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d ring-expansion reactions of
carborane-fused borirane†

Hanqiang Wang, Jie Zhang and Zuowei Xie *

Though the reaction chemistry of three-membered ring molecules such as cyclopropanes and their

heteroatom-containing analogues has been extensively studied, the chemical properties of their boron

analogues, boriranes, are little known thus far. This work describes the diverse reactivity patterns of

carborane-fused borirane 2. This borirane engages in ring-opening reactions with different types of

Lewis acids, such as BBr3, GeCl2, GaCl3, BH3(SMe2) and HBpin, affording a series of ring-opening

products, in which M–X or B–H bonds add across the B–C(cage) bond of the three-membered ring in 2.

On the other hand, borirane 2 can undergo ring-expansion reactions with unsaturated molecules such

as PhCHO, CO2 and PhCN to give ring-expansion products, five-membered boracycles, via a concerted

reaction mechanism as supported by DFT calculations. The results of this work not only enrich the

reaction chemistry of boriranes, but also offer new routes to boron-containing compounds and

heterocycles.
Introduction

Compounds of highly strained three-membered ring systems
have been an indispensable subject of considerable interest.
Among them, cyclopropanes are well-studied molecules due to
their numerous applications in synthetic chemistry.1–3 Likewise,
heteroatom-containing analogues of cyclopropanes such as
oxiranes (X ¼ O),4–8 aziridines (X ¼ NR),9–12 silacyclopropanes (X
¼ SiR2),13–15 phosphiranes (X ¼ PR)16 and thiiranes (X ¼ S),17 in
the form of cyclo-XC2R4, are also widely used as building blocks
in synthesis. These three-membered ring systems possess high
reactivity due to their inherent ring strain, which allows them to
engage in ring-opening reactions with nucleophiles and ring-
expansion transformations with p-conjugated compounds. In
contrast, the chemistry of three-membered boron compounds
(boriranes) is much less known.

The only known base-free boriranes of type I (Scheme 1) were
synthesized by Berndt's group through [2 + 2] cycloaddition of
acetone and diphenylacetylene with methyleneborane.18–20 Den-
mark and coworkers reported the rst example of Lewis base-
stabilized boriranes of type II (Scheme 1) via irradiating
diphenyl-(E)-2-phenylethenyl-borane under UV light.21 Later on,
several base-stabilized boriranes were disclosed by the groups of
Wang,22–26 Braunschweig27,28 and Curran29–31 via photochemistry or
salt metathesis or double hydroboration. Carborane-fused Lewis
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base-stabilized boriranes III and IV (Scheme 1) were prepared in
our laboratory via irradiating carborane-fused azaborole under Xe
light32 and in the Ye group via salt elimination between Li2-1,2-
C2B10H10 and amino(dichloro)borane,33 respectively.

Though Lewis base-stabilized boriranes are isoelectronic
with cyclopropanes, their reaction chemistry is little known.
The only reported reactions of Lewis-base stabilized boriranes
are the ring-opening reaction with HCl or CuCl, giving the B–C
bond cleavage products, and the ring expansion reaction with
the sulfur element.31,32 It has been documented that Lewis-base
stabilized boriranes are very stable towards water, air, photol-
ysis and heating, and did not undergo B–C bond oxidative
addition reaction with Pt(PEt3)3.28 Such a remarkable stability
could be ascribed to the quaternization of the boron center by
a Lewis base, which may outweigh the destabilizing ring strain
Scheme 1 Known base-free and Lewis base-stabilized boriranes.
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in three-membered boriranes. In view of the very rich reaction
chemistry of cyclopropanes, aziridines and oxiranes, we would
like to explore the reactivity of NHC stabilized carborane-fused
boriranes as the electron-withdrawing nature of carborane and
the long cage C–C bond might enhance the reactivity of such
a three-membered BC2 ring system. In fact, we found that
carborane-fused borirane can not only undergo ring-opening
reactions with various Lewis acids, but also ring-expansion
reactions with unsaturated molecules. These ndings are re-
ported in this article.
Results and discussion
Synthesis of carborane-fused borirane

