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g from carbon dioxide:
simultaneous epoxidation and CO formation†

Han Xu,ab Muhammad Shaban,a Sui Wang,ac Anas Alkayal,d Dingxin Liu,c

Michael G. Kong,c Felix Plasser, d Benjamin R. Buckley *d and Felipe Iza*ae

Due to increasing concentrations in the atmosphere, carbon dioxide has, in recent times, been targeted for

utilisation (Carbon Capture Utilisation and Storage, CCUS). In particular, the production of CO fromCO2 has

been an area of intense interest, particularly since the CO can be utilized in Fischer–Tropsch synthesis.

Herein we report that CO2 can also be used as a source of atomic oxygen that is efficiently harvested

and used as a waste-free terminal oxidant for the oxidation of alkenes to epoxides. Simultaneously, the

process yields CO. Utilization of the atomic oxygen does not only generate a valuable product, but also

prevents the recombination of O and CO, thus increasing the yield of CO for possible application in the

synthesis of higher-order hydrocarbons.
Introduction

Given the urgent need to reduce greenhouse gas emissions and
the growing concerns about the environmental impact of
chemical processes, carbon dioxide (CO2) utilisation has
received growing attention in recent years.1–5 The idea of using
CO2 as a carbon source for organic synthesis is not new and
indeed CO2 has been used in the manufacture of salicylic acid,
urea and cyclic carbonates for 50–100 years. However, due to its
relative inertness (DfH� of �394 kJ mol�1), these processes are
signicantly energy demanding, with reactions typically taking
place at high temperatures and pressures. Under mild condi-
tions, efficient chemical incorporation of CO2 is restricted to
reactive substrates, such as epoxides to produce cyclic carbon-
ates6,7 and amines to produce carbamates,8 oen in the pres-
ence of catalysts.9–11

In fact, articial photosynthesis, i.e. the transformation of
CO2 and water to chemical fuels, has been pursued for more
than three decades.1,2 Different electrochemical, photochemical
and electrocatalytic processes have been proposed but despite
recent advances, these processes remain non-viable from
ical and Manufacturing Engineering,
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a techno-economical viewpoint. As in natural photosynthesis,
reduction of CO2 in these processes leads to the release of
oxygen and/or water. However, it occurred to us that if it were
possible to split carbon dioxide and utilize the oxygen atom (O)
to generate a value-added material, one could effectively
generate an oxidation process while simultaneously producing
carbon monoxide as a high-value energy-rich product.
Furthermore, atomic oxygen would be a green oxidant as it
would not generate an oxidant waste stream. This is of interest
because oxidation processes frequently lead to the generation of
large waste streams. For example, the widely used oxidant
Oxone™ produces around 25 kg of waste per kg of oxygen
transferred.

Besides electrochemical and photochemical processes,
nonthermal gas plasma has emerged in recent years as a tech-
nology with great potential for CO2 splitting (Fig. 1).12 As elec-
trochemical and photochemical processes, plasma processes
can be driven by renewable sources. The technology is also
scalable and in fact, low-pressure nonthermal plasmas have
already been successfully used for the dissociation of molecular
oxygen in materials applications for decades. Nonthermal
plasmas are a well-established large-scale manufacturing tech-
nique widely exploited, for example, for deposition and etching
in the semiconductor industry and in ozone generation
plants.13,14 Recent plasma research on CO2 splitting has
focussed on optimizing the dissociation process, and therefore,
the different mechanisms that lead to the dissociation of CO2

into CO and O in a non-thermal plasma are relatively well
understood.15–17

Traditionally, however, the use of plasma for chemical
synthesis has been limited by the incompatibility of the vacuum
requirements of conventional plasma systems with the vapor
pressure limitations of liquid chemicals, as well as the batch
Chem. Sci., 2021, 12, 13373–13378 | 13373
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Fig. 1 Current routes to plasma CO2 utilisation and epoxidation.
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nature of vacuum processing. Nonetheless, in recent years,
advances in the generation of non-thermal plasmas at atmo-
spheric pressure have opened the possibility of plasma treat-
ment of liquids and substrates which are not vacuum
compatible.18 In this work, we demonstrate the use of
nonthermal atmospheric pressure gas plasma to split CO2 and
the possibility of creating a dual process in which CO2 is
reduced to CO while serving as a source of atomic O for
synthesis purposes. Of all the possible oxidation processes, we
focused on epoxidation, a large scale and important oxidation
process for most chemical industries. Epoxides are key building
blocks and important intermediates in the preparation of many
products, including drugs, paints, adhesives, sealants, plastics,
etc. Owing to the lack of reactivity of small molecular oxygen
donors and alkenes, peroxy acids such as meta-chloroperox-
ybenzoic acid (mCPBA) are oen used to drive epoxidation
reactions, which leads to processes with poor atom economy
and halogenated waste streams. We therefore embarked on
initial studies to trap atomic oxygen with an alkene in order to
generate an epoxide, thereby targeting the important industrial
area of oxidation.
Scheme 1 Oxidation of the olefinic double bond by atomic oxygen.
Results and discussion

