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Effects of lipid heterogeneity on model human
brain lipid membranes†

Sze May Yee, a Richard J. Gillams, b Sylvia E. McLain c and
Christian D. Lorenz *a

Cell membranes naturally contain a heterogeneous lipid distribution. However, homogeneous bilayers are

commonly preferred and utilised in computer simulations due to their relative simplicity, and the availability of

lipid force field parameters. Recently, experimental lipidomics data for the human brain cell membranes

under healthy and Alzheimer’s disease (AD) conditions were investigated, since disruption to the lipid

composition has been implicated in neurodegenerative disorders, including AD [R. B. Chan et al., J. Biol.

Chem., 2012, 287, 2678–2688]. In order to observe the effects of lipid complexity on the various bilayer

properties, molecular dynamics simulations were used to study four membranes with increasing heterogeneity:

a pure POPC membrane, a POPC and cholesterol membrane in a 1 : 1 ratio (POPC–CHOL), and to our

knowledge, the first realistic models of a healthy brain membrane and an Alzheimer’s diseased brain

membrane. Numerous structural, interfacial, and dynamical properties, including the area per lipid,

interdigitation, dipole potential, and lateral diffusion of the two simple models, POPC and POPC–CHOL, were

analysed and compared to those of the complex brain models consisting of 27 lipid components. As the

membranes gain heterogeneity, a number of alterations were found in the structural and dynamical properties,

and more significant differences were observed in the lateral diffusion. Additionally, we observed snorkeling

behaviour of the lipid tails that may play a role in the permeation of small molecules across biological mem-

branes. In this work, atomistic description of realistic brain membrane models is provided, which can add

insight towards the permeability and transport pathways of small molecules across these membrane barriers.

1 Introduction

The cellular membrane is an essential component of every cell,
forming barriers within the cell itself and with the external
environment. These membranes are composed of a complex
mixture of lipids and proteins that typically contain hundreds
of different lipid species, which differ in headgroup and/or
hydrocarbon tail length and degrees of saturation. Cell membranes
have also been found to have approximately 30% of their interfacial
area covered by a variety of proteins.1–4 Normally, the lipid
composition varies significantly between the various organelles
and subcellular compartments2,5–8 and between different cells.
Additionally, the composition of the plasma membrane has been

found to be dependent on the organism, cell stage, environmental
factors, and tissue types.9–18

Changes in lipid composition have also been linked to many
diseases.19–23 For example, depression, anxiety, and drug addiction
are strongly associated with changes in the lipid composition
in the brain.24–26 Furthermore, various neurological diseases
including Alzheimer’s disease (AD), Parkinson’s disease, and
epilepsy have been linked to lipid imbalances that result from
the deregulation of biochemical pathways associated with phos-
phoinositide (PIPs) lipids.27–29

The complex and evolving composition of cell membranes
and the fact that they play significant roles in both healthy and
diseased cells have led to an increased emphasis to understand
how changes in the lipid composition affect the structural
and dynamical properties of the membranes. Sophisticated experi-
mental techniques, including single-particle tracking, fluorescence
correlation spectroscopy, super-resolved imaging, scattering,
solid-state NMR, and mass spectrometry have recently been
used to provide insight into the lateral organisation of the
various components within membranes, as well as the potential
causes for this organisation.30–36 Despite advances in these
various techniques, the full molecular-scale details of the inter-
actions that result in the various structural and dynamical
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properties of interest are currently not accessible by experiment
alone.

Computational modelling, in principle, is capable of providing
this added level of detail and has become an essential tool in the
investigations of lipid membranes.37,38 In recent investigations of
brain lipid membranes, a range of different models have been
used to represent the membranes and their interactions with
small molecules or peptides. The models used range in lipid
composition from pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
phocholine (POPC)39–42 to mixtures of up to five different lipid
species (including cholesterol)43,44 to complex realistic lipid
mixtures.45,46 In the current work, all-atom classical molecular
dynamics (MD) simulations were used to investigate the effects of
increasing lipid complexity on the bilayer structure, lipid dynamics,
and dipole potential. We used two simple membranes consisting of
pure POPC and POPC–CHOL in a 1 : 1 ratio. Meanwhile, we present
the first heterogeneous brain cell models consisting of 27 lipid
components in an effort to mimic the experimental compositions
identified by Chan et al.47 (Fig. 1 and Table 1).

