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Introduction

The growing demand for propene has motivated its on-purpose
production through the propane dehydrogenation reaction
(PDH, Scheme 1A). However, catalysts used at the industrial
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Uncovering selective and active Ga surface sites in
gallia—alumina mixed-oxide propane
dehydrogenation catalysts by dynamic nuclear
polarization surface enhanced NMR spectroscopy
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Gallia—alumina  (Ga,Al),Oz3(.,) spinel-type solid solution nanoparticle catalysts for propane
dehydrogenation (PDH) were prepared with four nominal Ga : Al atomic ratios (1:6, 1:3, 3:1, 1:0)
using a colloidal synthesis approach. The structure, coordination environment and distribution of Ga and
Al sites in these materials were investigated by X-ray diffraction, X-ray absorption spectroscopy (Ga K-
edge) as well as 27Al and *Ga solid state nuclear magnetic resonance. The surface acidity (Lewis or
Bronsted) was probed using infrared spectroscopy with pyridine and 2,6-dimethylpyridine probe
molecules, complemented by element-specific insights (Ga or Al) from dynamic nuclear polarization
surface enhanced cross-polarization magic angle spinning *N{¥’Al} and **N{"*Ga} J coupling mediated
heteronuclear multiple quantum correlation NMR experiments using 15N-labelled pyridine as a probe
molecule. The latter approach provides unique insights into the nature and relative strength of the
surface acid sites as it allows to distinguish contributions from Al and Ga sites to the overall surface
acidity of mixed (Ga,Al),O3 oxides. Notably, we demonstrate that (Ga,Al),O3 catalysts with a high Al
content show a greater relative abundance of four-coordinated Ga sites and a greater relative fraction of
weak/medium Ga-based surface Lewis acid sites, which correlates with superior propene selectivity, Ga-
based activity, and stability in PDH (due to lower coking). In contrast, (Ga,Al),O3 catalysts with a lower Al
content feature a higher fraction of six-coordinated Ga sites, as well as more abundant Ga-based strong
surface Lewis acid sites, which deactivate through coking. Overall, the results show that the relative
abundance and strength of Ga-based surface Lewis acid sites can be tuned by optimizing the bulk

Ga : Al atomic ratio, thus providing an effective measure for a rational control of the catalyst performance.

scale, i.e. CrO,/Al,0; (Catofin process) or PtSn/Al,O; (Oleflex
process), still suffer from shortcomings, such as toxicity
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Scheme 1 (A) Competing propane dehydrogenation (PDH) and

propane cracking reactions. (B) A possible coordination geometry for
a Gay—0O-Gay, surface linkage with the attribution of Lewis acidity
strength according to the >N chemical shift of bound pyridine probe
molecule.’? SP stands for square pyramidal.
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concerns associated with the use of Cr®" and the high cost of
Pt."? Catalysts based on gallium oxide (gallia) have been
considered as possible alternatives to CrO, and PtSn-based PDH
catalysts."® More recently, a PtGa/Al,O; catalyst has been
developed for the use in the FCDh (fluidized catalytic dehy-
drogenation) process, which allows energy usage (and therefore
the carbon footprint) of PDH to be reduced.’ However, the role
of platinum in PtGa catalysts is currently debated, ranging from
a promoter of coordinately unsaturated Ga®" active sites,* to the
active phase itself, such as site-isolated Pt atoms in metallic
PtGa alloyed nanoparticles.®

In this context, the atomic-scale understanding of active sites
in Ga,0;-based PDH catalysts is essential.®® It has been argued
that the active sites in gallia catalysts are tetracoordinated (Gayy)
Lewis acidic Ga®' surface sites,™® associated with weak Lewis
acidity.’”" In B-Ga,0;, weak Lewis acid sites (LAS, assessed
using pyridine as a probe molecule) active in PDH have been
attributed to tricoordinated Ga sites (Gay;) with a neighboring
oxygen vacancy (V,, when x = 0 in Scheme 1B)."? In contrast,
stronger LAS have been associated with an accelerated catalyst
deactivation through coking and linked to pentacoordinated Ga
surface sites (Gay, likely with square pyramidal (SP) geometry,
formed when surface termination contains Ga in octahedral
positions, Scheme 1B).”> In addition to coking, another unde-
sired side reaction that competes with PDH is the cracking of
propane, which forms methane and ethene (Scheme 1A).
Cracking could be caused by either Lewis or Brgnsted acidity.™
PDH and cracking reactions proceed on different sites in Ga,0O;
catalysts since the rate of propene formation and propene
selectivity decrease with time on stream (TOS) but the selectivity
to cracking products and their rate of formation is stable with
TOS."

One strategy to control the distribution of bulk Ga;y and Gay;
sites, and thereby presumably also influence the coordination
environment of surface Ga sites, is to exploit (Ga,Al),0; spinel-
type solid solutions as alkane dehydrogenation catalysts.**'* In
these materials, the bulk Gay : Gay; ratio can be varied since Al
atoms preferentially occupy octahedral positions in the defect
spinel-type structure of Ga,0s," increasing thereby the relative
fraction of Gap sites (i.e.,, the proposed active sites). For
instance, gallia-alumina mixed oxides prepared by coprecipi-
tation demonstrated an improved activity and stability in PDH
and lower coke-related deactivation relative to the y-Ga,0;
benchmark.® The reduced deactivation and increased activity
might be related to the higher relative fraction of weak LAS in
(Ga,Al),0; (as assessed by NH3-TPD) and linked to a higher
relative density of undercoordinated Ga sites, such as putative
Gayy; sites discussed above.”**> Note that the alkane dehydroge-
nation activity of various phases of Al,O; (o-, d-, -, 6-) is
generally low and requires a pre-treatment with CO or H, at
high temperature (600 °C) to become considerable.’®'” Due to
their limited activity, Al,O; catalysts are typically tested in PDH
at substantially higher temperatures (600-630 °C) relative to
Ga,0; catalysts (550 °C).***®

DFT studies proposed that doping (100) and (110) y-Al,O3
surfaces with Ga could lead to Al-rich gallia-alumina solid
solutions with an increased dehydrogenation activity."*® The
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presence of Ga sites has been suggested to increase the activity
of such surfaces by lowering the C-H activation barriers of the
kinetically favored concerted alkane dehydrogenation
pathway.” In addition, the increase in PDH activity of the Ga-
doped (110) y-Al,O3 surface was attributed to vicinal Aly; and
Gayy sites.”® However, an experimental determination of the
coordination geometry, Lewis acidity and performance in PDH
(i.e., activity, selectivity and stability) of Ga surface sites in the
presence of Al surface sites on the surface of mixed (Ga,Al),03
catalysts is highly challenging.

