Chemical Science

Check for updates Cite this: Chem. Sci., 2021, **12**, 15772

Correction: HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes

ROYAL SOCIETY OF **CHEMISTRY**

View Article Online

View Journal | View Issue

Elisabetta Alberico, (1)*** Thomas Leischner, * Henrik Junge, (1)*** Anja Kammer, * Rui Sang, (1)*** Jenny Seifert, * Wolfgang Baumann, (1)*** Anke Spannenberg, * Kathrin Junge (1)***

DOI: 10.1039/d1sc90239c

rsc.li/chemical-science

Correction for 'HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes' by Elisabetta Alberico *et al., Chem. Sci.,* 2021, **12**, 13101–13119, DOI: 10.1039/D1SC04181A.

The authors regret that in Scheme 2 of the original article, complexes 7 and 8 were drawn incorrectly. The solid-state structure of both complexes, as established by X-ray analysis, had been previously reported (7 (ref. 1) and 8 (ref. 2)). In both complexes, the PNP ligand adopts a facial tridentate coordination to molybdenum and not a meridional one, as erroneously shown in Scheme 2 of the original article. The correct ligand arrangements in the metal coordination sphere for complexes 7 and 8 are reported below in Scheme 1.

Scheme 1 Mo-PNP complexes tested in the dehydrogenation of HCOOH.

^eLeibniz-Institut für Katalyse e. V., Albert-Einstein Straße 29a, 18059 Rostock, Germany. E-mail: henrik.junge@catalysis.de; matthias.beller@catalysis.de ^bIstituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, tr. La Crucca 3, 07100 Sassari, Italy. E-mail: elisabetta.alberico@cnr.it

Correction

Please note that complex **8** is also shown in Scheme 4 in the proposed mechanism for HCOOH decarbonylation (green part), and in Fig. 2. In both cases, the correct structure for complex **8** is reported below in Scheme 2 and Fig. 1.

Scheme 2 Proposed mechanisms for HCOOH dehydrogenation (red), disproportionation (blue) and decarbonylation (green) promoted by 5. Evidence for the formation of a Mo(w) species is based on the detection by NMR of H₂ and HD following addition of DCOOD to $Mo(H)_n$ species (see Fig. SI-31).

Fig. 1 ¹H and ³¹P(¹H) NMR spectra of a toluene-d₈ solution of $\{Mo(CH_3CN)(CO)_2(HN[(CH_2CH_2P)(CH(CH_3)_2)_2]_2\}$ 4 in the presence of 100 equivalents of HCOOH ([Mo] 10⁻² M, [HCOOH] 1 M), before (a) and after heating at 90 °C for 1 hour (b). Spectra were recorded at room temperature. Signals related to complex 5 are marked by red dots.

Fig. 2 Molecular structure of {Mo(CO)₂(CH₃CN)[CH₃N(CH₂CH₂P(CH(CH₃)₂)₂)] 9. Displacement ellipsoids correspond to 30% probability. Hydrogen atoms are omitted for clarity.

Furthermore, a mistake was made in the caption of Fig. 6, showing the solid-state structure of complex 9: the latter has been incorrectly described as a Mo(1)-hydride species { $Mo(H)(CO)_2(CH_3CN)[CH_3N(CH_2CH_2P(CH(CH_3)_2)_2)_2]$ }. The correct formula, in agreement with the X-ray structure, is as follows and is shown above in Fig. 2: $\{MO(CO)_2(CH_3CN)[CH_3N(CH_2CH_2P(CH(CH_3)_2)_2)_2]\}$. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Notes and references

- 1 T. Leischner, A. Spannenberg, K. Junge and M. Beller, Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles, ChemCatChem, 2020, 12, 4543.
- 2 T. Leischner, A. Spannenberg, K. Junge and M. Beller, Molecular Defined Molybdenum-Pincer Complexes and Their Application in Catalytic Hydrogenations, Organometallics, 2018, 37, 4402.