2 Methods
2.1 Model membranes

Two brain cell membranes representing the healthy (BH800)
and Alzheimer’s diseased (BAD800) state were modelled based
on experimental lipidomics data of the prefrontal cortex cells47

(Fig. 1 and Table 1). BH800 and BAD800 each consists of 800 lipids
per leaflet. We also conducted simulations of membranes with the
same lipid composition as BH800 and BAD800 but with only
200 lipids per leaflet, BH and BAD, respectively, to investigate
system size effects. Additionally, we simulated a pure 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, and a
membrane consisting of a 50 : 50 mixture of POPC and cholesterol
to investigate the effects of lipid heterogeneity on the membrane
properties. Each of these simpler membranes contain 200 lipids
per leaflet. Table 1 reports their symmetric lipid distributions in
the upper and lower leaflets. The chemical structures of the various
lipids used are shown in Fig. 2. All systems were generated using the

CHARMM-GUI Membrane Builder, using the CHARMM36 para-
meters for lipids and the CHARMM TIP3P model for water.48–50 As a
result, each lipid molecule is randomly placed within the two
leaflets of the bilayer. In doing so the structure of each lipid
molecule is randomly chosen from a lipid structural library which
contains 2000 conformations for each lipid type that have been
produced from a combination of homogenous and heterogeneous
lipid membrane simulations. Then each membrane was solvated
with a water thickness of at least 22.5 Å (default setting) and
neutralised to a salt concentration of 150 mM NaCl.

2.2 MD simulation protocol

GROMACS version 2018 was used to perform all MD simulations in
this manuscript.51 Initial structures were energy-minimised using
steepest descent to remove steric clashes between atoms. Then, a
series of simulations were carried out using the NVT (constant
number of particles, volume, and temperature) and then the NPT
(constant number of particles, pressure, and temperature) ensem-
bles for at least 0.45 ns in order to equilibrate the temperature and
density of the systems. In doing so, the prescribed simulation
protocol by CHARMM-GUI was followed.49,50 All equilibrated systems
were simulated under NPT conditions, to a total length of 300 ns for
smaller systems (POPC, POPC–CHOL, BH, and BAD), and to a total
length of 200 ns for larger systems (BH800 and BAD800). In the
production simulation, the temperature was maintained at 310 K by
the Nosé–Hoover thermostat,52 with a time constant of 5 ps. Semi-
isotropic pressure coupling was maintained at 1 bar by the Parrinello–
Rahman barostat,53 with a time constant of 5 ps and standard
compressibility of 4.5 � 10�5 bar�1. The Verlet cut-off scheme
was employed. Electrostatic interactions were calculated using the
Particle-Mesh Ewald algorithm. Both electrostatic and van der Waals
interactions were cut off beyond 1.2 nm. All bonds involving
hydrogen atoms were constrained using the LINCS algorithm.54

2.3 Data analysis details

Ensembled averages were analysed over the full length of the
trajectories. Standard errors were calculated as standard deviations
of the mean. The results of the two different sized healthy (BH800

Fig. 1 (a) General compositions of the lipid types used in the BH800 and BAD800 brain cell models (see Table 1 for full detail of different membranes).
(b) Side view of a complex brain membrane system. Lipids are coloured according to the pie charts.
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and BH) and diseased (BAD800 and BAD) membranes are gen-
erally similar. Data for the smaller membranes (BH and BAD) are
mainly included in the ESI,† unless stated otherwise.

Area per lipid (APL) was calculated by Voronoi analysis in the
membrane analysis tool, MEMBPLUGIN.55 The oxygen atom
(name O3) was used as the key atom to represent CHOL, while a
triad of glycerol carbons were used to represent non-CHOL
lipids (names C2, C21, C31 for PC, PE, PS, and PI; names C1F,
C2S, C3S for SM and CER) (Fig. S1a and b, ESI†). These key
atoms were selected because they lie at a similar depth in the
membrane. By projecting the coordinates of the key atoms onto
the xy-plane, a series of Delaunay triangulations and Voronoi
diagrams can be constructed56 to give the APL (Fig. S1c, ESI†).