Dynamic nuclear polarization surface enhanced NMR spec-
troscopy (DNP SENS) has emerged over the last decade as
a unique approach to probe the surface structure of active sites
in catalytic materials.”® For instance, it has been recently
demonstrated that unique structural information could be ob-
tained on the nature and relative strength of acid sites in
alumina or silica-alumina materials from >N DNP enhanced
NMR spectroscopy using '°N-labelled pyridine as a probe
molecule.”***

In this work, we prepare nanocrystalline (Ga,Al),O; solid
solution nanoparticles (NPs) via a colloidal route from Ga** and
A" acetylacetonate precursors and oleylamine. Al-rich
(Ga,Al),05(1 . 6) produces the least amount of coke (and deacti-
vates least with TOS), while (Ga,Al),O;(; . 3) is the most active
catalyst (initial Ga-based activity). The variation of the PDH
performance of (Ga,Al),0; NP catalysts is related to their surface
acidity, assessed by Fourier transform infrared (FTIR) studies of
adsorbed pyridine and 2,6-dimethylpyridine probe molecules,
in addition to element-specific insights from a combination of
DNP SENS experiments, namely cross-polarization magic angle
spinning (CPMAS), ">N{*’Al} and ">N{"'Ga} J coupling mediated
heteronuclear multiple quantum correlation (JJHMQC) experi-
ments, using adsorbed '’N pyridine. These studies provide
atomic level insights on the coordination geometry and Lewis
acidity of surface sites, allowing one to categorize individual
contributions of Al and Ga Lewis sites. In addition, we correlate
element-specific Al and Ga Lewis acidity to the distribution of
coordination environments of bulk Ga (Gay, and Gay;) and Al
(Alyy, Aly and Aly,) sites obtained from fittings of *’Al and "'Ga
solid-state NMR spectra. The improved propene selectivity,
stability and Ga-based activity of Al-rich catalysts is related to an
increased relative abundance of surface Gap,~O-Aly; linkages.
These active sites feature a decreased Lewis acidity of Ga atoms
relative to the Lewis acidity of Ga atoms in gallia-only or
(Ga,Al),0; materials with low Al content, which is directly
related to their high Ga-based catalytic activity, propene selec-
tivity and stability in PDH.

Results
Synthesis and characterization

Colloidal solutions of gallia-alumina nanoparticles were
prepared by heating Ga(acac); and Al(acac); precursors in
oleylamine (200 °C, 7 h), using four nominal Ga: Al molar
ratios, ie. 1:6, 1:3, 3:1 and 1:0, the latter composition
provided an Al-free y-Ga,O; NPs benchmark (Fig. 1).>* The
synthesis of colloidal Al,O; NPs by the same method was

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) Synthesis of (Ga,Al),O3 . ,) catalysts, where the x : y index
indicates the nominal Ga : Al molar ratio used for the synthesis (1 : 6,
1:3,3:1, 1:0). (B) A representative TEM image of as-prepared
(Ga,Al),03( . 3y nanoparticles in toluene colloidal solution.

unsuccessful (i.e., no material could be isolated). The diameters
of the as-synthesized NPs as determined by TEM were below
5 nm for all compositions (particle agglomeration prevents
a more precise assessment of the particle size distribution, see
Fig. 1 for a representative TEM image). After washing (see ESIT
for details), the toluene colloidal solutions were dried and
calcined (650 °C, 2 h) to give (Ga,Al),O3(.y) NPs, where x:y
denotes the nominal molar Ga : Al ratio used.

The specific surface areas and pore diameters of the
prepared materials were determined by applying the Brunauer—
Emmett-Teller (BET) method and Barrett-Joyner-Halenda
(BJH) model to the N, physisorption data, respectively (Table
S1t). The addition of Al(acac), in the synthesis of (Ga,Al),O3x . y)
NPs leads to a notable increase of the BET surface area of the
calcined materials, that is from 98 m® g~ * for Ga,O; NPs (x : y =
1:0) to ca. 245-286 m” g~ ' for Al-containing (Ga,Al),Osy . )
NPs; an increase of the BJH pore diameter accompanies the
increase of the BET surface area (Table S1+).

Inductively coupled plasma - optical emission spectroscopy
(ICP-OES) measurements were performed to compare the
experimental atomic Ga : Al ratios to the nominal compositions
used (Table S1t). The ICP-OES determined Ga: Al ratio is
closest to the nominal ratio in (Ga,Al),O5(; . 6) (1 : 5.6), and are
ca. 2:1 and 1:2 for (Ga,Al),0;;3.4 and (Ga,Al),Oy . 3),
respectively.

The X-ray powder diffractograms of the (Ga,Al);O;( .y
materials display peaks of the vy-phase (cubic spinel-type
structure, Fig. S11).>®* We have recently reported that calcina-
tion of y-Ga,0O; NPs, prepared by a colloidal route from
Ga(acac); and oleylamine, induces a phase transition of -
Ga,0; to the thermodynamically stable monoclinic B-Ga,O;
phase. This transition starts already at ca. 300 °C in the local
environment of the Ga atoms, while the transformation of the
periodic structure sets in at ca. 550 °C.>” Therefore, we assessed
to which extent calcined (Ga,Al),O3(x . yy materials (650 °C, 2 h)
have undergone this spinel-type-to-monoclinic phase transi-
tion. While the gallia-only material (Ga,Al),Oj3(1 ; o) shows clearly
peaks of the B-Ga,O; phase (marked by red symbols in Fig. S17),
the X-ray diffraction (XRD) patterns of Al-containing (Ga,Al),05
nanoparticles are consistent with a cubic spinel-type structure
with no apparent transformation to the monoclinic phase
(Fig. S1%), i.e. Al atoms stabilize notably the spinel struc-
ture.>**>' A linear increase of the lattice parameter (a) is
observed with increasing Ga at% in (Ga,Al),O;( . ) materials
(Fig. S17), explained by the lower atomic radius of Al compared

© 2021 The Author(s). Published by the Royal Society of Chemistry
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to that of Ga (125 pm and 130 pm, respectively).** Using the
Scherrer equation,* we estimated the average crystallite sizes in
(Ga,Al),O5(x.y) NPs and observed a decrease of the average
crystallite size when Al is introduced into the structure of y-
Ga,0;, i.e. from ca. 5 nm in Ga-only (Ga,Al),05; . gy to 2-3 nm in
Al-containing materials (Table S1t). Overall, the XRD data is
consistent with the formation of a solid solution with a spinel-
type structure in all gallia-alumina materials.*