Carbon dioxide was dissociated into CO and O in a radio
frequency plasma COST jet (ESI Fig. S1†), a plasma jet designed
as a reference source for research of non-equilibrium atmo-
spheric pressure plasmas as part of a European Cooperation in
Science and Technology (COST) initiative.19 This jet has also
been shown to be amenable for the study of plasma–liquid
interactions at atmospheric pressure20,21 and provides a well-
characterized device that allows the comparison of results
among laboratories in different countries. Previous studies have
13374 | Chem. Sci., 2021, 12, 13373–13378
demonstrated the ability of this device to produce atomic
oxygen from admixtures of molecular oxygen. Two-photon
absorption laser-induced uorescence (TALIF) and mass spec-
trometry (MS) experiments have measured typical O concen-
trations in excess of 1014 cm�3 in the plasma aerglow at 1–2 cm
from the device nozzle.22,23 A recent study with oxygen isotopes
has also demonstrated the possibility of transferring atomic O
generated in the plasma into a solution, where it can react with
organic substrates.20

In this study, trans-stilbene and cis-stilbene solutions were
(independently) exposed to the aerglow of the plasma and
Fig. 1 shows the gas chromatographs of both solutions aer
60 min plasma exposure. The chromatographs reveal that
indeed it is possible to epoxidise stilbene with oxygen that
originates from CO2. Naphthalene was added to the solutions
post-treatment to provide a reference for quantitative analysis.24

In both cases, the same products were identied: the desired
trans- and cis-epoxides and two additional carbonyl
compounds, 2-phenylacetophenone and diphenylacetaldehyde.

The formation of cis-stilbene epoxide and trans-stilbene
epoxide in both solutions indicate that the epoxidation process
is not stereospecic. Treatment of trans-stilbene solutions leads
to a small amount of cis-stilbene epoxide, which indicates that
rotation around the C–C axis of the olenic bond can occur. No
rotation is observed when the solutions are exposed to a pure
helium plasma (ESI Fig. S3†), which suggests that the rotation
only takes place aer atomic oxygen is added to the double
bond and an intermediate adduct is formed (Scheme 1). Given
the more stable nature of the trans-isomer, a larger proportion
of cis-stilbene is converted to trans-stilbene epoxide aer expo-
sure to the plasma (Fig. 2).

Quantitative analysis of the chromatographs shown in Fig. 2
indicates that in both cases >55% of the initial stilbene had
been oxidized aer 60 min of plasma exposure. For the trans-
stilbene solution, �75% of the converted material was the
desired epoxide, with the remaining �25% being converted to
either 2-phenylacetophenone or diphenylacetaldehyde. This is
a high yield if one considers that it was obtained under mild
conditions without catalyst and without generating an oxidant
waste stream. For the cis-stilbene solution, the yield was slightly
lower at�55%, with�45% of the cis-stilbene being converted to
the two carbonyl compounds. The epoxidation process can be
applied to other olen substrates and we have preliminary data
for successful epoxidation of a range of alkene classes (aryl,
aliphatic a,b-unsaturated); styrene, trans-chalcone, b-pinene,
and cis-cyclooctene (ESI Fig. S5–S7†). In all cases, the main
product is the valuable epoxide and the corresponding chro-
matographs can be found in the ESI.†
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 GCMS chromatograph of the trans-stilbene solution (a) and cis-
stilbene solution (b) after exposure to a He + CO2 plasma for 60 min at
280 Vrms, �25 �C and CO2 flow rate of 10 sccm.
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Based on the products identied in the chromatographs
(Fig. 2), it can be concluded that exposure of the alkene to the
split CO2 leads to the formation of two main compounds:
epoxide and carbonyl compounds (Scheme 1).