Bilayer thickness was defined as the average phosphate-to-
phosphate positions, and was calculated using MDAnalysis.57

Surface roughness (R) was calculated using MDAnalysis.57

The C2 and C2S atoms of all non-CHOL lipids were used as
reference atoms. The method by Plesnar et al.58 was applied:

R ¼ 1

n

Xn
i¼1
jðzi � zmÞj

where n is total number of reference atoms, zi is the z-coordinate
of reference atom i, and zm is the mean z-position of all
reference atoms.

Order parameter (SCH) quantifies the time-averaged C–H bond
angle, y, with respect to the bilayer normal. Using MEMBPLUGIN,55

SCH was calculated according to:

SCH ¼
3 cos2 y� 1

2

� �

Tilt angles for the various lipid species were defined according to
the vectors in Table 2. For the CER lipid group, only the ring tilts in
the headgroup of the cerebrosides were considered. All angles were
measured with respect to the bilayer normal, and computed using
MEMBPLUGIN.55

Lipid interdigitation was calculated using MEMBPLUGIN,
which measures the degree of acyl chain interdigitation using a
correlation-based fraction that gives the mass overlap of two
leaflets (Ir) and its corresponding width of the overlapping
regions (wr). Ir is measured so that 0 r Ir r 1 indicates
between zero to complete mass overlap. In addition, a
coordination-based fraction (IC) evaluates the number of heavy

Table 1 Compositions of the membrane models (per leaflet) corresponding to the CHARMM-GUI lipid information. Complex healthy and diseased brain
models, BH800/BH and BAD800/BAD, respectively, contain up to 27 lipid components, to include cholesterol (CHOL), phosphatidylcholines (PC),
phosphatidylethanolamines (PE), phosphatidylserines (PS), phosphatidylinositols (PI), sphingomyelins (SM), and ceramides (CER) lipids. Lipid distributions
are symmetric in the upper and lower leaflets

Lipid type Lipid name sn1/sn2 BH800 BAD800 BH BAD POPC POPC–CHOL

CHOL CHL1 — 392 408 98 102 — 100

PC SDPC 18:0/22:6 12 8 3 2
SAPC 18:0/20:4 24 20 6 5 — —
SLPC 18:0/18:2 — 20 — 5
POPC 16:0/18:1 44 44 11 11 200 100
DPPC 16:0/16:0 32 28 8 7 — —
PLPC 16:0/22:6 16 — 4 —

PE SDPE 18:0/22:6 32 24 8 6
SAPE 18:0/20:4 44 36 11 9
SLPE 18:0/18:2 32 32 8 8 — —
SOPE 18:0/18:1 12 12 3 3
DSPE 18:0/18:0 4 4 1 1
DAPE 20:4/20:4 — 4 — 1

PS SDPS 18:0/22:6 8 8 2 2 — —
SOPS 18:0/18:1 12 12 3 3

PI SAPI25 18:0/20:4 16 12 4 3
PNPI25 16:0/18:3 4 4 1 1 — —
POPI25 16:0/18:1 4 4 1 1

SM ASM 18:1/20:0 44 44 11 11 — —
NSM 18:1/24:1 20 20 5 5

CER CER180 18:1/18:0 4 8 1 2
CER241 18:1/24:1 4 4 1 1
GALCER241 18:1/24:1 8 12 2 3
GALCER240 18:1/24:0 4 4 1 1 — —
GLCCER200 18:1/20:0 8 8 2 2
GLCCER241 18:1/24:1 4 8 1 2
SLFCER240 18:1/24:0 8 4 2 1
SLFCER241 18:1/24:1 8 8 2 2

Total number of lipids per leaflet 800 800 200 200 200 200
Total number of water molecules 82 373 81 612 21 995 21 678 17 979 14 657
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atoms that are in contact with the opposing leaflet within the
recommended default cutoff at 4 Å.55