Ga K-edge X-ray absorption near edge structure (XANES)
spectra of (Ga,Al),Oj3( . 5y materials provide information about
the relative abundances of Gay, and Gay; sites in the prepared
materials. The features at ca. 10 375 eV and 10 380 eV are
related to Gayy and Gay; sites, respectively.** Consistent with
previous studies,* increasing the content of Al atoms in
(Ga,Al),03(x . ) materials leads to a higher relative fraction of
Gayy sites, as seen from the increased intensity of the white line
feature of the Gayy sites (and the correspondingly decreased
intensities of Gay; features), in particular for (Ga,Al),05(; . ¢) and
(Ga,Al),Og5(1 . 3) (Fig. 2A). The local environment around Ga, was
investigated by the extended X-ray absorption fine structure
(EXAFS), exhibiting two distinguishable peaks due to Ga-O and
Ga-Ga/Al coordination shells (Fig. 2B). The corresponding
fittings provided average coordination numbers (CN) and
average interatomic distances. We modeled the EXAFS data
using one average Ga-O shell and two Ga-Ga/Al subshells. In
general, shorter average Ga-O distances and lower average Ga-
O coordination numbers can be related to a higher fraction of
Gayy sites. The fitting results presented in Table S2 and Fig. S2
show a decrease in the average Ga-O distances and coordina-
tion numbers with increasing Al loadings in the (Ga,Al),05( . )
materials, consistent with the corresponding XANES data. In
particular, the average Ga-O distance decreases from 1.91(1) to
1.89(1), 1.86(1) and 1.84(1) A for (Ga,Al),O., NPs with
increasing nominal Al content from1:0to3:1,1:3and1:6
(Table S27).

The relative distributions of Ga and Al sites between tetra-
hedral and octahedral geometries were then assessed quanti-
tatively using *’Al and "'Ga magic-angle spinning nuclear
magnetic resonance spectroscopy (MAS NMR). >’Al MAS NMR
spectra feature asymmetric peaks due to distorted Alyy and Aly;
sites centered at ca. 70 and 15 ppm, respectively, although an
additional minor peak at ca. 35 ppm, attributed to Aly sites,
appears in Al-rich (Ga,Al),05; . 6) (Fig. 2C).* 7'Ga MAS NMR
spectra show two peaks located at ca. 150 and 30 ppm, associ-
ated with distorted Gayy and Gay; sites, respectively (Fig. 2D).**
Quantification of the relative ratios, average isotropic chemical
shift (8;s0), distribution of isotropic chemical shift (Ad;,) and
average quadrupolar coupling constant (Cq) of the Ga and Al
sites in the materials was performed using the Gaussian
isotropic model (GIM) or Czjzek model implemented in the
DMFit software (Fig. S3, Tables S3 and S47).>*® In the case of
"'Ga, the quadrupolar interaction is significantly larger than the
spinning speed, and the computation takes into account the
latter to reproduce the many spinning sidebands observed for
this nuclei. The relative abundance of Gayy sites in the prepared
materials increases with Al content, i.e. from 57% in (Ga,Al),-
O3(3: 1) to 72% in (Ga,Al),O3(; . 3y and 86% and (Ga,Al),O05(1 ;)

Chem. Sci., 2021, 12, 15273-15283 | 15275
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Fig.2 Structural characterization of the calcined (Ga,Al),Osx - ,) materials. (A) Ga K-edge XANES spectra, and (B) Fourier transform of the EXAFS
data of (Ga,Al),O3 . ;) NPs. Captions in (A) indicate features corresponding to Gayy and Gay, sites and captions of the peaks in (B) indicate the Ga—
O and Ga-Ga/Al coordination sphere. Panels (C) and (D) show 2’Al and "*Ga MAS NMR spectra, respectively, obtained at 700 MHz in 1.3 mm
rotors spun at 50 kHz. (E) ADF-STEM images of (Ga,Al),Os . 3 showing terminating rows of octahedral cation sites. In (F), the region in the white
box features a spinel-type structure oriented along the [100]-zone axis (FFT pattern is shown in the top right inset), with arrows indicating Ga
atoms in tetrahedral and octahedral crystallographic positions. In (G), the image shows a (Ga,Al),Oz; . ¢) particle, also oriented along the [100]-
zone axis, where the arrows indicate preferential occupation of tetrahedral sites by Ga. The spinel model in (H) shows Ga occupying both
tetrahedral and octahedral positions, as in the case of (Ga,Al),Oz; - 3. (I) Shows an ADF-STEM model for the spinel structure along the [100]-zone

axis, where Ga and Al occupy tetrahedral and octahedral positions, respectively.

(Fig. S3, Table S3t). The highest amount of Aly; sites (92%) is
found in (Ga,Al),053 . 1), and this amount decreases to 88% and
66% for (Ga,Al),05(; . 3) and (Ga,Al),O;(; ; 6), I.e. With increasing
Al content. In Al-rich (Ga,Al),05(; . ), the fitted fraction of Al
sites is 22%, and decreases to 12% and 8% in (Ga,Al),O5( . 5
and (Ga,Al),053 . 1), respectively (Fig. S3, Table S4t). The fitted
fraction of Aly sites in (Ga,Al),Oj3(; ; 6) is 12%. This value appears
to be slightly higher than the Aly values reported for y-Al,O3 (5-
10%).*® Residual amounts of Aly sites (<10%) could be possibly
present in (Ga,Al),O3( . 3), but their low intensity and high
intrinsic error in the fit (due to strongly overlapping contribu-
tions) does not allow to accurately quantify them. Besides
a slight decrease in the chemical shifts with increasing Al
content, no notable changes could be observed neither in the
average chemical shifts nor in the average quadrupolar
couplings between the different (Ga,Al),O; materials (Fig. S3,
Table S4t). The spectra of (Ga,Al),O;(; . ) are complicated by the
coexistence of y and B polymorphs, and no robust simulations
could be performed in this case. The B polymorph is neverthe-
less known to show both Gay; and Gayy environments with 6;5, =
40 and 200 ppm and Cq = 13.4 and 17.5 MHz, respectively.*’
Annular dark-field scanning transmission electron micros-
copy imaging (ADF-STEM) was carried out to obtain insight into
the distribution of Ga and Al sites (distinguished by a brighter
contrast for Ga atoms relative to Al atoms) on the surface of

15276 | Chem. Sci, 2021, 12, 15273-15283

(Ga,Al),05(1 . 3) and (Ga,Al),O3(; . ) nanoparticles. While the
particles are often found to be poorly crystalline (Fig. S4t), we
observe that the terminating surfaces have an enhanced
contrast over the bulk (marked by arrows in Fig. 2E, corre-
sponding to (Ga,Al),O3(; . 3)). For v-Al,Oj, it has been suggested
that this enhanced contrast is due to aluminum-terminated
(111) and (100) planes.*»** This literature result is similar to
what we have reported for y-Ga,O; nanoparticles, which feature
Ga-terminated (111) facets in solely octahedral positions.”” In
a mixed (Ga,Al),0; oxide, the enhanced contrast at the particle
edge could be due to a mixture of Ga and Al cations. However,
given that Al atoms feature lower line profile intensities relative
to Ga atoms, the intensity line profile suggests that the particle
edge contains mainly aluminum cations (Fig. S57).