The ratio of epoxide to carbonyl compounds depends on the
conditions in which O is incorporated into the alkene. As shown
in Fig. 3, operating at lower temperature favours the formation
of epoxide over carbonyl compounds, with the epoxide yield
increasing from 65% to 75% as the temperature is decreased
from 40 to �25 �C. This is probably a consequence of the more
effective quenching of the intermediate adduct at lower
temperature.

An indirect inuence of the temperature on the kinetics of
the process in the current experimental setup is via solvent
evaporation. As the temperature of the liquid increases, the
amount of solvent evaporated during the experiment also
Fig. 3 Influence of the temperature on the kinetics of the trans-stil-
bene oxidation after 20min plasma exposure at 280 Vrms and CO2 flow
rate of 10 sccm.

© 2021 The Author(s). Published by the Royal Society of Chemistry
increases (ESI Fig. S4†). As a result, the distance between the
nozzle of the plasma jet and the surface of the liquid varies over
time and increases more signicantly at higher temperatures.
For example, when the liquid is kept at 40 �C, the distance
between the nozzle of the plasma device and the surface of the
liquid increases from 4 mm to 25 mm aer 20 min. Increasing
the distance between the plasma nozzle and the liquid surface
causes an increased loss of O atoms as these are then allowed to
recombine to either O2 or to CO2 before reaching the liquid.
This causes the decrease in total trans-stilbene oxidation shown
in Fig. 3 as the temperature increases.

Previous studies of plasma oxidation of olens employed
oxygen as an oxygen donor.20,21,25 These studies showed that
singlet oxygen did not contribute to the epoxidation of alkenes
and that the amount of oxygen that could be put in the system
was constrained. In particular, atomic oxygen in the presence of
molecular oxygen forms ozone (O3), leading to the ozonolysis of
the alkene and the preferential formation of aldehyde over the
desired epoxide.21 As a result, high epoxide yields could only be
obtained at low pressure or with small oxygen admixtures
(<0.1%). In the present study, this problem is overcome as
atomic oxygen is not exposed to molecular oxygen, thereby
avoiding the formation of ozone. This is further supported by
the lack of benzaldehyde (retention time �4 min) in the chro-
matograms (see Fig. 2).

As shown in Fig. 4, for a xed input voltage, the amount of
epoxide produced initially increases with the concentration of
CO2 in the gas. This is expected as a higher concentration of
CO2 results in higher production of O. As the CO2 continues to
increase, however, the plasma density starts to decrease and
hence so does the epoxide formation. Operation at higher input
power would maintain the plasma density but a different device
from the one used in this study would be needed. Importantly,
however, the percentage yield of epoxide is insensitive to the
concentration of CO2 in the feed gas, a distinct and clear
advantage of using CO2 over O2 as an oxygen donor.

The time evolution of the concentration of trans-stilbene,
epoxide and carbonyl compounds during the exposure to
Fig. 4 Influence of the carbon dioxide concentration on the kinetics
of the trans-stilbene oxidation after 20 min plasma exposure at 280
Vrms and liquid temperature of �25 �C.

Chem. Sci., 2021, 12, 13373–13378 | 13375
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Fig. 5 Time evolution of the concentration of trans-stilbene, epoxide
and carbonyl compounds during exposure to He + CO2 plasma (280
Vrms, �25 �C, 10 sccm CO2).
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plasma is shown in Fig. 5. The rate of production of epoxide is
largest at the beginning as the concentration of both trans-
stilbene and atomic oxygen are largest at that time. As trans-
stilbene is consumed, and the delivery of atomic oxygen
decreases due to the evaporation of solvent, the production rate
of epoxide decreases over time. Once trans-stilbene is
consumed, the concentration of epoxide is found to decrease,
which implies that atomic oxygen degrades the epoxide.
However, since the epoxide yield remains constant at �75%
while trans-stilbene is present, degradation of epoxide can be
avoided by operating in excess of trans-stilbene.

With regards to the mechanism of epoxidation, it is clear
from the cis-stilbene experiment that oxygen transfer is occur-
ring through a non-concerted pathway, as both cis- and trans-
stilbene oxides are produced. Ab initio molecular modelling
using correlated multireference methods of the active atomic
Fig. 6 Potential energy curves for an oxygen atom approaching
ethene considering singlet (black) and triplet (red) spin computed at
the ab initio MR-AQCC level of theory by fixing the average C–O
distance and relaxing the remaining structure. Molecular structures at
the minima of the singlet and triplet surfaces are shown as insets.