Lipid tail snorkeling was determined by the terminal carbon
z-positions of each hydrocarbon sn chain. The absolute values of z
from both leaflets were taken, and binned to a histogram in order
to obtain a normalised probability density, using MDAnalysis.57

Dipole potential (C(z)) was computed using the gmx potential
module from the GROMACS package.51 The simulation box was
divided along the bilayer normal to obtain the charge density
per slab. Double integration of the charge density, r(z), then
yields the dipole potential, C(z):59

CðzÞ ¼ �1

e0

ðz
z0

ðz0
z0

rðz00Þdz00dz0

where z0 is the z-position at the bulk water centre at which the
potential is set to zero.

Lateral diffusion was calculated using the gmx msd module
from the GROMACS package.51 Diffusion coefficients (D) are
calculated from the slopes by fitting a straight line (Dt + c)
through the plots of the mean square displacements (MSDs),51

between 30–200 ns for POPC, POPC–CHOL, BH, and BAD, and
between 20–150 ns for BH800 and BAD800. However, the lipids in
each membrane experience subdiffusion since productions were
simulated on a sub-microsecond timescale.60,61 Thus, the coeffi-
cients obtained in this work are merely estimated values of D,
which we use because we are mainly interested in the qualitative
comparisons of the lipid mobility between the various bilayer
environments, as was similarly done in previous work.62

3 Results and discussion
3.1 Effects of lipid heterogeneity on the structural properties
of lipid membranes

In the homogeneous POPC membrane, the bilayer thickness and
APL equilibrate to 38.8 Å (Fig. S4, ESI†) and 64.8 Å2 (Fig. S2, ESI†),

Fig. 2 General structure of the lipid types in Table 1.

Table 2 Summary of key membrane properties: (mean� standard error). Area per lipid (APL). Bilayer thickness measured from the average phosphorus–
phosphorus distance between leaflets. Interdigitation parameters where Ir is the interdigitated mass overlap, and wr is the corresponding width region of
the mass overlap. Ir is measured so that 0 r Ir r 1 indicates zero to complete mass overlap. IC is the fraction of heavy atoms that are in contact with the
opposing leaflet. Surface roughness parameters of the upper and lower leaflets. Tilt angles for the different lipid headgroups present in the various
membranes, and the defining vectors used to determine this angle

BH800 BAD800 POPC–CHOL POPC

APL (Å2) CHOL 30.0 � 0.6 30.4 � 0.5 30.1 � 0.4 —
PC 56.4 � 0.7 56.2 � 0.6 54.8 � 0.7 64.8 � 0.8
PE 55.5 � 0.9 56.0 � 0.9
PS 57.1 � 1.4 55.2 � 1.4
PI 56.6 � 1.6 55.1 � 1.4 — —
SM 49.8 � 1.0 50.5 � 1.0
CER 49.9 � 1.0 50.0 � 1.0
Average 42.3 � 0.5 42.0 � 0.4 42.5 � 0.4 64.8 � 0.8

Thickness (Å) 47.3 � 0.4 47.2 � 0.3 45.8 � 0.3 38.8 � 0.4

Interdigitation Ir 0.22 � 0.02 0.23 � 0.02 0.16 � 0.02 0.30 � 0.02
wr (nm) 4.88 � 0.31 4.94 � 0.32 3.21 � 0.35 5.53 � 0.47
IC (%) 3.5 � 0.1 3.6 � 0.1 3.2 � 0.3 5.4 � 0.2

Roughness (Å) Upper 0.89 � 0.11 0.88 � 0.11 0.74 � 0.08 1.10 � 0.14
Lower 0.90 � 0.10 0.88 � 0.10 0.73 � 0.08 1.07 � 0.15

