIC, GC were deduced from c, E using
(7). We plot c, KIC, GC (respectively in panel a, b, c) against E
(common horizontal axis) to investigate potential correlations
between elastic and fracture properties.

First, we see that E covers a broad range E12–28 kPa (see its
distribution in grey on top of panel a), despite the fact that we
did not intentionally vary it (only ps was intentionally varied in
these experiments). Beads were left to swell in similar condi-
tions for E50–150 hours (but swelled little beyond the first
E24 hours), and had a polymer/water volume fraction f E
0.3–2% (using extreme values of their dry radius 2.5–3 mm and
wet radius 11–17 mm). We attribute theses variations in E to
inherent variability in the manufacturing of our commercial-grade
polyacrylamide gel beads, resulting in slightly different f and
relative weight of cross-linkers/monomers.29 This is qualitatively
consistent with two previous studies on fractures in polyacryla-
mide gels at higher f: ref. 19 reported a range E E 1.5–600 kPa
sharply increasing with f E 3–9% (see their Fig. 5), while ref. 30
reported E E 50–700 kPa for f E 8–15% and varying cross-
linkers/monomers weight fractions E2.5–6% (see their Fig. 4).

Second, c covers a range of E0.05–0.2 mm (see its distribu-
tion in grey on the right of panel a). This remains an order of
magnitude below the minimum crack radius measured in our
experiments (Rmin E 1 mm), which confirms the validity
condition (8) of the penny-shaped model.

Third, the corresponding range for the fracture properties is
KIC E 100–300 Pa m1/2 and GC E 1–4 Pa m (or J m�2). The latter
is at least an order of magnitude larger than the surface tension
of water (E0.07 Pa m) which justifies that we neglected surface
tension in the model.

4.3 Growth rate predictions

Pressure measurements. In order to compare the measured
radial growth rates a with the predictions from the model (20)
we need sufficiently accurate measurements of the super-
saturation pressure ps (which become squared in S2). As men-
tioned in Section 2.1, these pressure measurements suffered
from a loss of CO2 during the swapping of a ‘seal cap’ for a
‘pressure gauge cap’. We adopted a method to accurately
correct for this (explained in the ESI,† Section 1) for a subset
of 37 experiments, i.e. about half of those shown in Fig. 7 (the
other half being carried prior to this method, in a way that did
not allow for subsequent correction). The range of pressure was
ps = 2.31–4.14 bar, corresponding to super-saturation S = 1.07–
2.67. Lower or higher ps were not practical, because cracks were
respectively too difficult to initiate or too numerous and fast-
growing to measure accurately.

Results. The results of predicted vs. measured growth rates
are shown in Fig. 8. Our range of super-saturations S, together
with our range of mechanical properties c (Fig. 7a), allowed us
to cover a range of a E 0.01–0.15 mm s�1 (an order of
magnitude). We find that the predicted a is on average 27%
below the measured value (see the green dashed linear fit ‘y =
0.733x’). However, the discrepancy between predicted and
measured a is highly variable (extreme values are E�50%).

Error bars. Although the measured a is virtually exact, the
predicted a has a mean relative uncertainty (or ‘error’) of 14%
propagated from errors in our measurements of ps (represent-
ing only an average of 1%), and of c (representing an average of
13%, primarily due to the imperfect V p R5/2 scaling). These
error bounds are such that the measured and predicted a are
consistent for a quarter of our data (i.e. error bars cross the 1 : 1
black solid line). However, it is clear that these uncertainties are
not sufficient to account for the observed discrepancy. In other
words, our model is essentially validated by our measurements,
but it appears to systematically under-estimate the growth rate.

Reasons for the under-estimation of a. We believe that this
systematic under-estimation of the growth rate by the model
can be explained as follows.

First, an imperfect equilibrium between the concentration
of dissolved CO2 in the beads cs and the gas pressure ps

measured above the solution (due to the surface tension barrier
to bubble nucleation explained in the ESI,† Section 1.3) would
cause our application of Henry’s law cs = khps to slightly under-
estimate cs and therefore S (through (12)).

Fig. 7 Linear elastic fracture mechanical properties in 70 independent
experiments: (a) elasto-fracture length c (determined as in Fig. 6b); (b)
critical stress intensity factor (or toughness) KIC = (2p1/2/3)Ec1/2; (c) critical
strain energy release rate GC = (p/3)Ec. All are plotted against the Young
modulus E. The grey shaded areas represent their distributions (estimates
of the probability densities). Error bars in KIC, GC were propagated from

those in E, c (respectively
DE
E
þ D‘

2‘
and

DE
E
þ D‘

‘
).
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Second, a more quantitatively plausible reason lies in the
fact that some cracks do not grow in a perfectly flat plane as we
assumed; instead minor inhomogeneities in the gel cause the
crack plane to warp slightly. This warped plane, even when
barely detectable by the naked eye, can cause our fitting to over-
estimate the true crack thickness, its volume, and therefore our
measured c (through (6)).