Based on ADF-STEM images of (Ga,Al),O3( .3 particles
(boxed region in Fig. 2F) and (Ga,Al),O3(; . ¢) (Fig. 2G), we can
observe an atomic arrangement that is characteristic for
a spinel-type structure (Fig. 2H) oriented along the [100]-zone
axis (FFT pattern in the top right inset in Fig. 2F). The spinel
tetrahedral and octahedral positions are distinguishable along
this zone axis. The non-spinel positions are not shown due to
their low occupancies and, therefore, low contribution to the
contrast of the ADF-STEM image. The analysis of the ADF-STEM
image shows that Ga atoms (bright dots) can be found in both
tetrahedral and octahedral positions (Fig. 2F). In

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(Ga,Al),03(; : 6), Ga atoms are found to occupy mainly tetrahe-
dral positions (marked by arrows in Fig. 2G), which is consistent
with the NMR and X-ray absorption spectroscopy (XAS) results
discussed above. Fig. 21 shows an ADF-STEM model for the
spinel structure oriented along the [100] zone axis, built on the
assumption that Ga occupies solely tetrahedral sites, while Al
occupies octahedral sites. A clear resemblance is observed
between the model in Fig. 21 and the experimental ADF image
shown in Fig. 2G, confirming the preferential Ga occupancies of
tetrahedral sites in (Ga,Al),Oj3(; . ). An additional discussion of
the results of the electron energy loss spectroscopy (EELS) and
X-ray photoelectron spectroscopy (XPS) is provided in the ESI
(Fig. S13 and S14, respectivelyt).

Catalytic tests and coke deposition

Catalytic tests were performed at 550 °C and at a weight hourly
space velociy (WHSV) = 7.2 h™" using 10% propane in N,. The
changes of the Ga weight-normalized (ICP based) rates of
formation of propene and cracking products (methane and
ethene) as well as the selectivity to propene with time on stream
are plotted in Fig. 3. The activity of the tested catalysts is
normalized by the Ga content determined by ICP-OES
measurements (mol C;Hg mol Ga™* h™') because, as we have
discussed above, the activity of unsupported Al-based catalysts
in PDH becomes significant only at higher temperatures (600-
630 °C) and requires a CO pre-treatment;'®” both of those
requirements are not available in our experiments. Therefore,
we consider Al sites inactive when tested in the present condi-
tions. Table S5f summarizes the propane conversions and
propene selectivities after 4 and 144 min TOS. The amount of
coke deposited by the catalysts (determined in a separate ther-
mogravimetric analysis (TGA) experiment) is presented as
weight gain (%) normalized by either BET surface area or
Ga wt% (Table S57). Surface area-normalized activities (based
on the surface area of the calcined NPs and expressed in pmol
C3;Hg m 2 h™ ") are also presented in Fig. S61 and summarized
in Table S6.71

The initial Ga-normalized activity after 4 min TOS decreases
as following: (Ga,Al),05(; . 3) > (Ga,Al),05(1 : 6) > (Ga,Al),O05(3 . 1) >
(Ga,Al),05: . o) (4.48, 3.41, 2.24 and 1.21 mol C3Hs mol Ga '
h™", respectively, Fig. 3A). While all catalysts deactivate, the
activity of (Ga,Al),05; . ) increases first to 4.51 mol C;Hg mol
Ga~ ' h™! within 24 min TOS, before deactivation also sets in for
this catalyst. After 144 min of TOS, the catalysts have deacti-
vated to varying extents, ie. the decrease of activity is less
pronounced for the Ga-poor materials (Ga,Al),O5( .6 and
(Ga,Al),05; : 3) (decrease to 3.32 and 2.67 mol C;Hs mol Ga!
h™", respectively) and more noticeable for the Ga-rich materials
(Ga,Al),05(; . 1) and especially (Ga,Al),O3; . ) (decrease to 0.6
and 0.2 mol C;Hg mol Ga~* h™, respectively). When comparing
the productivity, (Ga,Al),O3(; .3 also outperforms the other
three catalysts, showing productivities of 0.80 and 0.47 g C3He
gear K" after 4 and 144 min TOS, respectively (Fig. S7, Table
S6t).

The initial surface area-normalized activity shows a different
activity trend, ie. (Ga,Al)y034.0) > (Ga,Al)y053;5.1 >

© 2021 The Author(s). Published by the Royal Society of Chemistry
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(Ga,Al),051 : 3) > (Ga,Al),05(1 : 6), (125, 77, 66 and 39 pmol C;Hg
m~>h™", respectively, Fig. S6, Table S61), which is explained by
decreasing the surface density of active sites (Ga atoms) with
increasing Al content. Therefore, comparing the catalysts’
activity after normalization by their Ga content (as presented in
Fig. 3) may reflect the intrinsic activities of the active sites more
precisely, at least for (Ga,Al),O3(1.3), (Ga,Al),034.6 and
(Ga,Al),05(;5 . 1) catalysts that feature similar specific surface
areas (Table S1t). Noteworthy, the surface area-normalized PDH
activity and propene selectivity of the bulk y-Al,O; reference
catalyst are poor, i.e. ca. 8 pmol C3Hg m > h™', ca. 15 times
lower than the initial areal activity of (Ga,Al),O3(; . ¢), and 42%,
respectively (Fig. S87).

Interestingly, while the selectivity to propene declines with
TOS from 87% to 62% for (Ga,Al),05(; . o) and from 76% to 68%
for Ga-rich (Ga,Al),O33 ; 1y (after a ca. 20 min initial increase of
propene selectivity for this catalyst), the propene selectivity is
high and stable at ca. 86-90% for the Al-rich (Ga,Al),O; . 3y and
(Ga,Al),05(; . ) materials (Fig. 3B, Table S5t). (Ga,Al),Oy1 . o),
and the Al-rich catalysts (Ga,Al),O3( .3 and (Ga,Al),Oz( .6,
crack propane to methane and ethene with similar stable
activities of ca. 0.1 mol (C; + C,”) mol Ga~ " h™". (Ga,Al),053 . 1)
shows an initial cracking activity of ca. 0.4 mol (C; + C,~) mol
Ga ™' h™ ' that decreases within the first ca. 24 min TOS and then
stabilizes at ca. 0.16 mol (C; + C,~) mol Ga ' h™* (Fig. 3C).