Tilt (1) CHOL (C3 - C17) 11.6 � 0.5 11.4 � 0.5 12.0 � 0.7 —
PC (P - N) 65.9 � 1.4 65.6 � 1.6 66.7 � 1.5 67.9 � 0.9
PE (P - N) 73.2 � 1.6 72.9 � 1.7
PS (P - N) 65.0 � 4.2 64.2 � 4.5
PI (P - C14) 50.9 � 3.1 51.5 � 3.5 — —
SM (P - N) 69.5 � 2.2 70.6 � 2.1
CER (O1 - C4) 41.8 � 2.1 42.7 � 2.1
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respectively (Table 2), in close agreement with previously reported
values.58,63,64 The addition of 50% cholesterol in POPC–CHOL
causes the bilayer to thicken to 45.8 Å (Fig. S4, ESI†), and the APL
of PC lipids to reduce to 54.8 Å2 (Fig. S2, ESI†), characteristic of
the well-established condensing effect of cholesterol.58,65,66 As
the membrane gains lipid heterogeneity in BH800/BAD800, the
thickness increases to 47 Å (Fig. S4, ESI†), but interestingly, the
APL of PC lipids also increases slightly to 56 Å2 (Fig. S2, ESI†) in
comparison to the POPC–CHOL membrane (Table 2). However,
PE and PS lipids do not seem to feel the condensing effect of
cholesterol to the same extent as PC, since both lipid types maintain
APLs (Table 2 and Fig. S2, ESI†) that are similar to the areas
reported for pure POPE (55.6–59.2 Å2)63,64,67 and pure POPS
(55.8–57.5 Å2)63,68 membranes. Generally, in BH800/BAD800 the
APLs of CHOL, PC, PE, PS, and PI lipid types (Table 2 and Fig. S2,
ESI†) are in range to those reported for multicomponent yeast-like
membranes:69 CHOL B30 Å2, and phospholipids B54–58 Å2 while
the average APL of BH800/BAD800 (Table 2 and Fig. S3, ESI†)
resembles the average APL of multicomponent mammalian-like
membrane (POPC, POPE, POPS, CHOL, PSM):63 B42 Å2.

Inversely correlated to the bilayer thickness is the lipid
interdigitation, whereby the lipid chains in the upper and lower
leaflets overlap at the bilayer centre. Such is the case where an
increase in thickness from POPC to POPC–CHOL is accompanied
by a decrease in the interdigitation parameters (Table 2 and
Fig. S5, ESI†). Our findings are in line with the fact that
cholesterol is proposed to reduce lipid interdigitation.70 However,
complex membranes BH800/BAD800 at similar cholesterol levels
to POPC–CHOL depart from this trend by showing a greater
extent of interdigitation even as the bilayer thickens (Table 2 and
Fig. S5, ESI†). This likely arises from the membrane containing a
range of lipids that are diverse in chain lengths as well as degrees
of saturation. Changes in the interdigitation have been suggested
to have numerous implications, including on the interfacial
tension of lipid membranes,71 the formation of membrane
micro-domains,72 and the modulation of lipid droplets.73

The condensing effect of cholesterol is also closely related to
its ordering effect on the lipid chains in a membrane,66 which
is observable using the order parameter (SCH). Typically, lipids
with a smaller APL will see an increase in the order of their
hydrocarbon tails. At first, only the sn tails of POPC lipids in the
various membranes were evaluated (Fig. S6, ESI†), and effectively
displays a higher order in the POPC–CHOL, BH800, and BAD800
systems, relative to the pure POPC system. To approximate the
order of the overall membrane, the order parameters were
averaged across the various lipid types containing either a
sn16:0, sn18:0, or sn18:1 tail (Fig. S7, ESI†), all of which show a
similar trend to the order in Fig. S6 (ESI†). However, in BH800/
BAD800, the B5 Å2 difference in APL between the SM and CER
lipids and the PC, PE, PS, and PI lipids (Table 2) appears to not
have been resulted in a greater amount of order in the SM and
CER lipid tails (Fig. S7c compared to Fig. S7a and b, ESI†).
Instead, in the membranes that contain 50% cholesterol, the
value of SCH reaches a maximum (SCH B 0.4) in the middle of
the tails. Generally, the order profiles are consistent with existing
literature that has reported studies of bilayers containing B50%

cholesterol.74–77 The values of the order parameter observed
in the lipids within BH800/BAD800 indicate that brain cell
membranes realistically adopt a liquid-ordered state, since
usually SCH o 0.3 in liquid-disordered membranes.