Following our previous procedures,34 reaction of 1-Li-o-carbor-
ane with BBr3 in the presence of 1,3-bis-(2,6-diisopropylphenyl)
imidazole-2-ylidene (Idipp) afforded a carbene-coordinated
carboranyl dibromoborane (1) in 54% isolated yield. Treat-
ment of 1 with 1 equiv. of LiN(TMS)2 in toluene at 80 �C gave
carborane-fused borirane 2 in 70% isolated yield (Scheme 2).
This reaction was monitored by the 11B NMR spectrum as 2
exhibited a distinguished singlet for exo-boron at �13.5 ppm.

Both 1 and 2 were structurally characterized as shown in
Fig. 1. The exo-B(13) atom in 2 features a highly distorted
tetrahedral geometry with binding to two cage-carbon atoms,
one bromine, and one carbene carbon. In the B(13)C(1)C(2)
three-membered ring, the cage C–B bond distances (1.629(4)
and 1.662(4) Å) fall into the range of the reported ones in
carborane-fused boriranes (1.567(4)–1.667(3) Å)32,33 and those
(1.60–1.69 Å) observed in Lewis-base stabilized boriranes.25,27–29
Scheme 2 Synthesis of carborane-fused borirane.

Fig. 1 Molecular structures of (a) 1 and (b) 2. Thermal ellipsoids are set
at the 50% probability level. For clarity, the carbene moiety is drawn in
wireframe and hydrogen atoms are omitted. Selected bond distances
[Å] and angles [�] for 1: C(1)–B(13) 1.654(7), C(1)–C(2) 1.671(7), C(11)–
B(13) 1.649(7), Br(1)–B(13) 2.034(5), B(13)–C(1)–C(2) 121.2(4), C(11)–
B(13)–C(1) 113.0(4); for 2: C(1)–C(2) 1.580(4), C(1)–B(13) 1.629(4), C(2)–
B(13) 1.662(4), Br(1)–B(13) 2.013(3), C(2)–C(1)–B(13) 62.37(17), C(1)–
C(2)–B(13) 60.26(17), C(1)–B(13)–C(2) 57.37(17), C(2)–B(13)–Br(1)
120.75(19).

13188 | Chem. Sci., 2021, 12, 13187–13192
The cage C(1)–C(2) distance of 1.580(4) Å in 2 is comparable to
those (1.578(3)–1.640(3) Å) in carborane-fused boriranes,32,33 but
somewhat longer than those (1.52–1.56 Å) observed in carbene-
stabilized boriranes.25,27–29 These measured distances are
considerably shorter than the 1.671(7) Å in 1, suggesting a large
ring strain. The C(1)–B(13)–C(2) angle of 57.4(2)� in 2 compares
to those observed in carborane-fused boriranes (56.6(1)� and
62.9(2)�)32,33 and Lewis-base stabilized boriranes (55.8–
57.9�).25,27–29

Ring-opening reaction

Only two examples of the heterocleavage of the C–B bond in
Lewis base-stabilized boriranes were reported using CuCl or
HCl as a reagent.31,32 To further explore the reactivity of borir-
anes, the reactions of 2 with various Lewis acids were explored.

Reaction of 2 with 1 equivalent of BBr3 in toluene at room
temperature afforded 3 as colorless crystals in 75% isolated
yield (Scheme 3). NHC-coordinated BBr2 and BBr2 were
observed at 3.9 and �0.1 ppm, respectively, in its 11B NMR
spectrum. Single crystal X-ray analyses show that each cage-
carbon is bonded to one exo-boron atom that is bridged by
a bromine atom, conrming the cleavage of the cage C–B single
bond by Lewis acid BBr3 (Fig. 2a). As expected, the Br(2)–B(13)/
B(14) distances of 2.116(3)/2.205(4) Å are considerably longer
than those of terminal B–Br bonds (1.985(4)–1.997(4) Å).