13376 | Chem. Sci., 2021, 12, 13373–13378
oxygen oxidant approaching ethene reveals the pathways for the
epoxide formation (Fig. 6, see ESI† for computational
details).26,27 Singlet atomic oxygen readily produces epoxide
whereas triplet atomic oxygen requires to overcome an energy
barrier of �0.18 eV. This is a relatively small barrier and many
particles in the plasma can provide this energy. We expect the
latter to be the main reaction mechanism in our system as the
concentration of triplet atomic oxygen (ground state) is higher
than that of singlet oxygen in the plasma aerglow. Further-
more, singlet atomic oxygen would readily be quenched by the
solvent (see ESI†). In Fig. 6, ground state atomic oxygen
approaches from the right on the red triplet line and aer
overcoming the small energy barrier it binds to ethene to form
a biradical intermediate structure (circled in red). This structure
enables rotation along the carbon–carbon bond, supporting
Scheme 1 and explaining the cis/trans-isomerisation observed in
experiments. In Fig. 7, the biradical intermediate in the case of
cis-stilbene epoxidation is shown as 3[A], and upon carbon–
carbon bond rotation it gives 3[B]. The system then needs to
cross over to the singlet (black line, Fig. 6), to produce the
epoxide (circled in black). This process could either occur
through a monomolecular formally spin-forbidden intersystem
crossing process or through bimolecular quenching. In Fig. 7
this is depicted through intersystem crossing (ISC) to form 1,3-
singlet diradical 1[B], through which subsequent O–C bond
formation yields the anti-epoxide.28

The incorporation of atomic oxygen to the alkene implies
that carbon monoxide is also generated in the process. Indeed,
Fourier Transform Infrared (FTIR) spectroscopy reveals the
presence of CO at the gas outlet of the system. CO is in itself an
important feedstock in the synthesis of many chemicals and
fuels. For example, hydrogenation of CO can generate methanol
and higher-order hydrocarbons through the Fischer–Tropsch
Fig. 7 cis-Stilbene epoxidation: proposed singlet and triplet mecha-
nisms for the formation of cis- and trans-stilbene oxide.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 FTIR absorption spectra revealing higher CO concentration in
the effluent gas when the gas is exposed to the alkene solution.
Absorption at �2116 cm�1 and �2173 cm�1 correspond to the ‘P’
branch (DJ ¼ �1, where J is the rotational quantum number) and ‘R’
branch (DJ ¼ +1), respectively.
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process. As expected, the amount of CO detected varies with
raising CO2 concentration in a similar fashion to that observed
for the formation of epoxide (ESI Fig. S2†). Of interest here,
however, is the effect of sequestering atomic oxygen from the
CO2 splitting process to oxidize an alkene. Conventionally, in
CO2 plasma splitting processes, atomic oxygen is le to
recombine, leading not only to the formation of molecular
oxygen but also to the back reaction with CO to form CO2,
thereby having a detrimental effect on the process efficacy.29

However, as shown in Fig. 8, the back reaction with CO can be
mitigated by sequestering atomic oxygen in a reaction with an
alkene, thereby leading to an increase in the CO concentration
in the effluent gas under otherwise identical operating condi-
tions. In one particular experiment, the CO concentration
increases by 70% when the plasma effluent is exposed to trans-
stilbene in solution (Fig. 8).
Conclusions

This study demonstrates the potential use of waste carbon
dioxide not only as a source of CO for the synthesis of fuels but
simultaneously as a source of atomic oxygen for valuable
oxidation reactions. In particular, carbon dioxide was split in
a nonequilibrium plasma and the resulting atomic oxygen
utilized to oxidize a series of alkenes. The process yields
primarily epoxide under mild temperature and pressure
conditions without the use of catalysts or co-reagents. The
concentration and yield of epoxide increase with decreasing
liquid temperature and the efficacy of the process is insensitive
to variations of the CO2 concentration in the feed gas. Oxidation
of trans-stilbene produces epoxide with a yield of �75% and
utilisation of the atomic oxygen in this oxidation process
prevents its back reaction with CO, thereby increasing the
concentration of CO in the plasma aerglow by �70%.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Although scalability of the technology would require recir-
culation of gases, increased gas–liquid interfacial area and
adaptation to ow, the current experimental setup has
demonstrated the feasibility for a CO2 based green oxidation
process with minimal environmental impact and great atom
economy.
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