The tilt angle of cholesterol is another quantity that further
explains how cholesterol imparts order on the packing environ-
ment. The orientation of CHOL shows the narrowest distribution in
BH800/BAD800 (Fig. S10, ESI†), with the smallest average tilt angle
of 111 (Table 2). This value is smaller compared to those
previously measured in experiment78–80 and simulation69,81,82

(B14–251), all of which studied membranes with lower percen-
tages of cholesterol within them, but the tilt is consistent with
the angle observed in a simulation of a lipid bilayer with a 1 : 1
ratio of POPC and cholesterol.62 Otherwise, tilt angles that were
measured in the headgroups of PC and PI lipids69,83 (Table 2
and Fig. S10, ESI†) are similar to those in simple model bilayers
(where comparable). The orientation of the CER sugar head-
groups seem to correspond to the tilt angles reported for
membranes containing glycolipids (B401),84–86 even though
they have a glycerol backbone (glyceroglycolipids) instead of
the sphingosine backbone of the CER lipids used in this study
(glycosphingolipids). The broad distributions in the tilt angles
demonstrate a degree of freedom on the membrane surface that
seems to be independent of the lipid packing. This is further
evidenced by the similar hydration features of waters surrounding
CHOL (Fig. S11, ESI†) and PC (Fig. S13, ESI†) lipids that are shared
across the various membranes, which is unaffected by changes in
the physical properties (Table 2). Previous simulation studies have
found similar distances that define the first neighbor hydration
shell around the oxygen atom in cholesterol,62 the nitrogen atom
in the headgroup of the PC lipids,87,88 and the nitrogen atom in
the headgroup of PE lipids.89 (Further details on the hydration of
lipids are discussed in the ESI.†) Incidentally, the steadiness in the
APL, thickness, and roughness parameters (Fig. S3, S4 and S8,
ESI†) show an effectiveness of the CHARMM force field to quickly
stabilise not only simple membranes, including POPC and
POPC–CHOL, but more importantly complex membranes like
BH800 and BAD800 that contain a cocktail of up to 27 lipid
components. The average surface roughness of POPC (1.1 Å)
is higher than POPC–CHOL (0.7 Å) (Table 2), whereby the
relationship between the two is consistent with the findings
by Plesnar et al.58

As lipid tails were expected to interdigitate vertically, we
found instances in the simulation where some tail ends would
snorkel towards the headgroup interface as in Fig. 3. In existing
literature, Feix et al. has demonstrated flexibility in the tails of
nitroxides to infer vertical fluctuations of terminal methyl
groups in dimyristoylphosphatidylcholine (DMPC) bilayers.90

In addition, the snorkeling phenomena has been ascribed to
the side chains of amino acids in transmembrane proteins to
assist in protein-membrane interactions.91–93 Meanwhile, a
membrane-only simulation has observed the sn24 : 1 tail to
adopt a hooked conformation,94 but not quite bending to the
extent of the U-shapes seen in Fig. 3. It is curious that lipid tails
would snorkel deeply to an area of the membrane with high
order (Fig. S7, ESI†). Thus, we evaluated the z-positions of the
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terminal carbons, and used a threshold of z 4 10 Å to indicate any
snorkeling events. Similar trends are expressed in the hydrocarbon
chains across all systems (Table 3 and Table S2, ESI†). Mainly, the
tails tend to equilibrate around the bilayer centre (z o 10 Å) (Table 3
and Table S2, ESI†). Otherwise, the probability of snorkeling
increases with increasing degrees of unsaturation in the hydrocar-
bon chain, for instance, in the order of sn16:0/sn18:0/sn20:0 o
sn18:1 o sn18:2 o sn20:4 o sn22:6 in the case of BH800 (Table 3).
Additionally, for tails with the same degree of unsaturation, we have
found that the likelihood of snorkeling increases with the length of
the hydrocarbon tail, for instance, sn24:1 4 sn18:1 (Table 3).
Compared to POPC, it is also immediately obvious that the snorkel-
ing events become much less probable in POPC–CHOL and BH800/
BAD800 (Table 3 and Table S2, ESI†), which also seems to correlate
to a decreasing number of water permeation events (Table S3, ESI†).