In the same manner, treatment of 2 with 1 equiv. of GeCl2-
$dioxane or GaCl3 in toluene at room temperature resulted in
the isolation of 4 or 5 in 68% or 67% isolated yield (Scheme 3).
The exo-boron atom was observed at 5.2 ppm in 4 and 5.3 ppm
in 5 in their 11B NMR spectra, which was signicantly shied
downeld compared to the �13.5 ppm observed in 2. The solid-
state structure of 4 was further conrmed by single crystal X-ray
analyses (Fig. 2b). The structure shows the presence of a m2-Cl
bridge and exchange of halides where the Br atom migrates
Scheme 3 Reactivity of 2 with Lewis acids.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Molecular structures of (a) 3 and (b) 4. Thermal ellipsoids are set
at the 50% probability level. For clarity, the carbene moiety is drawn in
wireframe and hydrogen atoms are omitted. Selected bond lengths [Å]
and angles [�] for 3: C(1)–C(2) 1.700(4), C(2)–B(14) 1.597(5), C(1)–B(13)
1.627(5), Br(4)–B(14) 1.985(4), Br(2)–B(13) 2.116(3), Br(2)–B(14)
2.205(4), Br(1)–B(13) 1.997(4), B(13)–C(1)–C(2) 118.3(2), B(14)–C(2)–
C(1) 116.9(3); for 4: Ge(1)–C(2) 2.039(4), Ge(1)–Br(1) 2.3527(7), Ge(1)–
Cl(1) 2.5030(11), Cl(1)–B(13) 1.947(4), Cl(2)–B(13) 1.829(4), C(1)–B(13)
1.639(5), C(1)–C(2) 1.680(5), B(13)–C(1)–C(2) 118.6(3), C(1)–C(2)–Ge(1)
121.8(2), C(1)–B(13)–C(11) 116.5(3).

Scheme 4 Reaction of 2 with boranes.

Fig. 3 Molecular structures of (a) 6 and (b) 7. Thermal ellipsoids are set
at the 50% probability level. For clarity, the carbene, THF and pinacol
moieties are drawn in wireframe and hydrogen atoms (expect for exo-
BH2) are omitted. Selected bond lengths [Å] and angles [�] for 6: C(1)–
C(2) 1.738(6), C(1)–B(13) 1.631(6), C(2)–B(14) 1.618(7), B(13)–C(1)–C(2)
119.0(3), B(14)–C(2)–C(1) 121.6(3); for 7: C(1)–B(13) 1.640(3), C(1)–C(2)
1.694(3), C(2)–B(14) 1.577(4), B(13)–C(1)–C(2) 117.94(17), B(14)–C(2)–
C(1) 121.59(17).

Scheme 5 Reaction of 2 with unsaturated molecules.
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from exo-B to the Ge center probably owing to the formation of
the stronger B–Cl bond. The C(1)–C(2)/C(1)–B(13) distances of
1.680(5)/1.639(5) Å in 4 are close to the 1.701(6)/1.627(5) Å in 3.
© 2021 The Author(s). Published by the Royal Society of Chemistry
The activation of the B–H bond was also achieved by 2.
Treatment of 2 with two equivalents of BH3$SMe2 in toluene at
80 �C afforded, aer recrystallization from THF, a ring-opening
product, 1-[BH2(Idipp)]-2-BH2(THF)-1,2-C2B10H10 (6), in 91%
isolated yield with H2BBr$SMe2 as a byproduct as conrmed by
the 11B NMR spectrum (Scheme 4). The carbene stabilized
boron was observed at �23.0 ppm as a triplet and THF-
coordinated boron at 4.0 ppm as a very broad peak in its 11B
NMR spectrum. Single-crystal X-ray analyses, as shown in
Fig. 3a, conrm that the bromine and hydrogen exchange takes
place to form a BH2(Idipp) unit. Both exo-B atoms are four-
coordinated. The C(1)–C(2) distance of 1.738(6) Å is slightly
longer than the 1.699(4) Å in 2. The C(cage)–B bond lengths of
1.631(6) Å and 1.618 Å in 6 are comparable to the 1.627(5) Å and
1.598(5) Å in 2.