In situ TGA measurements under reaction conditions show
that (Ga,Al),05(; . o) deposits higher amounts of coke per surface
area relative to the other catalysts studied and that the amount
of deposited coke decreases with the increasing Al content
(Table S57). In contrast, the reference y-Al,O; material shows no
detectable coke deposition. If the amount of coke is normalized
per Ga content, (Ga,Al),O5(; . 3) deposits the highest amounts of
carbon while Alrich (Ga,Al),0;(;.6 deposits the lowest
amounts of carbon.

Acidity of surface sites by Py-FTIR

To probe the nature of the surface acid sites (i.e., Brensted vs.
Lewis), their strengths and distributions, a Fourier-transform
infrared spectroscopy study was performed using pyridine as
a probe molecule (Py-FTIR). Pyridine was adsorbed at room
temperature on self-supporting pellets of the catalysts that had
been previously outgassed at 500 °C under ca. 10> mbar for 2 h,
followed by pyridine desorption at room temperature, 100, 200
and 300 °C.** The spectra and description of results obtained
are presented in the ESI (Fig. S9-S11. Table S7t). In brief, we
observe that bands ascribed to Py on weak LAS are more
abundant in Al-rich (Ga,Al),0;( .6 and (Ga,Al),Os( .3y NPs.
Strong LAS are present in all four (Ga,Al),0; catalysts, but their
relative fraction is lowest in Al-rich (Ga,Al),O5(; : 6). Experiments
were also performed using 2,6-dimethylpyridine as the probe
molecule, but these experiments did not yield additional
insights relative to the Py-FTIR results (Fig. S127).

Acidity of surface sites by DNP SENS of adsorbed *°N pyridine

In order to obtain further insight into the strength, the distri-
bution and the nature of LAS and BAS on the surface of
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(Ga,Al),05 NPs, dynamic nuclear polarization surface enhanced
NMR spectroscopy®® of adsorbed '°N-labelled pyridine was
applied. This surface selective spectroscopy has been recently
shown to be a powerful approach to characterize acid surface
sites because the "N chemical shifts are sensitive to the nature
and strength of pyridine adsorption onto Lewis or Brgnsted
surface sites.'>?>>*1

DNP enhanced "N{'H} CPMAS spectra were acquired for
(Ga,Al)203(1 : 6) (Ga,Al)ZO3(1 : 3) (Ga,Al)203(3 :1) and (Ga,Al)z-
O3(1 : o) (Fig. 4A). Three major peaks resonating at ca. 240, 265
and 281 ppm are identified from the CPMAS spectrum of
(Ga,Al),03(; . ), which are assigned to strong, medium and weak
gallium LAS, respectively (Fig. 4A).” A minor peak is also
observed at ca. 305 ppm corresponding to pyridine adsorbed on
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Fig. 3 Results of the PDH catalytic tests, i.e. Ga weight-normalized
activity (A), selectivity to propene (B), and formation rates to cracking
products (combined rates to ethene and methane), (C) for the
(Ga,Al),05 catalysts. WHSV = 7.2 h™%, T = 550 °C. Initial and final
conversions and selectivities are presented in Table S5,1 while surface
area-normalized, Ga-weight normalized activities and productivities
are in Table S6.1

15278 | Chem. Sci, 2021, 12, 15273-15283

View Article Online

Edge Article

weak BAS. It should be noted that the peak at 281 ppm has been
commonly linked to the presence of weak or mild BAS, in
particular in silica- and silica-alumina supported materials with
abundant surface silanols; however, we have recently shown,
based on DFT modeling and chemical shift calculations on
gallia materials, that a peak at this chemical shift is related to
weak LAS rather than to weak or mild BAS (i.e., GaOH sites).*> In
the CPMAS spectrum of (Ga,Al),O3; . 1) the three mentioned LAS
peaks are observed as well, while the minor peak at ca. 305 ppm
disappears, suggesting that the amount of weak BAS associated
with Ga is reduced when Al is introduced. Deconvolution of the
CPMAS spectra of (Ga,Al),O3;.3) and (Ga,Al),05; ) clearly
demonstrates that increasing further the content of Al results in
the appearance of an additional strong LAS peak resonating at
ca. 234-235 ppm (Fig. 4A; Table S87). This emerging site is likely
related to surface Al atoms. The CPMAS spectrum of (Ga,Al),-
Os(1:6) shows the minor peak at ca. 305 ppm again, corre-
sponding to weak BAS. Due to the high content of Al in this
material, this weak BAS probably relates to aluminols instead of
=GaOH sites. By comparing the CPMAS spectrum of (Ga,Al),-
O5(3 : 1) with that of (Ga,Al),O3(1 . ), We observe that the intensity
of weak LAS peak at ca. 281 ppm decreases with the incorpo-
ration of Al (from 14% to 11-9%, see Table S8t). Varying further
the ratio between Ga and Al in a large range (i.e., from 3 : 1 to
1: 6 nominal ratio) does not significantly change the relative
amount of weak LAS (ca. 10%). In parallel, we observe clearly
that the intensity of the strong LAS peak at around 241 ppm
decreases with increasing Al content.

Element-specific (Ga or Al) acidity of surface sites

In the materials containing both Ga and Al, the surface acidity
can be associated with either Ga or Al atoms. To further char-
acterize the nature of the LAS observed in the "’N{'H} CPMAS
spectra, 1D “N{*’Al} J-HMQC spectra were acquired for
(Ga,Al),05(1 : 6), (Ga,Al),05(; . 3y and (Ga,Al),O53 . 1) (see Fig. 4B).
This experiment relies on the existence of a sizeable J coupling
between '°N and 2’Al spin pair and therefore can be used to
probe Al-based LAS; the one-bond j(**N->’Al) coupling value
increasing with Lewis acidity. We first note that the signal-to-
noise ratio of the N{*’Al} J-HMQC spectrum of (Ga,Al),-
Oj33 . 1) is relatively low due to the low Al content. Nevertheless,
the spectrum clearly shows that the aluminum Lewis acid sites
contribute to the resonances observed in the 260-280 ppm
chemical shift range. Strong aluminum LAS peaks are also
identified at 234 ppm in the spectra of (Ga,Al),O5(;.6) and
(Ga,Al),O5(1 . 3), with relative intensities around 19 and 20%,
respectively (Fig. 4B; Table S97). This peak is hardly detectable
in the spectrum of (Ga,Al),O3; . 1). These results agree well with
what we observe in the corresponding CPMAS spectra (Fig. 4A),
i.e. confirming that the resonance at around 234 ppm relates
exclusively to strong Al-based LAS. The deconvolution also
shows the presence of a weak resonance at ca. 242 ppm in these
two spectra. The intensity of this peak increases with the
content of Al, which is contrary to its behavior in the CPMAS
spectra of Fig. 4A. In addition, there is a difference between the
full widths at half maximum (FWHM, in ppm) of this resonance