3.2 Changes in transmembrane dipole potential resulting
from lipid heterogeneity

The distribution of electric charge in a bilayer is important because
it affects the mechanisms of interaction and permeability of
drugs with the lipid bilayer and/or the surrounding membrane

proteins.95,96 Thus, the dipole potential profile of membranes is
particularly crucial in the process of novel drug design. For example,
the electrostatics of bacterial membranes is especially relevant for
the design of novel antimicrobial drugs since the electrostatic
interactions during drug binding is what provides the driving force
for the insertion process of the drug into the membrane.97,98

Poisson’s equation, as we have used here, is typically used to
calculate the dipole potential from MD trajectories.63 Fig. 4 shows
the dipole potential across each of the membranes we have simu-
lated here. Generally, the dipole profiles across all systems have
matching qualitative features. Initially, the potential starts at the
reference value in the aqueous phase at 0 V. Then, the potential
increases sharply over the lipid headgroups to experience potential
barriers at the membrane interface at z B �15 Å, before reaching a
global maximum at the bilayer centre (Fig. 4). Between POPC and
POPC–CHOL, the presence of cholesterol is demonstrated to raise
the potential barriers most substantially at the centre by 0.3 V
(Fig. 4). In the realistic membranes BH800/BAD800, lipid diversity
in the headgroup as well as tail regions lower potential barriers at the
interfaces to 0.42–0.45 V, and at the centre to 0.89–0.90 V (Fig. 4).
Thus, the dipole potential is sensitive to the membrane composition
and environment. And this reiterates that the selection of an
appropriate model is important as it could affect the relevant
mechanisms of interaction in such permeation studies.

3.3 Changes in lipid diffusion with increased lipid
heterogeneity

Lateral diffusion evaluates the mobility of lipids in the xy-plane
of the membrane, and is therefore used as a gauge for the

Fig. 3 Example snapshot of lipid tails snorkeling in the BH membrane all
occurring in one time frame, in the chains sn18:2 (top), sn20:4 (lower left),
and sn24:1 (lower right), with the carbon tails in grey. Hydrogen, water, and
ion atoms were removed for clarity.

Table 3 Probability of the z-positions of terminal carbons of the various
hydrocarbon sn chains. The bilayer centre is at z = 0. The propensity of the
terminal carbon travelling beyond z 4 10 Å is used as an indication of tail
snorkeling

System Chain type

Probability (%)
Num. chains
per leafletz o 10 z 4 10

POPC sn16:0 97.4 2.6 200
sn18:1 93.9 6.1 200

POPC–CHOL sn16:0 99.9 0.1 100
sn18:1 98.8 1.2 100

BH800 sn16:0 99.6 0.4 132
sn18:0 99.7 0.3 200
sn20:0 99.9 0.1 52
sn18:1 CER 99.1 0.9 112
sn18:1 98.0 2.0 72
sn24:1 97.4 2.6 44
sn18:2 97.6 2.4 48
sn20:4 96.2 3.8 84
sn22:6 95.9 4.1 52