On the other hand, treatment of 2 with 1 equivalent of
pinacolborane (HBpin) at 80 �C in toluene afforded a ring-
opening product, 1-[BHBr(Idipp)]-2-Bpin-1,2-C2B10H10 (7), as
colorless crystals in 82% isolated yield (Scheme 4). The boron
chemical shi of Bpin was observed at 30.2 ppm as a singlet in
its 11B NMR spectrum. The molecular structure of 7 is shown in
Fig. 3b. The C(1)–C(2)/C(1)–B(13)/C(2)–B(14) bond distances of
1.694(3)/1.640(3)/1.577(4) Å are similar to those observed in 6.
Ring-expansion reaction

The ring-expansion reactions of cyclopropanes have long been
a staple of organic chemistry. In sharp contrast, the only known
ring-expansion reaction of boriranes is its reaction with the
sulfur element.32 We wondered if unsaturated molecules would
insert into the B–C bond to give ring-expansion products.

Surprisingly, 2 rapidly underwent a facile ring expansion
reaction with 1 equiv. of benzaldehyde (PhCHO) in toluene at
Chem. Sci., 2021, 12, 13187–13192 | 13189
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80 �C to afford an insertion product (8) in 72% isolated yield
(Scheme 5). The CHO proton was observed as a singlet at
4.79 ppm in the 1H NMR spectrum. The NHC-stabilized boron
atom was observed at 3.3 ppm as a singlet in its 11B NMR
spectrum. Single crystal X-ray analyses show that the B(13) atom
is bonded to one bromine, one cage-carbon, one oxygen atom
and one carbene carbon in a tetrahedral geometry (Fig. 4a). The
C(1)–B(13)/C(11)–B(13)/B(13)–Br(1) distances of 1.640(4)/
1.651(4)/2.090(3) Å are comparable to those observed in 2. The
B(13)–O(1) distance of 1.429(3) Å falls in the range of the re-
ported B–O single bond distances (1.35–1.52 Å).34–36 It was noted
that only one diastereomer of 8 was obtained as conrmed by
the NMR data. This can be ascribed to steric reasons since the
Fig. 4 Molecular structures of (a) 8, (b) 9 and (c) 10. Thermal ellipsoids
are set at the 50% probability level. For clarity, the carbene and Ph
moieties are drawn in wireframe and hydrogen atoms are omitted.
Selected bond lengths [Å] and angles [�] for 8: Br(1)–B(13) 2.090(3),
O(1)–C(38) 1.413(3), O(1)–B(13) 1.429(3), C(1)–B(13) 1.640(4), C(1)–C(2)
1.657(3), C(2)–C(38) 1.542(3), C(38)–O(1)–B(13) 117.31(19), B(13)–C(1)–
C(2) 101.85(19), C(38)–C(2)–C(1) 106.08(19), O(1)–C(38)–C(2) 106.3(2),
O(1)–B(13)–C(1) 104.9(2); for 9: Br(1)–B(13) 2.039(4), O(2)–C(38)
1.198(4), O(1)–C(38) 1.328(4), O(1)–B(13) 1.496(4), C(1)–C(2) 1.638(4),
C(2)–C(38) 1.509(4), C(1)–B(13) 1.657(4), C(38)–O(1)–B(13) 118.0(2),
C(38)–C(2)–C(1) 106.6(2), C(2)–C(1)–B(13) 102.0(2), O(1)–C(38)–O(2)
124.8(3), O(2)–C(38)–C(1) 124.6(3), O(1)–C(38)–C(1) 110.5(2), O(1)–
B(13)–C(1) 102.8(2); for 10: Br(1)–B(13) 2.072(4), C(1)–C(11) 1.527(5),
C(1)–C(2) 1.664(4), C(2)–B(13) 1.657(5), N(1)–C(11) 1.271(5), N(1)–B(13)
1.518(5), C(11)–N(1)–B(13) 115.5(3), C(11)–C(1)–C(2) 103.1(3), B(13)–
C(2)–C(1) 102.1(2), N(1)–C(11)–C(1) 115.6(3), N(1)–B(13)–C(2) 103.7(3).