© 2021 The Author(s). Published by the Royal Society of Chemistry
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in (Ga,Al),05(; . ) and (Ga,Al),O3(; . 3), decreasing from ca. 15
and 15.6, respectively, in the CPMAS spectra to around 9.3 ppm
in N{*’Al} JJHMQC spectra (see Tables S8 and S91). This
implies that the resonance at around 242 ppm has contribu-
tions both from Ga and Al Lewis acid sites and that the relative
amount of Ga-based strong LAS decreases when the content of
Al is increased. The Al-based medium LAS peak that resonates
at ca. 263-264 ppm is slightly shifted upfield (by 1 to 3 ppm)
with respect to the chemical shift extracted from the CPMAS
spectra, and its linewidth increases with Al content, viz. from
a FWHM of 16 ppm in (Ga,Al),O3; ; 1) to 20 and 23 ppm. This is
in contrast to what is observed for the medium LAS peak in the
CPMAS spectra, where the linewidth remains within 26.4 and
23.3 ppm in all materials (Table S8t). These two observations
indicate that both Ga- and Al-based medium LAS contribute to
the shifts in the 260-265 ppm range. Finally, the peak reso-
nating at ca. 275-277 ppm can be assigned to Al-based weak
LAS. The relative intensity of this peak decreases when the Al
content increases, Le. from 28% in (Ga,Al),O3; . 1) to 16% in
(Ga,Al),03; ; 3y and 6% in (Ga,Al),O5(; : 6). In the corresponding
CPMAS spectra, the weak LAS peak appears at 282 ppm and its
intensity remains between 9-11% in the Ga-Al materials. This
indicates that weak LAS also have contributions from both Ga
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and Al A 1D "N{"'Ga} JJHMQC spectrum of (Ga,Al),Oy . 1)
(natural abundance of "'Ga is 30.8%) has also been recorded
and is presented in Fig. 4C. While the signal-to-noise ratio does
not allow for the unambiguous observation of the strong
gallium Lewis acid sites at around 240 ppm in (Ga,Al),O53 : 1),
we observe clearly a broad resonance in the 260-280 ppm range,
with a maximum at ca. 276 ppm, which confirms the presence
of Ga-based weak LAS at this chemical shift (and rules out the
assignment of this peak to Py on weak/mild BAS).

Discussion

Our study shows that an increasing Al content leads to higher
amounts of Gap sites in (Ga,Al),0; nanoparticle catalysts,
influencing thereby the distribution and properties of the
surface sites and in turn the catalytic performance of the
materials. In particular, an increased selectivity and stability
was reported for (Ga,Al),0; catalysts with high Al contents, i.e.
with a high fraction of Gayy sites.” Results of the present study
further advance our understanding of (Ga,Al),O; catalysts by
disentangling element-specific contributions of Ga or Al sites to
the overall Lewis acidity and by correlating these new insights to
catalytic properties and the relative populations of bulk Gary,

C 276
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Fig. 4 Deconvoluted CPMAS (A) and N{*’Al} J-HMQC (B) spectra of (Ga,Al),Oz materials. The peak intensities are normalized with respect to
the most intense peak in each spectrum. Peak maxima and fitting results are summarized in Tables S8 and $9.+ *®N-Py was desorbed at 100 °C.
(C) Comparison of **N{"*Ga} J-HMQC spectrum with CPMAS and *N{*’Al} J-HMQC spectra of (Ga,Al),Oxs - 1). The red box marks the feature at
ca. 276 ppm attributed to Py on weak Ga LAS. Panel (D) shows a sketch explaining the observed variation of Lewis acidity of Ga—O-Ga and Ga—
O-Al linkages with increasing substitution of Ga atoms in octahedral positions by Al atoms.
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Fig. 5 Schematic representation of the distribution of bulk metal sites
(MIV and M\/|, M = Ga,Al) in (Ga,Al)203(3 :1) and (Ga,Al)ZOm ) Catalysts
as well as the representative surface sites in these materials. The nature
of surface metal sites and their Lewis acidity is linked to their perfor-
mances in PDH.

and Gay; sites as well as Alyy, Aly and Aly; sites. Our experi-
mental results are graphically summarized in Fig. 5 and dis-
cussed in detail below.

We observe that in contrast to the Ga-only benchmark
(Ga,Al),03; ; 0), which transforms after calcination at 650 °C
partially into the monoclinic B-phase, Al-containing (Ga,Al),0;
materials retain their cubic spinel-type structure (y-phase)
characteristic of the as-prepared (Ga,Al),03; NPs. The addition of
Al decreases the average crystallite size of (Ga,Al),O; NPs (from
ca. 5 nm nm in (Ga,Al),O3; . ¢) to ca. 2-3 nm in (Ga,Al),O53 : 1),
(Ga,Al),05; ; 3) and (Ga,Al),O5(1 : 6)) and increases the specific
surface area of the Al-containing materials, by ca. 2.5-2.9 times
(note that the molecular weight of Al is ca. 2.6 times lower than
that of Ga). Ga K-edge XAS, *’Al and "'Ga MAS NMR data
confirm that increasing the fraction of Al in the materials leads
to a higher fraction of Gayy sites, with Al cations found hexa-
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(major), tetra- (minor) and penta-coordinated (minor, only in Al-
rich (Ga,Al),05(; . 3y and (Ga,Al),O3(; . ) materials). Interestingly,
the (Ga,Al),0;(; . ) catalyst demonstrates the highest Ga-based
activity and selectivity in PDH, as well as a reduced deactiva-
tion (26% after 144 min TOS, relative to the highest activity after
24 min TOS). This contrasts with the Ga-rich catalysts
(Ga,Al),05(; . 1) and (Ga,Al), 054 ; o), that deactivate strongly with
time on stream (by 76% and 81% after 144 min TOS). This order
of deactivation correlates with the amount of deposited coke
determined by in situ TGA experiments (normalized per cata-
lysts' surface area), suggesting therefore that the catalysts
deactivate by coking (Table S5%). Therefore, coking can be
related to Ga surface atoms in SP geometry that display strong
Lewis acidity (such surface sites are derived from bulk Gay;
sites, Scheme 1B and Fig. 5).