Fig. 4 Dipole potential profiles relative to the bilayer centre, z = 0. (Error bars
omitted from the figure for clarity.) Potential barriers and related error bars at
the bilayer interfaces, z B �15 Å, and bilayer centre, z = 0 (table below)
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dynamics of lipid mixing. However, the systems here were only
simulated on a sub-microsecond timescale, which means that
lipids in the bilayer experience subdiffusion.60–62 Thus, the
diffusion coefficients (D) obtained from the slopes of the mean
square displacements (MSDs) (Fig. 5) are estimated values of D.
As we are mostly interested in qualitatively comparing the
lateral movement of the different lipid types within the various
bilayer environments that we have studied, we will use the
values of D determined from the slopes of the MSD plots in
order to do so. This has been done previously for similar
purposes.62 As cholesterol is well-known to retard diffusion
rates,99 the diffusion constant of POPC in the pure membrane
consequently reduces by half, from 9.1� 10�8 cm2 s�1 (consistent
with reported value100) to 4.1 � 10�8 cm2 s�1 in the POPC–CHOL
membrane (Fig. 5a and d). The diffusion of PC lipids (and all other
lipids) slow down further in BH800 and BAD800 as the lipid
composition becomes more heterogeneous (Fig. 5c and f). We
believe that the greater extent of interdigitation in the lipid packing
of BH800 and BAD800 compared to POPC–CHOL is able to affect
the fluidity of the respective membranes consisting of B50%
cholesterol (Table 2). The only significant difference we observed
between the large and small brain membranes was when
comparing the lipid diffusion in BH800 and BH (Fig. 5c and e).
In these two healthy systems, the lipids diffuse approximately
twice as fast in the smaller BH membrane than in the larger
BH800 membrane. Interestingly, no such difference was observed
in the two diseased BAD800 and BAD membranes (Fig. 5f and e).
One difference in the lipid compositions between the healthy BH
and diseased BAD membranes is that BH contains lipids with

generally more polyunsaturated fatty acid (PUFA) chains than
BAD. And it has been previously shown that increasing degrees of
chain unsaturation increases the rate of diffusion,101,102 which
seems to describe the case between BH and BAD (Fig. 5b and e).
Thus, we believe that the difference between BH800 and BH
results from system size effects as well as short simulation time
lengths. As the larger membranes of course have more of each
lipid species, we will therefore achieve better sampling of the
lipid diffusion of a given species in the larger membranes. This
would be particularly true for the lipid species which are minor
components of the membrane.

4 Conclusions

In this manuscript, we have conducted atomistic simulations to
compare between bilayers containing simplistic (POPC and
POPC–CHOL) and complex (BH800/BH and BAD800/BAD) lipid
compositions. We present the first atomistic simulations of
realistic human brain membrane models (under healthy and
Alzheimer’s diseased conditions) incorporating 27 lipid types
that range in lipid headgroups, lipid tail lengths, degrees of
saturation, as well as symmetry and asymmetry in the lipid tails.
Our studies demonstrated effective differences in the properties
between the simple and heterogeneous membranes, especially
in the dipole potential and lateral diffusion. As homogeneous
PC bilayers are commonly used to investigate the permeability
of small molecules across the membrane,103–105 it is worth
noting that the decreased potential barriers in simple models

Fig. 5 Plots of the mean squared displacement as a function of time for each of the simulated membranes. Diffusion coefficients (D) as calculated from
the slopes of these curves are used for qualitative comparisons between the various lipids.
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could alter the permeation mechanisms of small molecules
compared to membranes of similar complexity as found in actual
biological cells. But of course, other factors at play include the
permeate size, membrane organisation phase, etc.106 Whilst POPC–
CHOL seems a good approximation to the complex membranes,
there is however a significant qualitative difference in the diffusion
dynamics, which could also affect studies of permeability.107,108 The
decreased diffusion of lipid molecules in the model BAD membrane
is consistent with the findings that decreased lipid fluidity leads to
accelerated amylodogenic processing of the Alzheimer’s Precursor
Protein.109

In addition, we have demonstrated that the hydrocarbon
tails of the lipid molecules have a tendency to snorkel towards
the membrane’s interface with the aqueous surroundings. We
correlated the likelihood of a lipid tail to snorkel with increasing
degrees of unsaturation in the hydrocarbon chains as well as
longer tail length. Also, we observe that lipid snorkeling is more
common in the more disordered membrane (POPC) where there
is less steric hindrance to the motion of the lipid tails. We have
also shown that there is a direct correlation between the amount
of snorkelling observed in a lipid bilayer and the amount of
water that is able to permeate into the membrane. This suggests
that lipid snorkeling may play a role in the ability of small
molecules to permeate across biological membranes. Continuing
to understand the mechanisms that induce changes to the
membrane mechanics and biophysics, and therefore cell functions
will prove beneficial in developing new therapeutic strategies for
the prevention and treatment of Alzheimer’s disease and other
neurological diseases.
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