13190 | Chem. Sci., 2021, 12, 13187–13192
NHC and Ph groups are in the trans positions in the structure
with respect to the C(1)C(2)C(38)O(1)B(13) ve-membered ring.
Thus, it is suggested that such a ring expansion reaction
proceeds via a kinetically and thermodynamically favorable
process.

On the other hand, the insertion of CO2 into the B–C(cage)
bond in 2 at room temperature afforded a boralactone, 1,2-
[BBr(Idipp)OCO]-1,2-C2B10H10 (9), in 87% isolated yield
(Scheme 5). The exo-boron was observed at 0.1 ppm in the 11B
NMR spectrum, compared to the 3.3 ppm in 8. The molecular
structure of 9 was conrmed by single-crystal X-ray analyses
(Fig. 4b). The most notable feature of the structure is that the
ve atoms (C(1), C(2), B(13), O(1), and C(38)) are co-planar with
the sum of the internal pentagon angles being 540.0�. The C(1)–
C(2)/C(1)–B(13) distances of 1.638(4)/1.657(4) Å in 9 are similar
to the corresponding values in 2 and 8.

The ring expansion pathway leading to 9 via the addition of
C]O across a B–C(cage) bond in 2 was investigated by DFT
calculations, in which the dipp of NHCwas replaced by amethyl
group for simplicity. As shown in Fig. 5, this is a concerted
reaction via a four-membered transition state (TS), resulting in
the formation of a thermodynamically very stable addition
product, 9-Me. As the reaction proceeds from 2-Me to TS, the
most signicant change in the structure is reected in the
largely elongated C(2)–B(13) bond, 2.568 Å in TS vs. 1.624 Å in 2-
Me. As a result, the calculated natural charge on the B(13) is
found to be much more positive (0.744) in TS than in 2-Me
(0.373) by natural bond orbital (NBO) analyses, suggesting
a borenium nature of B(13). These data indicate that the C(2)–
B(13) bond becomes polarized in the transition state and
behaves as a borenium and carbanion.

In a similar manner, reaction of 2 with benzonitrile in
toluene at 80 �C gave a C^N insertion product, a ve-
membered boracycle (10), in 83% isolated yield (Scheme 5).
The exo-boron was observed at �0.6 ppm in its 11B NMR spec-
trum, compared to the 3.3 ppm in 8 and 0.1 ppm in 9. Single X-
ray crystal crystallography reveals the insertion of the CNmoiety
Fig. 5 DFT-calculated ground-state reaction pathway for the
formation of 9-Me at the B3LYP/6-31+G(d,p) level of theory. The
relative free energies (calculated at 298 K) are given in kcal mol�1.

© 2021 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sc04453b


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 2
:0

8:
51

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
into the cage C–B bond to give a ve membered planar C3BN
heterocycle. The key structural parameters in 10 are close to
those observed in 8 and 9. It was noted that the above ve-
membered boracycles did not react further with unsaturated
molecules.

Conclusions

The ring-opening and ring-expansion reactions of carborane-
fused borirane 2 have been explored, enriching largely the
reaction chemistry of boriranes. Our results show that 2 can
undergo facile ring-opening reactions with different types of
Lewis acids to afford a new class of unsymmetrical cage-C
substituted o-carboranes. On the other hand, 2 can react with
various types of unsaturated substrates to give a range of ring-
expansion products, ve-membered boracycles, that are other-
wise inaccessible by other means.

DFT calculations suggest that the ring-expansion reactions
proceed via a concerted pathway with a four-membered transi-
tion state and are highly thermodynamically favored processes.
It is anticipated that the ring-opening reactions occur via
a similar four-membered transition state (s-bond metathesis)
to generate thermodynamically more stable s-bond metathesis
products. This work not only shows the diverse reactivity
patterns of boriranes, but also offers new routes to boron-
containing compounds and heterocycles.
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