N{>’Al} JHMQC DNP SENS experiments suggest that Ga-
O-Ga linkages are replaced by Ga—O-Al linkages not only in the
bulk but also on the surface of the catalysts studied in this work
(Fig. 4D). More abundant Ga-O-Al surface linkages correlate
with more abundant weak Lewis acidity observed by Py-FTIR in
(Ga,Al),03(1:3) and (Ga,Al),O3(;.¢) catalysts. In particular,
(Ga,Al),05(1 . ) has the highest fraction of Gayy sites among the
materials studied in this work (and the lowest fraction of Gay;
sites), features weak LAS (Py bands at ca. 1606 and 1597 cm ™),
shows a high Ga-weight normalized activity (similar to
(Ga,Al),O5; . 3 catalyst), low deactivation with TOS, stable
selectivity to propene at ca. 85%, and deposits the lowest
amounts of coke during in situ TGA experiments. Yet, these Al-
rich catalysts still contain strong LAS, evidenced by a band at ca.
1618 cm ™" at Tyes = 200 °C in Py-FTIR (Fig. S1071), and deposit
low amounts of coke, likely related to the presence of remaining
low amounts of Ga-based strong LAS. Comparison of CPMAS,
N{7Al} and "N{"'Ga} JJHMQC spectra allows to refine the
conclusions of the Py-FTIR study and deconvolute the contri-
butions of Lewis acid sites linked with Ga- and Al-based LAS. In
line with the FTIR results, CPMAS spectra in Fig. 4A and fittings
in Table S8t show that the relative fraction of Ga-based strong
LAS associated with the peak at 240-242 ppm decreases from
23% and 24% in Ga-rich (Ga,Al),O05(;.0) and (Ga,Al),O043 . 1)
catalysts to 15% and 7% in Ga-poor (Ga,Al),03; .5 and
(Ga,Al),051 . ) catalysts. However, ""N{*’Al} JJHMQC spectra
reveal that the peak at ca. 242 ppm in CPMAS spectra contains
contributions from Al-based strong LAS, fitted to 4% in both
(Ga,Al),051 . 3) and (Ga,Al),O5; : 6) (Fig. 4B, Table S9t), which
means that the actual amounts of Ga-based strong LAS in
(Ga,Al),05(1 ; 3and (Ga,Al), 054 . 6) catalysts is less than 15% and
7%. This suggests that (Ga,Al),O3; ; 6), and to a slightly lesser
extent (Ga,Al),O3(1 : 3), have a strongly diminished fraction of
Ga-based strong LAS as compared to (Ga,Al),O31.0) and
(Ga,Al),05(3 . 1) catalysts. Deconvolution of the strong LAS peaks
in CPMAS spectra shows that the broadening of the peak at 240-
242 ppm observed in Al-rich (Ga,Al),O3(; . 5) and (Ga,Al),O5(1 : 6
is due to the contribution of a more shielded peak resonating at
234 ppm, which indicates the emergence of new, stronger LAS
in these two materials. The presence of the peak at 234 ppm in
the ™N{*’Al} JJHMQC spectra allows us to assign this more
shielded peak to Py on Al-based strong LAS (Fig. 4B).

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sc05381g

Open Access Article. Published on 12 November 2021. Downloaded on 1/22/2026 8:24:44 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

Noteworthy, the presence of strong Al-based LAS in (Ga,Al),-
031 : 6) (as well as the presence of mostly weak/mild Ga-based
LAS in this material) does not lead to coking, which is in
contrast to other (Ga,Al),0; catalysts studied here that contain
strong Ga-based LAS and produce coke. This result suggests
that strong Al-based LAS are not involved in coking.

While the relative fraction of Py on Al-based medium LAS
associated with the peak at 263-264 ppm changes in the "N
{*”Al} JJHMQC spectra from 65% in (Ga,Al),053 . 1) to 60% and
71% in (Ga,Al),O5(1 . 3) and (Ga,Al),03; . 6), the respective frac-
tion of Py on weak Al-based LAS (peak at 275-277 ppm)
decreases constantly, i.e. from 28% in (Ga,Al),O3; . 1) to 16% in
(Ga,Al),05(; . 3y and to 6% in (Ga,Al),O5(; . 6). That being said, the
fittings of the CPMAS spectra, which capture contributions from
Al-based and Ga-based LAS, reveal that the fraction of weak LAS
(centered at 281-282 ppm) remains stable at around 10% in Al-
containing (Ga,Al);O5 . 1), (Ga,Al),05(1 3y and (Ga,Al),05( . g)
catalysts, and is higher at 14% only in (Ga,Al),O3(; . o). These
results suggest that in Al-containing catalysts, the relative
fraction of Ga-based weak LAS increases with the increasing Al
content. Importantly, the presence of the weak LAS peak reso-
nating at 276 ppm in the N{"'Ga} JJHMQC spectrum of
(Ga,Al),05; . 1) demonstrates unequivocally the attribution of
this peak to weak Ga-based LAS sites rather than to weak/
medium BAS sites. We have reported previously that the
higher catalytic activity of f-Ga,O; is linked to a notably higher
relative fraction of weak LAS in this material relative to the y-
Ga,0; polymorph, identified by the N peak at 281 ppm."
Therefore, we explain the higher relative fraction of weak LAS in
(Ga,Al),05(1 ;. gy as compared to the Al-containing (Ga,Al),O;
catalysts by the presence of the B-Ga,0; phase in (Ga,Al),O51 : o),
which follows from the XRD results in Fig. S1.7 Indeed, the
presence of Al stabilizes notably the y-spinel-type structure of
the (Ga,Al),O; catalysts against the transformation to the B-
polymorph, and the B-Ga,O; phase is not observed in Al-
containing (Ga,Al),O; catalysts.