Third, note that we may not invoke the finite size of the
hydrogel bead as a possible reason. It is true that our finite
surrounding medium may be felt by the crack, and oppose
slightly less resistance than the assumed infinite medium. This
would indeed cause us to under-estimate the true crack thick-
ness, and therefore c, and therefore to over-estimate the pre-
dicted a; but only if we obtained c from the mechanical
properties E, KIC. However, in this paper we obtain c from the
observed crack geometry instead (and deduce KIC from it),
which should effectively account for possible finite-size effects
of the surrounding medium already. Finally, it is possible that
the CO2 diffusivity D and solubility kh within the hydrogel are
not identical to those in pure water (as assumed, see Table 1).
Limited evidence appears to suggest that the polymer may
slightly decrease D31 and increase kh.32 Both effects would thus
tend to compensate one another, but details remain
speculative.

5 Conclusions

Key result. We have shown and explained how initially micro-
scopic (invisible) defects in decompressed hydrogels can,
through diffusion and irreversible fracturing, grow as a
penny-shaped crack with linear scaling in time R(t) = at,
where a p DS2c�1

p D(Tkh psE/KIC)2 (in terms of the basic

parameters in Table 1), provided that R c max(c, cS�2). This
key result has at least two applications.

Optical measurements of fracture properties. It allows frac-
ture properties of hydrogels (the toughness KIC, or equivalently
its fracture energy GC) to be estimated indirectly by optical
measurements of dR/dt = a (assuming that all other quantities
D, T, kh, ps, E can be measured accurately). This new method
represents an interesting alternative to that proposed in ref. 30
who used the forced syringe injection of liquid and optical dye
attenuation to measure the penny-shaped crack thickness. This
new method also complements previous cavitation rheology
methods,33 based on the growth of spherical elastic (non-
fracturing) bubbles to estimate material properties such as E.34

Decompression sickness. Our key result also suggests a new
potential mechanism for decompression sickness: the growth
of inert gas pockets with a potentially catastrophic linear
scaling, and a thin penny-shaped geometry that irreversibly
fractures body tissues. Future work is undoubtedly needed to
assess the relevance of this mechanism in the very complex
pathophysiology of decompression sickness.

Open questions. Our work raises at least three open
questions.

First, what is the importance of tissue perfusion and of the
potential presence of multiple cracks? Both phenomena would
limit the available dissolved gas and therefore the crack growth.
In particular, we would only expect to find ‘large’ cracks (say of
a given radius R0) in poorly-perfused tissues in which the
‘flushing’ time-scale is cR0/a p R0D�1S�2c.

Second, what is the range of parameters involved in the
physiology of decompression sickness? It is apparent that
N2-filled cracks would grow much more slowly than our analo-
gue CO2-filled cracks due to the 1 : 50 ratio in solubilities kh

(causing a to be reduced by a factor E502 = 2500 for a given
temperature). We also expect body temperature (at least 10 1C
larger than in any of our experiments) to further decrease a
(since kh decays with T faster than 1/T). However, we also need
to consider the potentially large (and poorly known) range of
body tissue elasticity and toughness, and in particular their
ratio, i.e. the elasto-fracture length c p (KIC/E)2. Tissues with
particularly small c could still be subject to appreciable
growth rates.

Third, what is the early-time behaviour of this crack growth?
This includes understanding the conditions in which micro-
cracks are formed at t = 0. In these experiments we chose
mechanical impact; in the body this could be micro-traumata
in muscles, tendons, ligaments, joints, bones, or nerves. It also
includes investigating the pathway by which initially small,
‘classical’ spherical bubble micro-nuclei might grow large
enough (R c c) to initiate fracture and bifurcate to the
penny-shaped crack regime.

This last direction is also relevant to the growth of liquid
cavities in polymer matrices mentioned in the introduction.4,5

Irreversible cavity formation has been reported in ref. 6 and
attributed to a ductile response of the material, although, in
principle at least, the brittle regime we described could also
occur in these systems. An important difference between

Fig. 8 Comparison of growth rates: measured from dR/dt (linear fit of the
orange data in Fig. 6a) vs. predicted from (20). The fit of the data has slope
0.733 (green dashed line), lower than the expected unit value (black solid
line). Errors in the measured a are smaller than the symbol size, while errors
in the predicted a (vertical error bars) were propagated from those in S, c

(the relative error is thus
Da
a
¼ 2

Dps
ps
þ D‘

‘
). The error in the measured

temperature T (�0.2%), involved in the calculation of D, S, is small enough
to be neglected.
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gas–liquid and liquid–liquid systems is the compressibility
of the gas phase and the connection between gas solubility
and pressure within the cavity. This may be the reason why
liquid–liquid systems show spontaneous cavity growth after
quenching, whereas our system requires an impact. We would
also expect much slower crack growth in liquid–liquid systems
due to the absence of volume change upon phase separation
(compared to gas–liquid systems), perhaps making them ideal
to study the early stages of crack formation.
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