CPMAS and "N{*>’Al} J-HMQC experiments reveal a funda-
mental divergence of the Lewis acidity strength related to the
respective Aly/Gapy (and Alyy/Gay;) sites (Fig. 4A and B). We
discussed above that Al atoms preferentially occupy octahedral
sites in the (Ga,Al),0; materials, but with increasing Al content,
also tetrahedral sites become occupied and comprise 8, 12 and
22% in (Ga,Al)203(3 1) (Ga,Al)203(1 :3) and (Ga,Al)203(1 : 6)
respectively, according to the quantitative fittings of the *’Al
NMR spectra. Although these values reflect the quantity of bulk
Alyy sites, a qualitative correlation is found with the relative
amount of strong Al-based LAS, fitted to 7% of the total area in
(Ga,Al),05; . 1) but increasing to ca. 20-25% in (Ga,Al),05( . 3)
and (Ga,Al),O3(1 . ) (Table S97). In line with these results, the Al-
poor (Ga,Al),05; . 1) catalyst contains 92% of bulk Aly; sites and
features a fitted area of weak/medium LAS peaks totaling to
93%. This data allows us to associate strong Al-based Lewis
acidity in (Ga,Al),0; catalysts with Alyy sites and weak/medium
Lewis acidity with Al surface sites in SP geometry (Scheme 1B),
consistent with the previous data on y-Al,03.*> Analysis of
CPMAS results discussed above displays the opposite correla-
tion (relative to Al sites) between the coordination geometry and
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Lewis acidity of Ga LAS in y-(Ga,Al),0; spinels. Specifically, an
increasing amount of bulk Gap sites (57, 72 and 86% in
(Ga,Al),05(3 . 1), (Ga,Al),05(; . 3y and (Ga,Al),05(; ; 6), respectively)
correlates with the increasing fraction of weak/medium LAS. In
turn, the respectively decreasing amount of bulk Gay; sites
correlates with a decreasing fraction of strong Ga LAS. There-
fore, strong Ga-based Lewis acidity is associated with Ga LAS in
Gay; surface termination positions, which likely yields Ga
surface sites in square pyramidal geometry, and weak/medium
Lewis acidity with Gary positions, providing Gay, and Gayy (next
to a V,, site) surface sites.'” The underlying physical reason why
SP surface Ga sites are strong LAS in Ga,O; and y-(Ga,Al),O3
materials is currently unclear, but is consistent with reported
DFT calculations.™

We can now relate results of DNP SENS experiments to the
catalytic performance of the studied materials. The high and
stable selectivity to propene displayed by (Ga,Al),O5(; . 5) and
(Ga,Al),05(1 . 6) (at ca. 90 and 85%, respectively) and the high
activity (Ga-content normalized) of these catalysts is associated
with the low relative amounts of strong Ga-based LAS and high
relative amounts of weak and medium Ga-based LAS assigned
to tetra- or tricoordinated Ga surface sites. When the relative
amount of weak/mild Ga LAS decreases and the relative amount
of strong Ga LAS increases, as in (Ga,Al),Oj3; . 1), the activity and
propene selectivity decline. Interestingly, while Ga sites in
octahedral positions at surface termination (Gay surface sites
with SP geometry, Scheme 1B) can be linked to deactivation by
coking," the current results show that surface Al sites in these
positions do not coke significantly; yet, strong Al-based LAS
(Alyy) do not coke either. However, in addition to deactivation by
coking, we cannot exclude that strongly bound surface hydrides
contribute to the observed deactivation.

We also note that another parameter changing alongside the
Al loading in (Ga,Al),05 catalysts is the oxygen basicity, which is
linked with the electron density on the oxygen atom.* For
instance, oxygen basicity has been shown to increase with the
increasing content of the framework Al sites in zeolites.”
Therefore, it is likely that the basicity of surface oxygen atoms is
higher in Al-rich (Ga,Al),0j3 catalysts, which is beneficial for the
proton transfer step during the C-H activation of propane;>
a higher electron density on the oxygen atoms can also decrease
Lewis acidity of Ga in Ga-O-Al surface linkages. The progress in
understanding the relation between oxygen basicity and Lewis
acidity in Ga-based PDH catalysts will be reported in due course.

A control experiment with y-Al,O; (Sger = 100 m> g ')
showed a surface area-normalized activity that is ca. 15 times
lower than the initial activity of (Ga,Al),Oj5(1 . ), and it showed
a poor propene selectivity of 42%, consistent with previous
reports.®*®** No coke deposition could be detected in this
material by TGA. While a higher activity of alumina for PDH was
reported to require a high temperature CO pre-treat-
ment,'***%*% gsuch pre-treatment was not performed in the
present work. Crystalline alumina-based catalysts also require
higher reaction temperatures (600-630 °C), as was already
mentioned above. Thus, the activity trends of (Ga,Al),O3 cata-
lysts in this work are related to Ga sites, that are influenced by
the coordination geometry of both Ga and Al atoms, and the
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replacement on the surface of Ga-O-Ga linkages in Ga-rich
materials by Ga-O-Al linkages in Al-rich materials (Fig. 4D).>
High resolution TEM imaging of (Ga,Al),O3; . 3y nanoparticles
showed that the atomic termination rows contain Aly, cations.

Overall, the experimental results suggest that the high
catalytic activity, stability and selectivity in PDH is related to the
weak/mild Lewis acidity of Ga-based active sites, presumably
residing in Gay—O-Aly; surface linkages, that is when Ga and Al
are in tetrahedral and octahedral positions in atomic termina-
tion rows, respectively (Fig. 4D). The replacement of Ga by Al in
(Ga,Al),05 spinel-type solid solutions attenuates the relative
fraction of strong Lewis acidity of Ga-based sites and increases
the relative fraction of weak and mild Ga-based sites. Thus,
weak and mild Lewis acidity is associated with Ga atoms that
produce little coke and yield high propene selectivity, and that
are found in tetrahedral atomic termination rows with tetra- or
tricoordinated (if in the vicinity of a V,, site) geometry of Ga sites.
Since the presence of strong Al-based LAS in Al-rich (Ga,Al),03
catalysts does not induce coking, it is the strongly Lewis acidic
Ga sites found in Gay; atomic termination rows that are most
likely responsible for deactivation by coking.

Conclusions

We have described how control over the Ga : Al atomic ratio in
(Ga,Al),05 spinel-type solid solutions allows one to improve the
catalytic performance (activity, selectivity, stability) of these
materials in the dehydrogenation of propane. The presence of
Al atoms in (Ga,Al),0; nanoparticles stabilizes the spinel-type
structure, leads to a higher relative fraction of bulk and
surface Gap sites and, for Alrich compositions, provides
a relatively high fraction of weak/mild Ga-based surface Lewis
acid sites. These weak/mild Ga LAS that suffer less from catalyst
deactivation (owing to decreased coke deposition during PDH)
while retaining a high activity and selectivity are ascribed to
Gap—O-Aly; surface linkages. (Ga,Al),O; catalysts that are rich
in Ga display a higher presence of bulk Gay; sites, a higher
relative fraction of stronger Ga-based surface LAS and this
correlates with a faster deactivation by coke deposition.
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